
Imagine WebAR Image Tracker

Version: 1.7.1

WebGL Demos: https://webar.imaginerealities.com.au/it/demo

https://webar.imaginerealities.com.au/it/urp-game

Contact Support: https://imaginerealities.com.au/contact-support

Publisher’s Website: https://imaginerealities.com.au

Unity Forums Thread: https://forum.unity.com/threads/released-imagine-webar-image-tracker-fo

r-unity-webgl.1382748/

Discord Community: https://discord.gg/ypNARJJEbB

https://imagetracker.imaginerealities.com.au/demo
https://imagetracker.imaginerealities.com.au/urp-game
https://imaginerealities.com.au/contact-support
https://imaginerealities.com.au
https://forum.unity.com/threads/released-imagine-webar-image-tracker-for-unity-webgl.1382748/
https://forum.unity.com/threads/released-imagine-webar-image-tracker-for-unity-webgl.1382748/
https://discord.gg/ypNARJJEbB


Introduction

The web is one of the most promising platforms for augmented reality, because it allows users to

experience AR without the need to download a standalone application. And most, if not all, WebAR

plugins for Unity require developers to pay on a subscription and/or per view basis.

Imagine WebAR Image Tracker is an augmented reality plugin for Unity WebGL which allows developers

to implement AR experiences for the web. This plugin also allows developers to host their own AR

experiences like any other Unity WebGL build.

WebGL applications built using this plugin are able to run on both desktop and mobile browsers. And

since AR is mostly experienced through mobile devices, we are giving mobile browsers a higher priority.

Render Pipelines supported are Built-In RP and URP. Though, some rendering features are not supported

(see Current Limitations) or still experimental.

The plugin consists mainly of two modules: [1] a computer-vision (CV) module, written in Javascript,

which uses Natural-Feature tracking. This method disregards the need of any markers, and allows

developers to anchor 3D objects directly into any image (Given that this image has enough “features”.

See WebAR Best Practices). [2] A Unity Editor module which provides the tools necessary to create

“Image targets” and set up your AR Scene in Unity.



Setting up your AR Scene in Unity

A simple AR scene can be set up in a few minutes. Tutorial video can be found here.

To set up your first scene:

1.) Import the plugin and create a new Scene in Unity.

2.) Create an Image Tracker from Assets>Imagine WebAR>Create>Image Tracker

3.) Delete the Main Camera gameobject, and create an Image Tracker Camera from Assets>Imagine

WebAR>Create>Image Tracker Camera. Drag this object into the Tracker Cam property of the

Image Tracker

4.) Now we are ready to add Image Targets to our tracker.

Adding Image Targets to your Tracker (Paid Version)

Image Targets are images, which are detected by the tracker, and overlaid with 3D objects. Any image

can be used as an image target however, tracking performance will greatly depend on the amount of

“features” in the image. Images with high pixel contrasts are strong targets, while images with smooth

gradients perform poorly or not at all. Please see WebAR Best Practices for more information.

https://youtu.be/hFw8rZEngP0


If you purchased a Paid version of the asset, you’ll be able to create custom image targets. Follow the

steps below to add Image Targets to your tracker (Paid Version):

1.) Drag/import your image in Unity.

2.) Select this image in the Unity project window, and go to Assets>Imagine WebAR>Create>Image

Target

3.) Save your new Image Target prefab in your preferred directory.

4.) If you have your AR scene open, this Image Target prefab is automatically added to your

hierarchy and to your Image Tracker. Otherwise, simply drag this prefab in your scene, select

your Image Tracker - add a new element in the Image Targets List property with your Image

Target’s name and transform.

5.) Important: To check if your Image Target is set up correctly, go to

Assets/Imagine/ImageTracker/Resources/ImageTrackerGlobalSettings.asset and you should

see your new Image Target in ImageTargetInfos. And the Id should match with the one you have

in your Image Target Tracker.



6.) Finally, drag in your game objects in your new Image Target object.

Adding Image Targets to your Tracker (Free Version)
The Free version does not allow you to create your own image targets, but it comes with several

templates that you can use. There is also an allotted space at the center where you can place your

logo/branding.

You can also submit your image target designs in our Discord. If it gets enough votes/likes, then it will

have a chance to be included as a new template in the next asset release.

