123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_TRACKING_HPP
- #define OPENCV_TRACKING_HPP
- #include "opencv2/core.hpp"
- #include "opencv2/imgproc.hpp"
- namespace cv
- {
- //! @addtogroup video_track
- //! @{
- enum { OPTFLOW_USE_INITIAL_FLOW = 4,
- OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
- OPTFLOW_FARNEBACK_GAUSSIAN = 256
- };
- /** @brief Finds an object center, size, and orientation.
- @param probImage Back projection of the object histogram. See calcBackProject.
- @param window Initial search window.
- @param criteria Stop criteria for the underlying meanShift.
- returns
- (in old interfaces) Number of iterations CAMSHIFT took to converge
- The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
- object center using meanShift and then adjusts the window size and finds the optimal rotation. The
- function returns the rotated rectangle structure that includes the object position, size, and
- orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
- See the OpenCV sample camshiftdemo.c that tracks colored objects.
- @note
- - (Python) A sample explaining the camshift tracking algorithm can be found at
- opencv_source_code/samples/python/camshift.py
- */
- CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
- TermCriteria criteria );
- /** @example samples/cpp/camshiftdemo.cpp
- An example using the mean-shift tracking algorithm
- */
- /** @brief Finds an object on a back projection image.
- @param probImage Back projection of the object histogram. See calcBackProject for details.
- @param window Initial search window.
- @param criteria Stop criteria for the iterative search algorithm.
- returns
- : Number of iterations CAMSHIFT took to converge.
- The function implements the iterative object search algorithm. It takes the input back projection of
- an object and the initial position. The mass center in window of the back projection image is
- computed and the search window center shifts to the mass center. The procedure is repeated until the
- specified number of iterations criteria.maxCount is done or until the window center shifts by less
- than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
- window size or orientation do not change during the search. You can simply pass the output of
- calcBackProject to this function. But better results can be obtained if you pre-filter the back
- projection and remove the noise. For example, you can do this by retrieving connected components
- with findContours , throwing away contours with small area ( contourArea ), and rendering the
- remaining contours with drawContours.
- */
- CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
- /** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- @param img 8-bit input image.
- @param pyramid output pyramid.
- @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- @param maxLevel 0-based maximal pyramid level number.
- @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
- constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- @param pyrBorder the border mode for pyramid layers.
- @param derivBorder the border mode for gradients.
- @param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
- to force data copying.
- @return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
- Size winSize, int maxLevel, bool withDerivatives = true,
- int pyrBorder = BORDER_REFLECT_101,
- int derivBorder = BORDER_CONSTANT,
- bool tryReuseInputImage = true );
- /** @example samples/cpp/lkdemo.cpp
- An example using the Lucas-Kanade optical flow algorithm
- */
- /** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- pyramids.
- @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- @param nextImg second input image or pyramid of the same size and the same type as prevImg.
- @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- single-precision floating-point numbers.
- @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- containing the calculated new positions of input features in the second image; when
- OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- the flow for the corresponding features has been found, otherwise, it is set to 0.
- @param err output vector of errors; each element of the vector is set to an error for the
- corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- found then the error is not defined (use the status parameter to find such cases).
- @param winSize size of the search window at each pyramid level.
- @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
- level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- algorithm will use as many levels as pyramids have but no more than maxLevel.
- @param criteria parameter, specifying the termination criteria of the iterative search algorithm
- (after the specified maximum number of iterations criteria.maxCount or when the search window
- moves by less than criteria.epsilon.
- @param flags operation flags:
- - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
- not set, then prevPts is copied to nextPts and is considered the initial estimate.
- - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
- minEigThreshold description); if the flag is not set, then L1 distance between patches
- around the original and a moved point, divided by number of pixels in a window, is used as a
- error measure.
- @param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
- optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
- by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- performance boost.
- The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- @cite Bouguet00 . The function is parallelized with the TBB library.
