123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef __OPENCV_FEATURE_HPP__
- #define __OPENCV_FEATURE_HPP__
- #include "opencv2/core.hpp"
- #include "opencv2/imgproc.hpp"
- #include <iostream>
- #include <string>
- #include <time.h>
- /*
- * TODO This implementation is based on apps/traincascade/
- * TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.)
- */
- namespace cv {
- namespace detail {
- inline namespace tracking {
- //! @addtogroup tracking_detail
- //! @{
- inline namespace contrib_feature {
- #define FEATURES "features"
- #define CC_FEATURES FEATURES
- #define CC_FEATURE_PARAMS "featureParams"
- #define CC_MAX_CAT_COUNT "maxCatCount"
- #define CC_FEATURE_SIZE "featSize"
- #define CC_NUM_FEATURES "numFeat"
- #define CC_ISINTEGRAL "isIntegral"
- #define CC_RECTS "rects"
- #define CC_TILTED "tilted"
- #define CC_RECT "rect"
- #define LBPF_NAME "lbpFeatureParams"
- #define HOGF_NAME "HOGFeatureParams"
- #define HFP_NAME "haarFeatureParams"
- #define CV_HAAR_FEATURE_MAX 3
- #define N_BINS 9
- #define N_CELLS 4
- #define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step ) \
- /* (x, y) */ \
- (p0) = (rect).x + (step) * (rect).y; \
- /* (x + w, y) */ \
- (p1) = (rect).x + (rect).width + (step) * (rect).y; \
- /* (x + w, y) */ \
- (p2) = (rect).x + (step) * ((rect).y + (rect).height); \
- /* (x + w, y + h) */ \
- (p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height);
- #define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step ) \
- /* (x, y) */ \
- (p0) = (rect).x + (step) * (rect).y; \
- /* (x - h, y + h) */ \
- (p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\
- /* (x + w, y + w) */ \
- (p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width); \
- /* (x + w - h, y + w + h) */ \
- (p3) = (rect).x + (rect).width - (rect).height \
- + (step) * ((rect).y + (rect).width + (rect).height);
- float calcNormFactor( const Mat& sum, const Mat& sqSum );
- template<class Feature>
- void _writeFeatures( const std::vector<Feature> features, FileStorage &fs, const Mat& featureMap )
- {
- fs << FEATURES << "[";
- const Mat_<int>& featureMap_ = (const Mat_<int>&) featureMap;
- for ( int fi = 0; fi < featureMap.cols; fi++ )
- if( featureMap_( 0, fi ) >= 0 )
- {
- fs << "{";
- features[fi].write( fs );
- fs << "}";
- }
- fs << "]";
- }
- class CvParams
- {
- public:
- CvParams();
- virtual ~CvParams()
- {
- }
- // from|to file
- virtual void write( FileStorage &fs ) const = 0;
- virtual bool read( const FileNode &node ) = 0;
- // from|to screen
- virtual void printDefaults() const;
- virtual void printAttrs() const;
- virtual bool scanAttr( const std::string prmName, const std::string val );
- std::string name;
- };
- class CvFeatureParams : public CvParams
- {
- public:
- enum FeatureType
- {
- HAAR = 0,
- LBP = 1,
- HOG = 2
- };
- CvFeatureParams();
- virtual void init( const CvFeatureParams& fp );
- virtual void write( FileStorage &fs ) const CV_OVERRIDE;
- virtual bool read( const FileNode &node ) CV_OVERRIDE;
- static Ptr<CvFeatureParams> create(CvFeatureParams::FeatureType featureType);
- int maxCatCount; // 0 in case of numerical features
- int featSize; // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features
- int numFeatures;
- };
- class CvFeatureEvaluator
- {
- public:
- virtual ~CvFeatureEvaluator()
- {
- }
- virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize );
- virtual void setImage( const Mat& img, uchar clsLabel, int idx );
- virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const = 0;
- virtual float operator()( int featureIdx, int sampleIdx ) = 0;
- static Ptr<CvFeatureEvaluator> create(CvFeatureParams::FeatureType type);