Follow the steps below to add Image Targets to your tracker (Free Version):

1.) Go to Assets>Imagine WebAR>Create>ImageTarget and choose your preferred template. The

ImageTarget prefab should be automatically created in your scene.

2.) Drag in your game objects as a child of your new Image Target object.



Building your AR Scene
1.) Go to File>Build Settings, switch to the WebGL platform if needed and add your scene in the

build. Then select iTracker template in Player Settings>Resolution and Presentation>WebGL

Template

2.) Build and Run your project.

3.) Allow access to your device camera and scan your printed image target. You should see the game

objects anchored in your image in AR.

For custom Image targets (Paid Version), you can verify that your Image Targets are properly included in

your build, by going to your build folder and opening index.html in Visual Studio. You should see the

below html line:

<imagetarget id=’YOUR_ID’ src=’targets/YOUR_FILE.png’></imagetarget>



for each of your Image Targets. You can also see that all your images are copied from the Unity folder to

a folder called /targets in your build folder.

Building Demo Samples

This plugin comes with demo samples which you can build and test. Follow the steps below to do this:

1.) Go to Assets>Imagine WebAR>Add Demo Image Targets. You should be able to see new Image

Targets in your ImageTrackerGlobalSettings object. This step is not required in the Free version.

2.) Make sure to include the demo scenes (Assets>Imagine>Scenes) in your Build Settings, with

Demo-Main as your first scene.



3.) Go to Player Settings, Select WebAR template in Resolution and Presentation>WebGL Template

4.) Build and Run your project.

Updating the plugin to URP

Imagine WebAR also supports the Universal Render Pipeline for WebGL. To update the plugin to URP,

follow the steps below:

1.) Create a new Unity project using the 3D(URP) template.

2.) Import the plugin.

3.) Go to Assets>Imagine WebAR>Update Plugin to URP

4.) Wait for the reimport to finish.

Note: The plugin does not fully support all URP features - Camera HDR and Post-Processing are disabled

by default. This is because the plugin is rendering the video background in javascript while the 3D objects

are rendered by Unity WebGL with a transparent background. Turning these features on breaks the

transparency of the canvas and the background is rendered black.

This can be partially resolved by enabling Use Webcam Texture (Experimental) in your TrackerCamera.

Hosting your AR experience for free in AWS
Watch the tutorial video here: Video coming soon



Hosting your AR experience for free in Google Firebase
Watch the tutorial video here: Video coming soon

WebAR Best Practices

Selecting the right Image Target

Several factors can affect the detection and tracking performance of your Image Target. An ideal Image

Target is described by the following:

- Rich and well-distributed details across the entire image

- Excellent contrast between the bright and dark regions of the image

- No repetitive or symmetrical patterns

What are Features?

Features are sharp details such as corners and contrasting pixels in textures. Tracking images with more

features are more robust to noise and jitter.

A great example of a feature-rich Image Target

A poor Image Target with very few trackable features



A poor Image Target due to lack of contrast

An Image Target with symmetrical or repeating patterns can “confuse” the tracker

Physical factors affecting tracker quality

Physical factors such as print media and lighting also play a vital role in the effectiveness of the tracker.

- Image Targets printed in glossy or reflective surfaces will have tracker quality issues on some

angles. It is best to print your images in matte, whenever possible.

- Environment should be well lit. The lighting conditions can easily affect how the camera sees the

image thus affecting tracker quality.

- Image Target printout should be rigid. Creased or bent targets degrade the quality or the tracker.

Lightweight AR experiences and game optimizations

Another thing to consider is that WebAR runs in web browsers with very limited processing power

compared to other platforms. So it is important to choose a lightweight experience and well-optimized

to run even on low-tier mobile devices across a wide range of browsers and versions. Consider the

following simplifications:

- Use low-res sprite sheets and/or low-poly models

- Use simple/unlit shaders whenever possible

- Avoid real-time image effects and post-processing

- Use simple animations instead of physics simulations

- Total memory consumed less than 300MB (including tracker)

FPS and Overheating



It is also very important to consider the impact of frame rate to the tendency of the device to heat-up.