- @note
- - An example using the Lucas-Kanade optical flow algorithm can be found at
- opencv_source_code/samples/cpp/lkdemo.cpp
- - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- opencv_source_code/samples/python/lk_track.py
- - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- opencv_source_code/samples/python/lk_homography.py
- */
- CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
- InputArray prevPts, InputOutputArray nextPts,
- OutputArray status, OutputArray err,
- Size winSize = Size(21,21), int maxLevel = 3,
- TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
- int flags = 0, double minEigThreshold = 1e-4 );
- /** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
- @param prev first 8-bit single-channel input image.
- @param next second input image of the same size and the same type as prev.
- @param flow computed flow image that has the same size as prev and type CV_32FC2.
- @param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
- pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
- one.
- @param levels number of pyramid layers including the initial image; levels=1 means that no extra
- layers are created and only the original images are used.
- @param winsize averaging window size; larger values increase the algorithm robustness to image
- noise and give more chances for fast motion detection, but yield more blurred motion field.
- @param iterations number of iterations the algorithm does at each pyramid level.
- @param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
- larger values mean that the image will be approximated with smoother surfaces, yielding more
- robust algorithm and more blurred motion field, typically poly_n =5 or 7.
- @param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
- basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
- good value would be poly_sigma=1.5.
- @param flags operation flags that can be a combination of the following:
- - **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
- - **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
- filter instead of a box filter of the same size for optical flow estimation; usually, this
- option gives z more accurate flow than with a box filter, at the cost of lower speed;
- normally, winsize for a Gaussian window should be set to a larger value to achieve the same
- level of robustness.
- The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
- \f[\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\f]
- @note
- - An example using the optical flow algorithm described by Gunnar Farneback can be found at
- opencv_source_code/samples/cpp/fback.cpp
- - (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
- found at opencv_source_code/samples/python/opt_flow.py
- */
- CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
- double pyr_scale, int levels, int winsize,
- int iterations, int poly_n, double poly_sigma,
- int flags );
- /** @brief Computes an optimal affine transformation between two 2D point sets.
- @param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
- @param dst Second input 2D point set of the same size and the same type as A, or another image.
- @param fullAffine If true, the function finds an optimal affine transformation with no additional
- restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
- limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
- The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
- approximates best the affine transformation between:
- * Two point sets
- * Two raster images. In this case, the function first finds some features in the src image and
- finds the corresponding features in dst image. After that, the problem is reduced to the first
- case.
- In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
- 2x1 vector *b* so that:
- \f[[A^*|b^*] = arg \min _{[A|b]} \sum _i \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b \| ^2\f]
- where src[i] and dst[i] are the i-th points in src and dst, respectively
- \f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
- \f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ -a_{12} & a_{11} & b_2 \end{bmatrix}\f]
- when fullAffine=false.
- @deprecated Use cv::estimateAffine2D, cv::estimateAffinePartial2D instead. If you are using this function
- with images, extract points using cv::calcOpticalFlowPyrLK and then use the estimation functions.
- @sa
- estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
- */
- CV_DEPRECATED CV_EXPORTS Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
- enum
- {
- MOTION_TRANSLATION = 0,
- MOTION_EUCLIDEAN = 1,
- MOTION_AFFINE = 2,
- MOTION_HOMOGRAPHY = 3
- };
- /** @brief Computes the Enhanced Correlation Coefficient value between two images @cite EP08 .
- @param templateImage single-channel template image; CV_8U or CV_32F array.
- @param inputImage single-channel input image to be warped to provide an image similar to
- templateImage, same type as templateImage.
- @param inputMask An optional mask to indicate valid values of inputImage.
- @sa
- findTransformECC
- */
- CV_EXPORTS_W double computeECC(InputArray templateImage, InputArray inputImage, InputArray inputMask = noArray());
- /** @example samples/cpp/image_alignment.cpp
- An example using the image alignment ECC algorithm
- */
- /** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
- @param templateImage single-channel template image; CV_8U or CV_32F array.
- @param inputImage single-channel input image which should be warped with the final warpMatrix in
- order to provide an image similar to templateImage, same type as templateImage.
