123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef __OPENCV_ONLINEBOOSTING_HPP__
- #define __OPENCV_ONLINEBOOSTING_HPP__
- #include "opencv2/core.hpp"
- namespace cv {
- namespace detail {
- inline namespace tracking {
- //! @addtogroup tracking_detail
- //! @{
- inline namespace online_boosting {
- //TODO based on the original implementation
- //http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
- class BaseClassifier;
- class WeakClassifierHaarFeature;
- class EstimatedGaussDistribution;
- class ClassifierThreshold;
- class Detector;
- class StrongClassifierDirectSelection
- {
- public:
- StrongClassifierDirectSelection( int numBaseClf, int numWeakClf, Size patchSz, const Rect& sampleROI, bool useFeatureEx = false, int iterationInit =
- 0 );
- virtual ~StrongClassifierDirectSelection();
- void initBaseClassifier();
- bool update( const Mat& image, int target, float importance = 1.0 );
- float eval( const Mat& response );
- std::vector<int> getSelectedWeakClassifier();
- float classifySmooth( const std::vector<Mat>& images, const Rect& sampleROI, int& idx );
- int getNumBaseClassifier();
- Size getPatchSize() const;
- Rect getROI() const;
- bool getUseFeatureExchange() const;
- int getReplacedClassifier() const;
- void replaceWeakClassifier( int idx );
- int getSwappedClassifier() const;
- private:
- //StrongClassifier
- int numBaseClassifier;
- int numAllWeakClassifier;
- int numWeakClassifier;
- int iterInit;
- BaseClassifier** baseClassifier;
- std::vector<float> alpha;
- cv::Size patchSize;
- bool useFeatureExchange;
- //StrongClassifierDirectSelection
- std::vector<bool> m_errorMask;
- std::vector<float> m_errors;
- std::vector<float> m_sumErrors;
- Detector* detector;
- Rect ROI;
- int replacedClassifier;
- int swappedClassifier;
- };
- class BaseClassifier
- {
- public:
- BaseClassifier( int numWeakClassifier, int iterationInit );
- BaseClassifier( int numWeakClassifier, int iterationInit, WeakClassifierHaarFeature** weakCls );
- WeakClassifierHaarFeature** getReferenceWeakClassifier()
- {
- return weakClassifier;
- }
- ;
- void trainClassifier( const Mat& image, int target, float importance, std::vector<bool>& errorMask );
- int selectBestClassifier( std::vector<bool>& errorMask, float importance, std::vector<float> & errors );
- int computeReplaceWeakestClassifier( const std::vector<float> & errors );
- void replaceClassifierStatistic( int sourceIndex, int targetIndex );
- int getIdxOfNewWeakClassifier()
- {
- return m_idxOfNewWeakClassifier;
- }
- ;
- int eval( const Mat& image );
- virtual ~BaseClassifier();
- float getError( int curWeakClassifier );
- void getErrors( float* errors );
- int getSelectedClassifier() const;
- void replaceWeakClassifier( int index );
- protected:
- void generateRandomClassifier();
- WeakClassifierHaarFeature** weakClassifier;
- bool m_referenceWeakClassifier;
- int m_numWeakClassifier;
- int m_selectedClassifier;
- int m_idxOfNewWeakClassifier;
- std::vector<float> m_wCorrect;
- std::vector<float> m_wWrong;
- int m_iterationInit;
- };
- class EstimatedGaussDistribution
- {
- public:
- EstimatedGaussDistribution();
- EstimatedGaussDistribution( float P_mean, float R_mean, float P_sigma, float R_sigma );
- virtual ~EstimatedGaussDistribution();
- void update( float value ); //, float timeConstant = -1.0);
- float getMean();
- float getSigma();
- void setValues( float mean, float sigma );
- private:
- float m_mean;
- float m_sigma;
- float m_P_mean;
- float m_P_sigma;
- float m_R_mean;
- float m_R_sigma;
- };
- class WeakClassifierHaarFeature
- {
- public:
- WeakClassifierHaarFeature();
- virtual ~WeakClassifierHaarFeature();
- bool update( float value, int target );
- int eval( float value );
- private:
- float sigma;
- float mean;
- ClassifierThreshold* m_classifier;
- void getInitialDistribution( EstimatedGaussDistribution *distribution );
- void generateRandomClassifier( EstimatedGaussDistribution* m_posSamples, EstimatedGaussDistribution* m_negSamples );
- };
- class Detector
- {
- public:
- Detector( StrongClassifierDirectSelection* classifier );
- virtual
- ~Detector( void );
- void
- classifySmooth( const std::vector<Mat>& image, float minMargin = 0 );
- int
- getNumDetections();
- float
- getConfidence( int patchIdx );
- float
- getConfidenceOfDetection( int detectionIdx );
- float getConfidenceOfBestDetection()
- {
- return m_maxConfidence;
- }
- ;
- int
- getPatchIdxOfBestDetection();
- int
- getPatchIdxOfDetection( int detectionIdx );
- const std::vector<int> &
- getIdxDetections() const
- {
- return m_idxDetections;
- }
- ;
- const std::vector<float> &
- getConfidences() const
- {
- return m_confidences;
- }
- ;
- const cv::Mat &
- getConfImageDisplay() const
- {
- return m_confImageDisplay;
- }
- private:
- void
- prepareConfidencesMemory( int numPatches );
- void
- prepareDetectionsMemory( int numDetections );
- StrongClassifierDirectSelection* m_classifier;
- std::vector<float> m_confidences;
- int m_sizeConfidences;
- int m_numDetections;
- std::vector<int> m_idxDetections;
- int m_sizeDetections;
- int m_idxBestDetection;
- float m_maxConfidence;
- cv::Mat_<float> m_confMatrix;
- cv::Mat_<float> m_confMatrixSmooth;
- cv::Mat_<unsigned char> m_confImageDisplay;
- };
- class ClassifierThreshold
- {
- public:
- ClassifierThreshold( EstimatedGaussDistribution* posSamples, EstimatedGaussDistribution* negSamples );
- virtual ~ClassifierThreshold();
- void update( float value, int target );
- int eval( float value );
- void* getDistribution( int target );
- private:
- EstimatedGaussDistribution* m_posSamples;
- EstimatedGaussDistribution* m_negSamples;
- float m_threshold;
- int m_parity;
- };
- } // namespace
- //! @}
- }}} // namespace
- #endif
|