AR experiences, in general, consume more resources (such as camera and calculations) than standard

games, thus putting more strain on device hardware and causing them to heat up, especially on high

frame rates and longer play sessions. And In response to overheating, devices will cap the framerate to

avoid any serious damage.

From our testing, mid-tier devices (eg. iPhone 8) is able to run a simple AR scene at 60 FPS for 3-5

minutes straight, before the frame rate starts to drop due to overheating.

Hence, it is best to keep your frame rate as low as possible (30 FPS or less is recommended for WebAR

experiences in mobile). As well as designing your AR experience to be playable in small intervals (2-3

minute sessions) while keeping your game as optimized as possible.

Tracker Settings

The tracker can be customized with a couple of properties. And these default settings can be found in

Assets>Imagine>Resources>Image Tracker Global Settings.asset.

They can also be overridden on a per scene basis, by enabling the Override Tracker Settings in your

Image Tracker object.

Tracker Origin



- Use CAMERA_ORIGIN to position your image targets relative to the camera at the origin.

- Use FIRST_TARGET_ORIGIN to position your camera relative to the first detected Image Target.

This is useful for Image Target setups which are sensitive to orientation such as when using

gravity, trail renderers or world particle systems.

Max Simultaneous Targets

- Use this setting to set the number of image targets that are allowed to be tracked

simultaneously.

- Note: In theory, there is no limit in the number of Image Targets tracked simultaneously , but

doing so can decrease the frame rate of your application.

Tracking Quality

- Use SPEED_OVER_QUALITY, to get the highest frame rate at the expense of longer detection

times and introducing tracking noise.

- Use BALANCED, to accommodate for both speed and quality.

- Use QUALITY_OVER_SPEED, to get the most stable tracking at the expense of frame rate.

- Note: Tracker performance is still greatly determined by the end user device - meaning

QUALITY_OVER_SPEED can run smoothly on newer devices, while SPEED_OVER_QUALITY can

still run slow on older/low-tier devices.

Target Frame Rate

- Use this setting to let the tracker know your desired framerate (Normally this is between 30fps

for mobile experiences).

- Note: Actual frame rate is still determined by the processing power of the end user device.

Advanced Settings > Max Frame Length

- Higher values will increase tracking quality and decrease jitters, but decreases frame rate

Advanced Settings > Max Frame Area

- Higher values will increase tracking quality and detectability, but decreases frame rate

Advanced Settings > Tracked Points

- Higher values will improve stability, but can decrease frame rate

Advanced Settings > Pose Correction Interval

- Lower values will be more accurate and less prone to skewing, but induces jittering. Use the

extra smoothing property as needed to minimize these jitters

Advanced Settings > Detect Interval

- Lower values will speed up detection time, but significantly decreases frame rate



Advanced Settings > Detectectability

- Higher values will help weaker image targets to get detected, but decreases frame rate

Advanced Settings > Detect Zone

- WIDE - recommended for strong targets, focuses detection on large image details

- NARROW - recommended for weaker targets or when using a small frame size (eg. 300px),

focuses detection on small image details

Dont Deactivate on Lost

- Image target will remain on screen even when target is lost in camera

Use Extra Smoothing

- Image target movement will be smoothed out to eliminate jitters. But as a tradeoff, there will be

a lerping motion.

Smoothen Factor

- Controls the intensity of the smoothing factor when Use Extra Smoothing is enabled. Lower

values will be smoother but the time it takes for the object to lerp to the image is longer.

Debug Mode:

- When this flag is enabled, you can press “I” on your keyboard to visualize the detected features

in your image targets.

On Image Found:

- Subscribe to this UnityEvent to invoke callbacks when a specific image target is tracked.

On Image Lost:

- Subscribe to this UnityEvent to invoke callbacks when a specific image target is untracked.

Start Stop On Enable Disable:

- If this is enabled, StartTracker() and StopTracker() are automatically called when tracker

gameObject is activated or deactivated

Stop On Destroy:

- If this is enabled, StopTracker() is automatically called when tracker gameObject or scene is

destroyed

Template Settings



Use these templates as base for your preferred tracker settings. In some cases, you will prefer quality

over framerate or vice versa. In other cases, you could be working with a weak image target and you will

prefer detectability. These template settings will help you in these cases.