- @param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
- @param motionType parameter, specifying the type of motion:
- - **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
- the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
- estimated.
- - **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
- parameters are estimated; warpMatrix is \f$2\times 3\f$.
- - **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
- warpMatrix is \f$2\times 3\f$.
- - **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
- estimated;\`warpMatrix\` is \f$3\times 3\f$.
- @param criteria parameter, specifying the termination criteria of the ECC algorithm;
- criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
- iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
- Default values are shown in the declaration above.
- @param inputMask An optional mask to indicate valid values of inputImage.
- @param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
- The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
- (@cite EP08), that is
- \f[\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
- where
- \f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
- (the equation holds with homogeneous coordinates for homography). It returns the final enhanced
- correlation coefficient, that is the correlation coefficient between the template image and the
- final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
- row is ignored.
- Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
- area-based alignment that builds on intensity similarities. In essence, the function updates the
- initial transformation that roughly aligns the images. If this information is missing, the identity
- warp (unity matrix) is used as an initialization. Note that if images undergo strong
- displacements/rotations, an initial transformation that roughly aligns the images is necessary
- (e.g., a simple euclidean/similarity transform that allows for the images showing the same image
- content approximately). Use inverse warping in the second image to take an image close to the first
- one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
- sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
- an exception if algorithm does not converges.
- @sa
- computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
- */
- CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
- InputOutputArray warpMatrix, int motionType,
- TermCriteria criteria,
- InputArray inputMask, int gaussFiltSize);
- /** @overload */
- CV_EXPORTS_W
- double findTransformECC(InputArray templateImage, InputArray inputImage,
- InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
- TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001),
- InputArray inputMask = noArray());
- /** @example samples/cpp/kalman.cpp
- An example using the standard Kalman filter
- */
- /** @brief Kalman filter class.
- The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
- @cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
- an extended Kalman filter functionality.
- @note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
- with cvReleaseKalman(&kalmanFilter)
- */
- class CV_EXPORTS_W KalmanFilter
- {
- public:
- CV_WRAP KalmanFilter();
- /** @overload
- @param dynamParams Dimensionality of the state.
- @param measureParams Dimensionality of the measurement.
- @param controlParams Dimensionality of the control vector.
- @param type Type of the created matrices that should be CV_32F or CV_64F.
- */
- CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
- /** @brief Re-initializes Kalman filter. The previous content is destroyed.
- @param dynamParams Dimensionality of the state.
- @param measureParams Dimensionality of the measurement.
- @param controlParams Dimensionality of the control vector.
- @param type Type of the created matrices that should be CV_32F or CV_64F.
- */
- void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
- /** @brief Computes a predicted state.
- @param control The optional input control
- */
- CV_WRAP const Mat& predict( const Mat& control = Mat() );
- /** @brief Updates the predicted state from the measurement.
- @param measurement The measured system parameters
- */
- CV_WRAP const Mat& correct( const Mat& measurement );
- CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
- CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
- CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A)
- CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
- CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H)
- CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q)
- CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
- CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
- CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
- CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
- // temporary matrices
- Mat temp1;
- Mat temp2;
- Mat temp3;
- Mat temp4;
- Mat temp5;
- };
- /** @brief Read a .flo file
- @param path Path to the file to be loaded
- The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
- Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
- flow in the horizontal direction (u), second - vertical (v).
- */
- CV_EXPORTS_W Mat readOpticalFlow( const String& path );
- /** @brief Write a .flo to disk
- @param path Path to the file to be written
- @param flow Flow field to be stored
- The function stores a flow field in a file, returns true on success, false otherwise.
- The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
- to the flow in the horizontal direction (u), second - vertical (v).
- */
- CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow );
- /**
- Base class for dense optical flow algorithms
- */
- class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
- {
- public:
- /** @brief Calculates an optical flow.
- @param I0 first 8-bit single-channel input image.
- @param I1 second input image of the same size and the same type as prev.
- @param flow computed flow image that has the same size as prev and type CV_32FC2.
- */
- CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
- /** @brief Releases all inner buffers.