- int getNumFeatures() const
- {
- return numFeatures;
- }
- int getMaxCatCount() const
- {
- return featureParams->maxCatCount;
- }
- int getFeatureSize() const
- {
- return featureParams->featSize;
- }
- const Mat& getCls() const
- {
- return cls;
- }
- float getCls( int si ) const
- {
- return cls.at<float>( si, 0 );
- }
- protected:
- virtual void generateFeatures() = 0;
- int npos, nneg;
- int numFeatures;
- Size winSize;
- CvFeatureParams *featureParams;
- Mat cls;
- };
- class CvHaarFeatureParams : public CvFeatureParams
- {
- public:
- CvHaarFeatureParams();
- virtual void init( const CvFeatureParams& fp ) CV_OVERRIDE;
- virtual void write( FileStorage &fs ) const CV_OVERRIDE;
- virtual bool read( const FileNode &node ) CV_OVERRIDE;
- virtual void printDefaults() const CV_OVERRIDE;
- virtual void printAttrs() const CV_OVERRIDE;
- virtual bool scanAttr( const std::string prm, const std::string val ) CV_OVERRIDE;
- bool isIntegral;
- };
- class CvHaarEvaluator : public CvFeatureEvaluator
- {
- public:
- class FeatureHaar
- {
- public:
- FeatureHaar( Size patchSize );
- bool eval( const Mat& image, Rect ROI, float* result ) const;
- int getNumAreas();
- const std::vector<float>& getWeights() const;
- const std::vector<Rect>& getAreas() const;
- void write( FileStorage ) const
- {
- }
- ;
- float getInitMean() const;
- float getInitSigma() const;
- private:
- int m_type;
- int m_numAreas;
- std::vector<float> m_weights;
- float m_initMean;
- float m_initSigma;
- void generateRandomFeature( Size imageSize );
- float getSum( const Mat& image, Rect imgROI ) const;
- std::vector<Rect> m_areas; // areas within the patch over which to compute the feature
- cv::Size m_initSize; // size of the patch used during training
- cv::Size m_curSize; // size of the patches currently under investigation
- float m_scaleFactorHeight; // scaling factor in vertical direction
- float m_scaleFactorWidth; // scaling factor in horizontal direction
- std::vector<Rect> m_scaleAreas; // areas after scaling
- std::vector<float> m_scaleWeights; // weights after scaling
- };
- virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) CV_OVERRIDE;
- virtual void setImage( const Mat& img, uchar clsLabel = 0, int idx = 1 ) CV_OVERRIDE;
- virtual float operator()( int featureIdx, int sampleIdx ) CV_OVERRIDE;
- virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const CV_OVERRIDE;
- void writeFeature( FileStorage &fs ) const; // for old file format
- const std::vector<CvHaarEvaluator::FeatureHaar>& getFeatures() const;
- inline CvHaarEvaluator::FeatureHaar& getFeatures( int idx )
- {
- return features[idx];
- }
- void setWinSize( Size patchSize );
- Size setWinSize() const;
- virtual void generateFeatures() CV_OVERRIDE;
- /**
- * TODO new method
- * \brief Overload the original generateFeatures in order to limit the number of the features
- * @param numFeatures Number of the features
- */
- virtual void generateFeatures( int numFeatures );
- protected:
- bool isIntegral;
- /* TODO Added from MIL implementation */
- Mat _ii_img;
- void compute_integral( const cv::Mat & img, std::vector<cv::Mat_<float> > & ii_imgs )
- {
- Mat ii_img;
- integral( img, ii_img, CV_32F );
- split( ii_img, ii_imgs );
- }
- std::vector<FeatureHaar> features;
- Mat sum; /* sum images (each row represents image) */
- };
- struct CvHOGFeatureParams : public CvFeatureParams
- {
- CvHOGFeatureParams();
- };
- class CvHOGEvaluator : public CvFeatureEvaluator
- {
- public:
- virtual ~CvHOGEvaluator()
- {
- }
- virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) CV_OVERRIDE;
- virtual void setImage( const Mat& img, uchar clsLabel, int idx ) CV_OVERRIDE;