High Precision - Low Jitter

- Use this template to minimize jitter.

- Best for small experiences.

- Prone to skewing, when the image target is weak, or during high motion.

- Prone to overheating, especially on older devices

- Lowest fps, especially on older devices

High Accuracy - Less Skewing

- Use this template to minimize both skewing and jitter.

- Best for small experiences.

- Target is lerped (less "sticky") to reduce noise and jitter

- Prone to overheating, especially on older devices

- Lowest fps, especially on older devices

Balanced

- This template is well balanced in quality vs. fps

- Best for small experiences.

- Prone to skewing, when the image target is weak, or during high motion.

High FPS

- Use this template achieve a smoother fps, especially on older devices

- Recommended for complex experiences

- Prone to jitter and skewing, when the image target is weak, or during high motion.

- Weak imagetargets are harder to detect

Fastest - Low Precision

- Use this template to maximize fps, in exchange or quality

- Recommended for complex experiences

- Highly prone to jitter and skewing, when the image target is weak, or during high motion.

- Weak imagetargets are harder to detect

Weak Image Target

- Use this template to improve detection of a weak image target

- Prone to overheating, especially on older devices

- Low fps, especially on older devices



ARCamera Settings
Video Plane Modes

- NONE - does not render a video plane inside Unity. Instead, the unity canvas is transparent and

the camera image is rendered in javascript. This is the fastest video plane mode, but as a

tradeoff, it can have rendering issues with transparency, and does not support Post Processing

and HDR. Capturing screenshots while using this mode results in a black camera feed.

- TEXTURE_PTR - renders a video plane inside Unity to support Post Processing, HDR, and

screenshot capture. This mode can have slightly performance impact. This mode is not available

in the free version

- DATAURLTEXTURE (DEPRECATED) - renders a video plane inside Unity to support Post

Processing, HDR, and screenshot capture. This mode uses dataURL textures to pass image data

from javascript to Unity and can be very slow especially on older devices.

- WEBCAMTEXTURE (DEPRECATED) - renders a video plane inside Unity to support Post

Processing, HDR, and screenshot capture. This mode uses Unity’s webcamtexture to get the

image data. This method is unreliable and may have issues on some devices/browsers/OS

versions.

Video Plane Mat

- The material to be used to render your video plane

Video Distance

- The distance between the ARCamera and the video plane

Unpause Pause On Enable Disable:

- If this is enabled, UnpauseCamera() and PauseCamera() are automatically called when ARCamera

gameObject is activated or deactivated

Pause On Destroy:

- If this is enabled, PauseCamera() is automatically called when ARCamera gameObject or scene is

destroyed

Pause On Application Lose Focus:

- If this is enabled, PauseCamera() is automatically called when the browser tab goes to the

background. This is useful to keep the webcam alive when switching tabs/apps while the

experience is running.



OnResized:

- Unity Event called when video camera dimensions are resized. This gets called when device

orientation changes. Note that resizing the browser window does not necessarily trigger this

event.

Resize Delay:

- The delay between resize events, where the ARCamera starts re-computing for the new size.

Later versions of iOS (17) has a relatively long resize delay (bug) which hinders resize events in

Unity. If so, try using a longer resize delay.

OnCameraImageFlipped:

- This gets called when the flipping/toggling the camera from front to back or vice versa is

successful (using ARCamera.FlipCamera function).

OnCameraOrientationChanged:

- This gets called when the device is rotated from portrait to landscape, or vice versa.

Tracker - Scripting API

You can also use these API calls to control the WebGL tracker:

ImageTracker.StartTracker
Manually start the tracker. This is useful when you need to restart the tracker after stopping it.

ImageTracker.StopTracker
Manually stop your tracker. This is useful when you want to display non-AR related content in your scene.

ARCamera.PauseCamera
Temporarily pauses the camera.
Note: currently tracked objects will freeze in place if tracker is not stopped before calling this method.

ARCamera.UnpauseCamera
Resumes the camera.

ARCamera.FlipCamera
Toggle the camera from front to back, or vice versa.

ImageTracker.IsImageTargetTracked (string id)



Use this method to check if a specific image target is currently being tracked.

