using OpenCVForUnity.CoreModule; using OpenCVForUnity.UtilsModule; using System; using System.Collections.Generic; using System.Runtime.InteropServices; namespace OpenCVForUnity.MlModule { // C++: class EM //javadoc: EM public class EM : StatModel { protected override void Dispose(bool disposing) { #if (UNITY_ANDROID && !UNITY_EDITOR) try { if (disposing) { } if (IsEnabledDispose) { if (nativeObj != IntPtr.Zero) ml_EM_delete(nativeObj); nativeObj = IntPtr.Zero; } } finally { base.Dispose(disposing); } #else return; #endif } protected internal EM(IntPtr addr) : base(addr) { } // internal usage only public static new EM __fromPtr__(IntPtr addr) { return new EM(addr); } // C++: enum Types public const int COV_MAT_SPHERICAL = 0; public const int COV_MAT_DIAGONAL = 1; public const int COV_MAT_GENERIC = 2; public const int COV_MAT_DEFAULT = COV_MAT_DIAGONAL; // C++: enum public const int DEFAULT_NCLUSTERS = 5; public const int DEFAULT_MAX_ITERS = 100; public const int START_E_STEP = 1; public const int START_M_STEP = 2; public const int START_AUTO_STEP = 0; // // C++: Mat cv::ml::EM::getMeans() // //javadoc: EM::getMeans() public Mat getMeans() { ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) Mat retVal = new Mat(ml_EM_getMeans_10(nativeObj)); return retVal; #else return null; #endif } // // C++: Mat cv::ml::EM::getWeights() // //javadoc: EM::getWeights() public Mat getWeights() { ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) Mat retVal = new Mat(ml_EM_getWeights_10(nativeObj)); return retVal; #else return null; #endif } // // C++: static Ptr_EM cv::ml::EM::create() // //javadoc: EM::create() public static EM create() { #if (UNITY_ANDROID && !UNITY_EDITOR) EM retVal = EM.__fromPtr__(ml_EM_create_10()); return retVal; #else return null; #endif } // // C++: static Ptr_EM cv::ml::EM::load(String filepath, String nodeName = String()) // //javadoc: EM::load(filepath, nodeName) public static EM load(string filepath, string nodeName) { #if (UNITY_ANDROID && !UNITY_EDITOR) EM retVal = EM.__fromPtr__(ml_EM_load_10(filepath, nodeName)); return retVal; #else return null; #endif } //javadoc: EM::load(filepath) public static EM load(string filepath) { #if (UNITY_ANDROID && !UNITY_EDITOR) EM retVal = EM.__fromPtr__(ml_EM_load_11(filepath)); return retVal; #else return null; #endif } // // C++: TermCriteria cv::ml::EM::getTermCriteria() // //javadoc: EM::getTermCriteria() public TermCriteria getTermCriteria() { ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) double[] tmpArray = new double[3]; ml_EM_getTermCriteria_10(nativeObj, tmpArray); TermCriteria retVal = new TermCriteria(tmpArray); return retVal; #else return null; #endif } // // C++: Vec2d cv::ml::EM::predict2(Mat sample, Mat& probs) // //javadoc: EM::predict2(sample, probs) public double[] predict2(Mat sample, Mat probs) { ThrowIfDisposed(); if (sample != null) sample.ThrowIfDisposed(); if (probs != null) probs.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) double[] retVal = new double[2]; ml_EM_predict2_10(nativeObj, sample.nativeObj, probs.nativeObj, retVal); return retVal; #else return null; #endif } // // C++: bool cv::ml::EM::trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) // //javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels, probs) public bool trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels, Mat probs) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (means0 != null) means0.ThrowIfDisposed(); if (covs0 != null) covs0.ThrowIfDisposed(); if (weights0 != null) weights0.ThrowIfDisposed(); if (logLikelihoods != null) logLikelihoods.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); if (probs != null) probs.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainE_10(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels) public bool trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (means0 != null) means0.ThrowIfDisposed(); if (covs0 != null) covs0.ThrowIfDisposed(); if (weights0 != null) weights0.ThrowIfDisposed(); if (logLikelihoods != null) logLikelihoods.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainE_11(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods) public bool trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (means0 != null) means0.ThrowIfDisposed(); if (covs0 != null) covs0.ThrowIfDisposed(); if (weights0 != null) weights0.ThrowIfDisposed(); if (logLikelihoods != null) logLikelihoods.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainE_12(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainE(samples, means0, covs0, weights0) public bool trainE(Mat samples, Mat means0, Mat covs0, Mat weights0) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (means0 != null) means0.ThrowIfDisposed(); if (covs0 != null) covs0.ThrowIfDisposed(); if (weights0 != null) weights0.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainE_13(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainE(samples, means0, covs0) public bool trainE(Mat samples, Mat means0, Mat covs0) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (means0 != null) means0.ThrowIfDisposed(); if (covs0 != null) covs0.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainE_14(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainE(samples, means0) public bool trainE(Mat samples, Mat means0) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (means0 != null) means0.