- */
- CV_WRAP virtual void collectGarbage() = 0;
- };
- /** @brief Base interface for sparse optical flow algorithms.
- */
- class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
- {
- public:
- /** @brief Calculates a sparse optical flow.
- @param prevImg First input image.
- @param nextImg Second input image of the same size and the same type as prevImg.
- @param prevPts Vector of 2D points for which the flow needs to be found.
- @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
- @param status Output status vector. Each element of the vector is set to 1 if the
- flow for the corresponding features has been found. Otherwise, it is set to 0.
- @param err Optional output vector that contains error response for each point (inverse confidence).
- */
- CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
- InputArray prevPts, InputOutputArray nextPts,
- OutputArray status,
- OutputArray err = cv::noArray()) = 0;
- };
- /** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
- */
- class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
- {
- public:
- CV_WRAP virtual int getNumLevels() const = 0;
- CV_WRAP virtual void setNumLevels(int numLevels) = 0;
- CV_WRAP virtual double getPyrScale() const = 0;
- CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
- CV_WRAP virtual bool getFastPyramids() const = 0;
- CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
- CV_WRAP virtual int getWinSize() const = 0;
- CV_WRAP virtual void setWinSize(int winSize) = 0;
- CV_WRAP virtual int getNumIters() const = 0;
- CV_WRAP virtual void setNumIters(int numIters) = 0;
- CV_WRAP virtual int getPolyN() const = 0;
- CV_WRAP virtual void setPolyN(int polyN) = 0;
- CV_WRAP virtual double getPolySigma() const = 0;
- CV_WRAP virtual void setPolySigma(double polySigma) = 0;
- CV_WRAP virtual int getFlags() const = 0;
- CV_WRAP virtual void setFlags(int flags) = 0;
- CV_WRAP static Ptr<FarnebackOpticalFlow> create(
- int numLevels = 5,
- double pyrScale = 0.5,
- bool fastPyramids = false,
- int winSize = 13,
- int numIters = 10,
- int polyN = 5,
- double polySigma = 1.1,
- int flags = 0);
- };
- /** @brief Variational optical flow refinement
- This class implements variational refinement of the input flow field, i.e.
- it uses input flow to initialize the minimization of the following functional:
- \f$E(U) = \int_{\Omega} \delta \Psi(E_I) + \gamma \Psi(E_G) + \alpha \Psi(E_S) \f$,
- where \f$E_I,E_G,E_S\f$ are color constancy, gradient constancy and smoothness terms
- respectively. \f$\Psi(s^2)=\sqrt{s^2+\epsilon^2}\f$ is a robust penalizer to limit the
- influence of outliers. A complete formulation and a description of the minimization
- procedure can be found in @cite Brox2004
- */
- class CV_EXPORTS_W VariationalRefinement : public DenseOpticalFlow
- {
- public:
- /** @brief @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components
- (to avoid extra splits/merges) */
- CV_WRAP virtual void calcUV(InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v) = 0;
- /** @brief Number of outer (fixed-point) iterations in the minimization procedure.
- @see setFixedPointIterations */
- CV_WRAP virtual int getFixedPointIterations() const = 0;
- /** @copybrief getFixedPointIterations @see getFixedPointIterations */
- CV_WRAP virtual void setFixedPointIterations(int val) = 0;
- /** @brief Number of inner successive over-relaxation (SOR) iterations
- in the minimization procedure to solve the respective linear system.