Other Features:

ARShadowShader
Easily add shadow planes to your image target experiences

ChromaCutoutShader
Easily integrate green-screen/chroma videos to your AR experiences.

SyncVideoSound
Play Videoplayer and AudioSource simultaneously (because video with sound does not play in iOS
Safari)

ScreenshotManager.GetScreenshot ()
Capture and display screenshots and allow users to save them to gallery or share to their social media
apps

TextureDownloader.DownloadTexture (Texture2D texture)
Allows the users to download textures as a png or jpeg file. Useful for sharing image targets directly from
the web browser for printing.
Note: Textures need to be Uncompressed and Read/Write enabled.

Extracting Textures From the Camera

The texture extraction feature allows you to get the image target texture from the camera feed, remove

perspective distortions, and use it as a texture.

Some AR experiences, such as interactive coloring books, require access to the camera texture in

real-time. Since version 1.4.2, Warped Texture Extraction is now available in the plugin. Follow these

steps to quickly setup Texture Extraction

1.) Setup your AR scene by creating an Image Tracker, and AR Camera, and your Image target



2.) Add a gameobject as a parent of your Image Target. In our case, let’s use a Unity cube.

3.) Attach a TextureExtractor_WarpedImage Component to your gameObject.

4.) Create a new RenderTexture and set the dimensions to 512x512. Drag this rendertexture in

OutputTexture property of your TextureExtractor.

5.) Also drag this texture to your gameObject’s material

6.) Set the Id to match your image target’s id, and the Mode to EVERY_FRAME. Or alternatively, you

can set the mode to MANUAL, if you want to manually extract the texture once by calling

TextureExtractor_WarpedImage.ExtractTexture() function.

7.) Then Build and Run your project to see how it works!



You can also use TextureExtractor_WarpedImage’s DidBecomeFullyVisible and DidBecomeObscured

events to check if the entire texture is visible or obscured in the camera. This is mostly useful in MANUAL

extraction to avoid getting black pixels on the obscured areas.

Interactive Coloring Book AR Experience
To create an interactive coloring book experience, you will need to design a special image target that

exactly matches the UV map of your 3D character. Then use the TextureExtractor to map the camera

texture to your model.

It is also important to add background elements other than the model outline as these will help with the

tracking of your image target - since the user will alter some parts of the image.



Current Limitations

Transparency

Transparent pixels directly in front of the video background are culled by default. This is currently the

biggest limitation of the tracker. This will be resolved once Unity properly supports transparent WebGL

canvas rendering.

There is currently an experimental workaround by enabling Use Webcam Texture flag in

ImageTrackerCamera.

Update: This issue seems to have been fixed as of testing on Unity 2021.3.0f1

Frame rate and Performance

Since WebGL supports a wide variety of devices and web browsers, the actual frame rate will be

determined by the processing capability of the user device. During testing we have achieved 45-55 fps



on newer iPhones (iPhone X, iPhone 14) while 12-24 fps on older devices (such as iPhone 8 and Samsung

S8)

CV Source code

Source code of the CV module is not included by default, mainly because we cannot yet guarantee and

provide support on its functionality and performance once customized by other developers.

URP

As of version 1.6.0, Camera HDR and Post-Processing are now supported by enabling a VideoPlane in

your AR Camera.

Editor Simulation

Unfortunately, we do not yet have any means to test AR functionality in the Unity Editor. However, we

plan to implement this feature in future versions.

FAQ and General Questions

Camera does not open when I host in my website

- Make sure you are hosting on your server with https enabled. Otherwise, access to the webcam

will be blocked due to security reasons.

Unity loading bar is stuck at 90%

- This is usually caused by your WebGL compression. You can set Player Settings>Publishing

Settings>Compression Format to Disabled. You can also compress your build but you have to

ensure that gzip(.gz) or brotli(.br) is enabled in your hosting server.

Uncaught TypeError: Cannot read properties of undefined (reading 'FOV')

- Check your Player Settings>Resolution and Presentation and make sure that have selected the

iTracker WebGL template.

Image not getting detected



- Double check if your build folder includes a folder called /targets and that your image files are

included. Also check your index.html if your image target is included as
<imagetarget id=’YOUR_ID’ src=’targets/YOUR_FILE.png’></imagetarget>

- Double check if the Image Target is registered in your ImageTracker as well as in

ImageTrackerGlobalSettings and that their ids are matching.