- virtual float operator()( int varIdx, int sampleIdx ) CV_OVERRIDE;
- virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const CV_OVERRIDE;
- protected:
- virtual void generateFeatures() CV_OVERRIDE;
- virtual void integralHistogram( const Mat &img, std::vector<Mat> &histogram, Mat &norm, int nbins ) const;
- class Feature
- {
- public:
- Feature();
- Feature( int offset, int x, int y, int cellW, int cellH );
- float calc( const std::vector<Mat> &_hists, const Mat &_normSum, size_t y, int featComponent ) const;
- void write( FileStorage &fs ) const;
- void write( FileStorage &fs, int varIdx ) const;
- Rect rect[N_CELLS]; //cells
- struct
- {
- int p0, p1, p2, p3;
- } fastRect[N_CELLS];
- };
- std::vector<Feature> features;
- Mat normSum; //for nomalization calculation (L1 or L2)
- std::vector<Mat> hist;
- };
- inline float CvHOGEvaluator::operator()( int varIdx, int sampleIdx )
- {
- int featureIdx = varIdx / ( N_BINS * N_CELLS );
- int componentIdx = varIdx % ( N_BINS * N_CELLS );
- //return features[featureIdx].calc( hist, sampleIdx, componentIdx);
- return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx );
- }
- inline float CvHOGEvaluator::Feature::calc( const std::vector<Mat>& _hists, const Mat& _normSum, size_t y, int featComponent ) const
- {
- float normFactor;
- float res;
- int binIdx = featComponent % N_BINS;
- int cellIdx = featComponent / N_BINS;
- const float *phist = _hists[binIdx].ptr<float>( (int) y );
- res = phist[fastRect[cellIdx].p0] - phist[fastRect[cellIdx].p1] - phist[fastRect[cellIdx].p2] + phist[fastRect[cellIdx].p3];
- const float *pnormSum = _normSum.ptr<float>( (int) y );
- normFactor = (float) ( pnormSum[fastRect[0].p0] - pnormSum[fastRect[1].p1] - pnormSum[fastRect[2].p2] + pnormSum[fastRect[3].p3] );
- res = ( res > 0.001f ) ? ( res / ( normFactor + 0.001f ) ) : 0.f; //for cutting negative values, which apper due to floating precision
- return res;
- }
- struct CvLBPFeatureParams : CvFeatureParams
- {
- CvLBPFeatureParams();
- };
- class CvLBPEvaluator : public CvFeatureEvaluator
- {
- public:
- virtual ~CvLBPEvaluator() CV_OVERRIDE
- {
- }
- virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) CV_OVERRIDE;
- virtual void setImage( const Mat& img, uchar clsLabel, int idx ) CV_OVERRIDE;
- virtual float operator()( int featureIdx, int sampleIdx ) CV_OVERRIDE
- {
- return (float) features[featureIdx].calc( sum, sampleIdx );
- }
- virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const CV_OVERRIDE;
- protected:
- virtual void generateFeatures() CV_OVERRIDE;
- class Feature
- {
- public:
- Feature();
- Feature( int offset, int x, int y, int _block_w, int _block_h );
- uchar calc( const Mat& _sum, size_t y ) const;
- void write( FileStorage &fs ) const;
- Rect rect;
- int p[16];
- };
- std::vector<Feature> features;
- Mat sum;
- };
- inline uchar CvLBPEvaluator::Feature::calc( const Mat &_sum, size_t y ) const
- {
- const int* psum = _sum.ptr<int>( (int) y );
- int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]];
- return (uchar) ( ( psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0 ) | // 0
- ( psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0 ) | // 1
- ( psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0 ) | // 2
- ( psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0 ) | // 5
- ( psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0 ) | // 8
- ( psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0 ) | // 7
- ( psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0 ) | // 6
- ( psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0 ) ); // 3
- }
- } // namespace
- //! @}
- }}} // namespace cv
- #endif
|