- @see setSorIterations */
- CV_WRAP virtual int getSorIterations() const = 0;
- /** @copybrief getSorIterations @see getSorIterations */
- CV_WRAP virtual void setSorIterations(int val) = 0;
- /** @brief Relaxation factor in SOR
- @see setOmega */
- CV_WRAP virtual float getOmega() const = 0;
- /** @copybrief getOmega @see getOmega */
- CV_WRAP virtual void setOmega(float val) = 0;
- /** @brief Weight of the smoothness term
- @see setAlpha */
- CV_WRAP virtual float getAlpha() const = 0;
- /** @copybrief getAlpha @see getAlpha */
- CV_WRAP virtual void setAlpha(float val) = 0;
- /** @brief Weight of the color constancy term
- @see setDelta */
- CV_WRAP virtual float getDelta() const = 0;
- /** @copybrief getDelta @see getDelta */
- CV_WRAP virtual void setDelta(float val) = 0;
- /** @brief Weight of the gradient constancy term
- @see setGamma */
- CV_WRAP virtual float getGamma() const = 0;
- /** @copybrief getGamma @see getGamma */
- CV_WRAP virtual void setGamma(float val) = 0;
- /** @brief Creates an instance of VariationalRefinement
- */
- CV_WRAP static Ptr<VariationalRefinement> create();
- };
- /** @brief DIS optical flow algorithm.
- This class implements the Dense Inverse Search (DIS) optical flow algorithm. More
- details about the algorithm can be found at @cite Kroeger2016 . Includes three presets with preselected
- parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is
- still relatively fast, use DeepFlow if you need better quality and don't care about speed.
- This implementation includes several additional features compared to the algorithm described in the paper,
- including spatial propagation of flow vectors (@ref getUseSpatialPropagation), as well as an option to
- utilize an initial flow approximation passed to @ref calc (which is, essentially, temporal propagation,
- if the previous frame's flow field is passed).
- */
- class CV_EXPORTS_W DISOpticalFlow : public DenseOpticalFlow
- {
- public:
- enum
- {
- PRESET_ULTRAFAST = 0,
- PRESET_FAST = 1,
- PRESET_MEDIUM = 2
- };
- /** @brief Finest level of the Gaussian pyramid on which the flow is computed (zero level
- corresponds to the original image resolution). The final flow is obtained by bilinear upscaling.
- @see setFinestScale */
- CV_WRAP virtual int getFinestScale() const = 0;
- /** @copybrief getFinestScale @see getFinestScale */
- CV_WRAP virtual void setFinestScale(int val) = 0;
- /** @brief Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well
- enough in most cases.
- @see setPatchSize */
- CV_WRAP virtual int getPatchSize() const = 0;
- /** @copybrief getPatchSize @see getPatchSize */
- CV_WRAP virtual void setPatchSize(int val) = 0;
- /** @brief Stride between neighbor patches. Must be less than patch size. Lower values correspond
- to higher flow quality.
- @see setPatchStride */
- CV_WRAP virtual int getPatchStride() const = 0;
- /** @copybrief getPatchStride @see getPatchStride */
- CV_WRAP virtual void setPatchStride(int val) = 0;
- /** @brief Maximum number of gradient descent iterations in the patch inverse search stage. Higher values
- may improve quality in some cases.
- @see setGradientDescentIterations */
- CV_WRAP virtual int getGradientDescentIterations() const = 0;
- /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
- CV_WRAP virtual void setGradientDescentIterations(int val) = 0;
- /** @brief Number of fixed point iterations of variational refinement per scale. Set to zero to
- disable variational refinement completely. Higher values will typically result in more smooth and
- high-quality flow.
- @see setGradientDescentIterations */
- CV_WRAP virtual int getVariationalRefinementIterations() const = 0;
- /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
- CV_WRAP virtual void setVariationalRefinementIterations(int val) = 0;
- /** @brief Weight of the smoothness term
- @see setVariationalRefinementAlpha */
- CV_WRAP virtual float getVariationalRefinementAlpha() const = 0;
- /** @copybrief getVariationalRefinementAlpha @see getVariationalRefinementAlpha */
- CV_WRAP virtual void setVariationalRefinementAlpha(float val) = 0;
- /** @brief Weight of the color constancy term
- @see setVariationalRefinementDelta */
- CV_WRAP virtual float getVariationalRefinementDelta() const = 0;
- /** @copybrief getVariationalRefinementDelta @see getVariationalRefinementDelta */
- CV_WRAP virtual void setVariationalRefinementDelta(float val) = 0;
- /** @brief Weight of the gradient constancy term
- @see setVariationalRefinementGamma */
- CV_WRAP virtual float getVariationalRefinementGamma() const = 0;
- /** @copybrief getVariationalRefinementGamma @see getVariationalRefinementGamma */
- CV_WRAP virtual void setVariationalRefinementGamma(float val) = 0;
- /** @brief Whether to use mean-normalization of patches when computing patch distance. It is turned on
- by default as it typically provides a noticeable quality boost because of increased robustness to
- illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes
- in illumination.