- Check if your Image Target follows WebAR best practices - good amount of features, high

contrast and non-symmetrical etc. (See WebAR Best Practices for more information)

- Make sure your target images does not have any transparent pixels

Works in localhost, but webcam does not open when build is hosted

- Please make sure that you’re hosting with SSL(using https).

Unity doesn’t start - stuck in loading screen/white screen

- If you are seeing this error or something similar

Uncaught SyntaxError: Invalid or unexpected token (at WebGL.framework.js.br:1:2)

Try building without compression in PlayerSettings>Publishing Settings

Can I still use the plugin with irregular/circular/non-rectangular image targets/stickers?

- Yes, you can simply replace all your transparent pixels with plain black or white. Just make

sure it still follows WebAR best practices above

Known Issues:
Visit the #bug-reports channel in our discord

Need Help?
Visit the #support-channel in our discord

Change Notes:

Version 1.7.0
• [FIXED] Major optimizations to boost frame rate further. The tracker can now run on par with or
even faster than the older 1.4 version, while having all the improvements of 1.6.

https://discord.com/channels/1070953358967459880/1070957546208251904
https://discord.com/channels/1070953358967459880/1138233491188891718


• [ADDED] Template Settings to help you pre-select base tracker settings specifically for your
usecase: HIGH PRECISION (LESS JITTER), HIGH ACCURACY (LESS SKEWING), BALANCED,
HIGH FPS, FASTEST (LOW PRECISION), WEAK IMAGE TARGET
• [ADDED] New tracker properties - PoseCorrectionInterval, DetectZone, and Detectability
• [ADDED] StartStopOnEnableDisable and StopOnDestroy which automatically calls StartTracker()
and StopTracker() on Monobehaviour events OnEnable, OnDisable, and OnDestroy for the Image
Tracker
• [ADDED] UnpausePauseOnEnableDisable and PauseOnDestroy which automatically calls
UnpauseCamera() and PauseCamera() on Monobehaviour events OnEnable, OnDisable, and
OnDestroy for the ARCamera
• [ADDED] Extra smoothing can now be used in tandem with FIRST_TARGET_ORIGIN setup
• [FIXED] Missing character in UI buttons by updating Demo scenes to use TextMeshPro instead of
Legacy Text.
• [FIXED] Several spam logs when using the texture extraction feature

Version 1.6.1
• [FIXED] Bug where camera goes dark then tracker stops working after some time

Version 1.6.0
• [ADDED] TexturePointer VideoBackground mode for AR Camera. This supports PostProcessing
and HDR for both URP and BuiltIn RP.
• [ADDED] Non-AR landing scene. ARCamera is now being started from within Unity (instead of
index.html).
• ARCamera is now separated from iTracker. This opens up the possibility of interoperability between
other Imagine Trackers.
• [FIXED] Bug where camera is zoomed in some browsers, when Accessibility>Zoom is enabled in
the mobile device
• [ADDED] DontDeactivateOnLost to prevent deactivation of the image target when object is lost
• [ADDED] UseExtraSmoothing and SmoothenFactor to eliminate tracking jitters
• Texture Extraction is now faster using a texture pointer. You can also choose to do it every frame or
manually.
• Texture Extractor can now detect if the entire image is visible in camera or not

Version 1.5.3
• [FIXED] Error when creating ImageTracker from the Assets menu
• [FIXED] Debug control movement skewed at certain angles
• [FIXED] SyncVideSound - black screen when video is loading for the first time
• [FIXED] SyncVideSound - video restarting when target is lost, then found.
• [FIXED] SyncVideSound - audio off-sync and repeating for a split second when video loops
• [ADDED] GoToUrl - helper class to properly open urls in WebGL (especially in iOS/Safari where
Application.OpenURL gets ignored by popup-blockers)

Version 1.5.2
• [ADDED] Experimental screenshot capture functionality
• [ADDED] Y-axis billboarding mode for Billboard.cs



• Minor scene and script improvements

Version 1.5.1
• [ADDED] Handling when user denies camera and/or motion sensor permission

