// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. See LICENSE in the project root for license information. /// /// Basic wireframe shader that can be used for rendering spatial mapping meshes. /// Shader "ShadowSDK/Wireframe" { Properties { // Advanced options. [Enum(RenderingMode)] _Mode("Rendering Mode", Float) = 0 // "Opaque" [Enum(CustomRenderingMode)] _CustomMode("Mode", Float) = 0 // "Opaque" [Enum(UnityEngine.Rendering.BlendMode)] _SrcBlend("Source Blend", Float) = 1 // "One" [Enum(UnityEngine.Rendering.BlendMode)] _DstBlend("Destination Blend", Float) = 0 // "Zero" [Enum(UnityEngine.Rendering.BlendOp)] _BlendOp("Blend Operation", Float) = 0 // "Add" [Enum(UnityEngine.Rendering.CompareFunction)] _ZTest("Depth Test", Float) = 4 // "LessEqual" [Enum(DepthWrite)] _ZWrite("Depth Write", Float) = 1 // "On" _ZOffsetFactor("Depth Offset Factor", Float) = 0 // "Zero" _ZOffsetUnits("Depth Offset Units", Float) = 0 // "Zero" [Enum(UnityEngine.Rendering.ColorWriteMask)] _ColorWriteMask("Color Write Mask", Float) = 15 // "All" [Enum(UnityEngine.Rendering.CullMode)] _CullMode("Cull Mode", Float) = 2 // "Back" _RenderQueueOverride("Render Queue Override", Range(-1.0, 5000)) = -1 _BaseColor("Base color", Color) = (0.0, 0.0, 0.0, 1.0) _WireColor("Wire color", Color) = (1.0, 1.0, 1.0, 1.0) _WireThickness("Wire thickness", Range(0, 800)) = 100 } SubShader { Tags { "RenderType" = "Opaque" } Blend[_SrcBlend][_DstBlend] BlendOp[_BlendOp] ZTest[_ZTest] ZWrite[_ZWrite] Cull[_CullMode] Offset[_ZOffsetFactor],[_ZOffsetUnits] ColorMask[_ColorWriteMask] Pass { Offset 50, 100 CGPROGRAM #pragma vertex vert #pragma geometry geom #pragma fragment frag #if defined(SHADER_API_D3D11) #pragma target 5.0 #endif #include "UnityCG.cginc" float4 _BaseColor; float4 _WireColor; float _WireThickness; // Based on approach described in Shader-Based Wireframe Drawing (2008) // http://orbit.dtu.dk/en/publications/id(13e2122d-bec7-48de-beca-03ce6ea1c3f1).html struct v2g { float4 viewPos : SV_POSITION; UNITY_VERTEX_OUTPUT_STEREO }; v2g vert(appdata_base v) { UNITY_SETUP_INSTANCE_ID(v); v2g o; o.viewPos = UnityObjectToClipPos(v.vertex); UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o); return o; } // inverseW is to counteract the effect of perspective-correct interpolation so that the lines // look the same thickness regardless of their depth in the scene. struct g2f { float4 viewPos : SV_POSITION; float inverseW : TEXCOORD0; float3 dist : TEXCOORD1; UNITY_VERTEX_OUTPUT_STEREO }; [maxvertexcount(3)] void geom(triangle v2g i[3], inout TriangleStream triStream) { // Calculate the vectors that define the triangle from the input points. float2 point0 = i[0].viewPos.xy / i[0].viewPos.w; float2 point1 = i[1].viewPos.xy / i[1].viewPos.w; float2 point2 = i[2].viewPos.xy / i[2].viewPos.w; // Calculate the area of the triangle. float2 vector0 = point2 - point1; float2 vector1 = point2 - point0; float2 vector2 = point1 - point0; float area = abs(vector1.x * vector2.y - vector1.y * vector2.x); float3 distScale[3]; distScale[0] = float3(area / length(vector0), 0, 0); distScale[1] = float3(0, area / length(vector1), 0); distScale[2] = float3(0, 0, area / length(vector2)); float wireScale = 800 - _WireThickness; // Output each original vertex with its distance to the opposing line defined // by the other two vertices. g2f o; [unroll] for (uint idx = 0; idx < 3; ++idx) { o.viewPos = i[idx].viewPos; o.inverseW = 1.0 / o.viewPos.w; o.dist = distScale[idx] * o.viewPos.w * wireScale; UNITY_TRANSFER_VERTEX_OUTPUT_STEREO(i[idx], o); triStream.Append(o); } } float4 frag(g2f i) : COLOR { // Calculate minimum distance to one of the triangle lines, making sure to correct // for perspective-correct interpolation. float dist = min(i.dist[0], min(i.dist[1], i.dist[2])) * i.inverseW; // Make the intensity of the line very bright along the triangle edges but fall-off very // quickly. float I = exp2(-2 * dist * dist); return I * _WireColor + (1 - I) * _BaseColor; } ENDCG } } FallBack "Diffuse" }