- @see setUseMeanNormalization */
- CV_WRAP virtual bool getUseMeanNormalization() const = 0;
- /** @copybrief getUseMeanNormalization @see getUseMeanNormalization */
- CV_WRAP virtual void setUseMeanNormalization(bool val) = 0;
- /** @brief Whether to use spatial propagation of good optical flow vectors. This option is turned on by
- default, as it tends to work better on average and can sometimes help recover from major errors
- introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this
- option off can make the output flow field a bit smoother, however.
- @see setUseSpatialPropagation */
- CV_WRAP virtual bool getUseSpatialPropagation() const = 0;
- /** @copybrief getUseSpatialPropagation @see getUseSpatialPropagation */
- CV_WRAP virtual void setUseSpatialPropagation(bool val) = 0;
- /** @brief Creates an instance of DISOpticalFlow
- @param preset one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM
- */
- CV_WRAP static Ptr<DISOpticalFlow> create(int preset = DISOpticalFlow::PRESET_FAST);
- };
- /** @brief Class used for calculating a sparse optical flow.
- The class can calculate an optical flow for a sparse feature set using the
- iterative Lucas-Kanade method with pyramids.
- @sa calcOpticalFlowPyrLK
- */
- class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
- {
- public:
- CV_WRAP virtual Size getWinSize() const = 0;
- CV_WRAP virtual void setWinSize(Size winSize) = 0;
- CV_WRAP virtual int getMaxLevel() const = 0;
- CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
- CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0;
- CV_WRAP virtual int getFlags() const = 0;
- CV_WRAP virtual void setFlags(int flags) = 0;
- CV_WRAP virtual double getMinEigThreshold() const = 0;
- CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0;
- CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create(
- Size winSize = Size(21, 21),
- int maxLevel = 3, TermCriteria crit =
- TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
- int flags = 0,
- double minEigThreshold = 1e-4);
- };
- /** @brief Base abstract class for the long-term tracker
- */
- class CV_EXPORTS_W Tracker
- {
- protected:
- Tracker();
- public:
- virtual ~Tracker();
- /** @brief Initialize the tracker with a known bounding box that surrounded the target
- @param image The initial frame
- @param boundingBox The initial bounding box
- */
- CV_WRAP virtual
- void init(InputArray image, const Rect& boundingBox) = 0;
- /** @brief Update the tracker, find the new most likely bounding box for the target
- @param image The current frame
- @param boundingBox The bounding box that represent the new target location, if true was returned, not
- modified otherwise
- @return True means that target was located and false means that tracker cannot locate target in
- current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
- missing from the frame (say, out of sight)
- */
- CV_WRAP virtual
- bool update(InputArray image, CV_OUT Rect& boundingBox) = 0;
- };
- /** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the
- background.
- Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is
- based on @cite MIL .
- Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml>
- */
- class CV_EXPORTS_W TrackerMIL : public Tracker
- {
- protected:
- TrackerMIL(); // use ::create()
- public:
- virtual ~TrackerMIL() CV_OVERRIDE;
- struct CV_EXPORTS_W_SIMPLE Params
- {
- CV_WRAP Params();
- //parameters for sampler
- CV_PROP_RW float samplerInitInRadius; //!< radius for gathering positive instances during init
- CV_PROP_RW int samplerInitMaxNegNum; //!< # negative samples to use during init
- CV_PROP_RW float samplerSearchWinSize; //!< size of search window
- CV_PROP_RW float samplerTrackInRadius; //!< radius for gathering positive instances during tracking
- CV_PROP_RW int samplerTrackMaxPosNum; //!< # positive samples to use during tracking
- CV_PROP_RW int samplerTrackMaxNegNum; //!< # negative samples to use during tracking
- CV_PROP_RW int featureSetNumFeatures; //!< # features
- };
- /** @brief Create MIL tracker instance
- * @param parameters MIL parameters TrackerMIL::Params
- */
- static CV_WRAP
- Ptr<TrackerMIL> create(const TrackerMIL::Params ¶meters = TrackerMIL::Params());
- //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
- //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
- };
- /** @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker
- *
- * GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
- * GOTURN is much faster due to offline training without online fine-tuning nature.
- * GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
- * we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
- * robust to viewpoint changes, lighting changes, and deformations.
- * Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227.
- * Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2.
- * Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf>
- * As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker>
- * Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
- * <https://github.com/Auron-X/GOTURN_Training_Toolkit>
- * GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository.
- */
- class CV_EXPORTS_W TrackerGOTURN : public Tracker
- {
- protected:
- TrackerGOTURN(); // use ::create()
- public:
- virtual ~TrackerGOTURN() CV_OVERRIDE;
- struct CV_EXPORTS_W_SIMPLE Params
- {
- CV_WRAP Params();
- CV_PROP_RW std::string modelTxt;
- CV_PROP_RW std::string modelBin;
- };
- /** @brief Constructor
- @param parameters GOTURN parameters TrackerGOTURN::Params
- */
- static CV_WRAP
- Ptr<TrackerGOTURN> create(const TrackerGOTURN::Params& parameters = TrackerGOTURN::Params());
- //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
- //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
- };
- class CV_EXPORTS_W TrackerDaSiamRPN : public Tracker
- {
- protected:
- TrackerDaSiamRPN(); // use ::create()
- public:
- virtual ~TrackerDaSiamRPN() CV_OVERRIDE;
- struct CV_EXPORTS_W_SIMPLE Params
- {
- CV_WRAP Params();
- CV_PROP_RW std::string model;
- CV_PROP_RW std::string kernel_cls1;
- CV_PROP_RW std::string kernel_r1;
- CV_PROP_RW int backend;
- CV_PROP_RW int target;
- };
- /** @brief Constructor
- @param parameters DaSiamRPN parameters TrackerDaSiamRPN::Params
- */
- static CV_WRAP
- Ptr<TrackerDaSiamRPN> create(const TrackerDaSiamRPN::Params& parameters = TrackerDaSiamRPN::Params());
- /** @brief Return tracking score
- */
- CV_WRAP virtual float getTrackingScore() = 0;
- //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
- //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
- };
- /** @brief the Nano tracker is a super lightweight dnn-based general object tracking.
- *
- * Nano tracker is much faster and extremely lightweight due to special model structure, the whole model size is about 1.9 MB.
- * Nano tracker needs two models: one for feature extraction (backbone) and the another for localization (neckhead).
- * Model download link: https://github.com/HonglinChu/SiamTrackers/tree/master/NanoTrack/models/nanotrackv2
- * Original repo is here: https://github.com/HonglinChu/NanoTrack
- * Author: HongLinChu, 1628464345@qq.com
- */
- class CV_EXPORTS_W TrackerNano : public Tracker
- {
- protected:
- TrackerNano(); // use ::create()
- public:
- virtual ~TrackerNano() CV_OVERRIDE;
- struct CV_EXPORTS_W_SIMPLE Params
- {
- CV_WRAP Params();
- CV_PROP_RW std::string backbone;
- CV_PROP_RW std::string neckhead;
- CV_PROP_RW int backend;
- CV_PROP_RW int target;
- };
- /** @brief Constructor
- @param parameters NanoTrack parameters TrackerNano::Params
- */
- static CV_WRAP
- Ptr<TrackerNano> create(const TrackerNano::Params& parameters = TrackerNano::Params());
- /** @brief Return tracking score
- */
- CV_WRAP virtual float getTrackingScore() = 0;
- //void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
- //bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
- };
- //! @} video_track
- } // cv
- #endif
|