Version 1.5.0
• Exposed webcam initialization calls and improved html template
• [FIXED] Fixed bug where UI becomes unresponsive when the url bar is hidden in Safari
• [FIXED] Fixed bug where UI becomes unresponsive when permission screen is displayed in Brave
• [FIXED] Fixed bug where UI is scaled up in Samsung Internet Browser
• [ADDED] Sample Chroma Video experience in Video Demo

Version 1.4.2
• [ADDED] Warped Texture Extraction Feature - Image targets can now be extracted from the
camera frame and loaded as a Texture2D in Unity
• [FIXED] Fixed tracker error when device is flipped while tracking a target
• [FIXED] Fixed CORS error when imagetargets are loaded from a different domain
• [FIXED] Fixed issue where screen flashes black when resizing html elements
• [FIXED] Debug Image Target feature points not working properly
• Tracker is now more robust to occlusion
• Tracker is now more robust to skewing and drift caused by high-motion
• Added Detect Interval, MaxFrameLength, MaxFrameArea properties in Image Tracker Advanced
Settings

Version 1.4.1
• [FIXED] Fixed javascript error introduced in 1.4.0

Version 1.4.0
• [FIXED] Fixed a very rare issue where camera feed goes very dark
• Added console logs when image target is lost/found
• Minor optimizations to decrease plugin size by 30%

Version 1.3.3
• [FIXED] Fixed UI cropping issues for some mobile browsers such as iOS Safari
• [FIXED] Fixed an intermittent issue in where targets stop being detected after getting detected
once (usually occurs in scenes with multiple image targets)
• Added some basic Editor debugging features - Found and Lost events, as well as keyboard
controls for camera movement
• Breaking changes to your custom index.html (To upgrade, see index.html.132-133.diff)

Version 1.3.2
• [FIXED] Fix compile error for URP
• Added AR Shadow shader (for URP)

Version 1.3.1



• [FIXED] Resolved an issue where tracker stops working if image target is detected upon camera
initialization
• Added Experimental DataUrlTextures (as an alternative to WebcamTextures) for displaying the
camera feed inside Unity
• Added GetWebGLCameraFrame API for extracting the camera feed as a Texture2D

Version 1.3.0
• Overall improvement of our tracker algorithm which includes -
• Significant noise and jitter reduction in both near and far distances
• Significant boost in frames per second (reaching 60fps in high to mid tier devices, readching 30fps
to low tier devices)
• Significant quality improvement for simultaneous target tracking
• Deprecated Noise Filtering and Stability settings
• Added back default Unity loading screen
• Added AR Shadow shader (for Built-In RP)

Version 1.2.3
• [FIXED] Resolved an issue where the camera is not properly initialized if the device have multiple
back cameras
• Fixed a bug where the editor framerate setting is not properly being set
• [URP] Minor improvements, bug fixes and error handling in Universal Render Pipeline

Version 1.2.2
• [FIXED] Resolved a device language issue causing javascript errors for users in specific regions

Version 1.2.1
• [WeChat] Added fallback button when the webcam video failed to play automatically due to
browser restrictions
• Fixed a race-condition bug where the camera's field of view gets initialized to zero

Version 1.2.0
• Improved general tracking quality. More resistant to camera motion especially at very close
distances. Self-correction when image reappears after partly being obscured.
• Quality and Optimization Improvement in simultaneous tracked images
• Performance boosts and Optimizations
• Added new Advanced>Detectability property slider in ImageTracker Unity inspector
• Added new Advanced>Tracked Points property
• Replaced EnableNoiseFilter flag with Advanced>Noise Filtering settings
• Added new Advanced>Stability property
• Removed ImproveMatches flag. This is now done by default.
• Minor changes to the plugin's folder structure

Version 1.1.0



• Significantly reduced noise and jitter, especially when image target is steady (at a slight expense of
maximum tracking distance and motion)
• Minor optimisations to boost the frame rate. (reaching up to 60FPS on mid/low tier devices)
• Minor UI improvements on the ImageTracker Unity inspector
• Added OnImageFound and OnImageLost UnityEvents
• Added IsImageTracked API to check if an image is currently being tracked

Version 1.0.5
• First release