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainE_15(nativeObj, samples.nativeObj, means0.nativeObj); return retVal; #else return false; #endif } // // C++: bool cv::ml::EM::trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) // //javadoc: EM::trainEM(samples, logLikelihoods, labels, probs) public bool trainEM(Mat samples, Mat logLikelihoods, Mat labels, Mat probs) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (logLikelihoods != null) logLikelihoods.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); if (probs != null) probs.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainEM_10(nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainEM(samples, logLikelihoods, labels) public bool trainEM(Mat samples, Mat logLikelihoods, Mat labels) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (logLikelihoods != null) logLikelihoods.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainEM_11(nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainEM(samples, logLikelihoods) public bool trainEM(Mat samples, Mat logLikelihoods) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (logLikelihoods != null) logLikelihoods.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainEM_12(nativeObj, samples.nativeObj, logLikelihoods.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainEM(samples) public bool trainEM(Mat samples) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainEM_13(nativeObj, samples.nativeObj); return retVal; #else return false; #endif } // // C++: bool cv::ml::EM::trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) // //javadoc: EM::trainM(samples, probs0, logLikelihoods, labels, probs) public bool trainM(Mat samples, Mat probs0, Mat logLikelihoods, Mat labels, Mat probs) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (probs0 != null) probs0.ThrowIfDisposed(); if (logLikelihoods != null) logLikelihoods.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); if (probs != null) probs.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainM_10(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainM(samples, probs0, logLikelihoods, labels) public bool trainM(Mat samples, Mat probs0, Mat logLikelihoods, Mat labels) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (probs0 != null) probs0.ThrowIfDisposed(); if (logLikelihoods != null) logLikelihoods.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainM_11(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainM(samples, probs0, logLikelihoods) public bool trainM(Mat samples, Mat probs0, Mat logLikelihoods) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (probs0 != null) probs0.ThrowIfDisposed(); if (logLikelihoods != null) logLikelihoods.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainM_12(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj); return retVal; #else return false; #endif } //javadoc: EM::trainM(samples, probs0) public bool trainM(Mat samples, Mat probs0) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (probs0 != null) probs0.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) bool retVal = ml_EM_trainM_13(nativeObj, samples.nativeObj, probs0.nativeObj); return retVal; #else return false; #endif } // // C++: float cv::ml::EM::predict(Mat samples, Mat& results = Mat(), int flags = 0) // //javadoc: EM::predict(samples, results, flags) public override float predict(Mat samples, Mat results, int flags) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (results != null) results.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) float retVal = ml_EM_predict_10(nativeObj, samples.nativeObj, results.nativeObj, flags); return retVal; #else return -1; #endif } //javadoc: EM::predict(samples, results) public override float predict(Mat samples, Mat results) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); if (results != null) results.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) float retVal = ml_EM_predict_11(nativeObj, samples.nativeObj, results.nativeObj); return retVal; #else return -1; #endif } //javadoc: EM::predict(samples) public override float predict(Mat samples) { ThrowIfDisposed(); if (samples != null) samples.ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) float retVal = ml_EM_predict_12(nativeObj, samples.nativeObj); return retVal; #else return -1; #endif } // // C++: int cv::ml::EM::getClustersNumber() // //javadoc: EM::getClustersNumber() public int getClustersNumber() { ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) int retVal = ml_EM_getClustersNumber_10(nativeObj); return retVal; #else return -1; #endif } // // C++: int cv::ml::EM::getCovarianceMatrixType() // //javadoc: EM::getCovarianceMatrixType() public int getCovarianceMatrixType() { ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) int retVal = ml_EM_getCovarianceMatrixType_10(nativeObj); return retVal; #else return -1; #endif } // // C++: void cv::ml::EM::getCovs(vector_Mat& covs) // //javadoc: EM::getCovs(covs) public void getCovs(List covs) { ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) Mat covs_mat = new Mat(); ml_EM_getCovs_10(nativeObj, covs_mat.nativeObj); Converters.Mat_to_vector_Mat(covs_mat, covs); covs_mat.release(); return; #else return; #endif } // // C++: void cv::ml::EM::setClustersNumber(int val) // //javadoc: EM::setClustersNumber(val) public void setClustersNumber(int val) { ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) ml_EM_setClustersNumber_10(nativeObj, val); return; #else return; #endif } // // C++: void cv::ml::EM::setCovarianceMatrixType(int val) // //javadoc: EM::setCovarianceMatrixType(val) public void setCovarianceMatrixType(int val) { ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) ml_EM_setCovarianceMatrixType_10(nativeObj, val); return; #else return; #endif } // // C++: void cv::ml::EM::setTermCriteria(TermCriteria val) // //javadoc: EM::setTermCriteria(val) public void setTermCriteria(TermCriteria val) { ThrowIfDisposed(); #if (UNITY_ANDROID && !UNITY_EDITOR) ml_EM_setTermCriteria_10(nativeObj, val.type, val.maxCount, val.epsilon); return; #else return; #endif } #if (UNITY_ANDROID && !UNITY_EDITOR) const string LIBNAME = "opencvforunity"; // C++: Mat cv::ml::EM::getMeans() [DllImport(LIBNAME)] private static extern IntPtr ml_EM_getMeans_10(IntPtr nativeObj); // C++: Mat cv::ml::EM::getWeights() [DllImport(LIBNAME)] private static extern IntPtr ml_EM_getWeights_10(IntPtr nativeObj); // C++: static Ptr_EM cv::ml::EM::create() [DllImport(LIBNAME)] private static extern IntPtr ml_EM_create_10(); // C++: static Ptr_EM cv::ml::EM::load(String filepath, String nodeName = String()) [DllImport(LIBNAME)] private static extern IntPtr ml_EM_load_10(string filepath, string nodeName); [DllImport(LIBNAME)] private static extern IntPtr ml_EM_load_11(string filepath); // C++: TermCriteria cv::ml::EM::getTermCriteria() [DllImport(LIBNAME)] private static extern void ml_EM_getTermCriteria_10(IntPtr nativeObj, double[] retVal); // C++: Vec2d cv::ml::EM::predict2(Mat sample, Mat& probs) [DllImport(LIBNAME)] private static extern void ml_EM_predict2_10(IntPtr nativeObj, IntPtr sample_nativeObj, IntPtr probs_nativeObj, double[] retVal); // C++: bool cv::ml::EM::trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) [DllImport(LIBNAME)] private static extern bool ml_EM_trainE_10(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj, IntPtr weights0_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj, IntPtr probs_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainE_11(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj, IntPtr weights0_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainE_12(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj, IntPtr weights0_nativeObj, IntPtr logLikelihoods_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainE_13(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj, IntPtr weights0_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainE_14(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj, IntPtr covs0_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainE_15(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr means0_nativeObj); // C++: bool cv::ml::EM::trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) [DllImport(LIBNAME)] private static extern bool ml_EM_trainEM_10(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj, IntPtr probs_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainEM_11(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainEM_12(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr logLikelihoods_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainEM_13(IntPtr nativeObj, IntPtr samples_nativeObj); // C++: bool cv::ml::EM::trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat()) [DllImport(LIBNAME)] private static extern bool ml_EM_trainM_10(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr probs0_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj, IntPtr probs_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainM_11(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr probs0_nativeObj, IntPtr logLikelihoods_nativeObj, IntPtr labels_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainM_12(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr probs0_nativeObj, IntPtr logLikelihoods_nativeObj); [DllImport(LIBNAME)] private static extern bool ml_EM_trainM_13(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr probs0_nativeObj); // C++: float cv::ml::EM::predict(Mat samples, Mat& results = Mat(), int flags = 0) [DllImport(LIBNAME)] private static extern float ml_EM_predict_10(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr results_nativeObj, int flags); [DllImport(LIBNAME)] private static extern float ml_EM_predict_11(IntPtr nativeObj, IntPtr samples_nativeObj, IntPtr results_nativeObj); [DllImport(LIBNAME)] private static extern float ml_EM_predict_12(IntPtr nativeObj, IntPtr samples_nativeObj); // C++: int cv::ml::EM::getClustersNumber() [DllImport(LIBNAME)] private static extern int ml_EM_getClustersNumber_10(IntPtr nativeObj); // C++: int cv::ml::EM::getCovarianceMatrixType() [DllImport(LIBNAME)] private static extern int ml_EM_getCovarianceMatrixType_10(IntPtr nativeObj); // C++: void cv::ml::EM::getCovs(vector_Mat& covs) [DllImport(LIBNAME)] private static extern void ml_EM_getCovs_10(IntPtr nativeObj, IntPtr covs_mat_nativeObj); // C++: void cv::ml::EM::setClustersNumber(int val) [DllImport(LIBNAME)] private static extern void ml_EM_setClustersNumber_10(IntPtr nativeObj, int val); // C++: void cv::ml::EM::setCovarianceMatrixType(int val) [DllImport(LIBNAME)] private static extern void ml_EM_setCovarianceMatrixType_10(IntPtr nativeObj, int val); // C++: void cv::ml::EM::setTermCriteria(TermCriteria val) [DllImport(LIBNAME)] private static extern void ml_EM_setTermCriteria_10(IntPtr nativeObj, int val_type, int val_maxCount, double val_epsilon); // native support for java finalize() [DllImport(LIBNAME)] private static extern void ml_EM_delete(IntPtr nativeObj); #endif } }