1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_IMGPROC_HPP
- #define OPENCV_IMGPROC_HPP
- #include "opencv2/core.hpp"
- /**
- @defgroup imgproc Image Processing
- This module includes image-processing functions.
- @{
- @defgroup imgproc_filter Image Filtering
- Functions and classes described in this section are used to perform various linear or non-linear
- filtering operations on 2D images (represented as Mat's). It means that for each pixel location
- \f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to
- compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of
- morphological operations, it is the minimum or maximum values, and so on. The computed response is
- stored in the destination image at the same location \f$(x,y)\f$. It means that the output image
- will be of the same size as the input image. Normally, the functions support multi-channel arrays,
- in which case every channel is processed independently. Therefore, the output image will also have
- the same number of channels as the input one.
- Another common feature of the functions and classes described in this section is that, unlike
- simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For
- example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when
- processing the left-most pixels in each row, you need pixels to the left of them, that is, outside
- of the image. You can let these pixels be the same as the left-most image pixels ("replicated
- border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant
- border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method.
- For details, see #BorderTypes
- @anchor filter_depths
- ### Depth combinations
- Input depth (src.depth()) | Output depth (ddepth)
- --------------------------|----------------------
- CV_8U | -1/CV_16S/CV_32F/CV_64F
- CV_16U/CV_16S | -1/CV_32F/CV_64F
- CV_32F | -1/CV_32F
- CV_64F | -1/CV_64F
- @note when ddepth=-1, the output image will have the same depth as the source.
- @note if you need double floating-point accuracy and using single floating-point input data
- (CV_32F input and CV_64F output depth combination), you can use @ref Mat.convertTo to convert
- the input data to the desired precision.
- @defgroup imgproc_transform Geometric Image Transformations
- The functions in this section perform various geometrical transformations of 2D images. They do not
- change the image content but deform the pixel grid and map this deformed grid to the destination
- image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from
- destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the
- functions compute coordinates of the corresponding "donor" pixel in the source image and copy the
- pixel value:
- \f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f]
- In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow
- \texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping
- \f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula.
- The actual implementations of the geometrical transformations, from the most generic remap and to
- the simplest and the fastest resize, need to solve two main problems with the above formula:
- - Extrapolation of non-existing pixels. Similarly to the filtering functions described in the
- previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both
- of them may fall outside of the image. In this case, an extrapolation method needs to be used.
- OpenCV provides the same selection of extrapolation methods as in the filtering functions. In
- addition, it provides the method #BORDER_TRANSPARENT. This means that the corresponding pixels in
- the destination image will not be modified at all.
- - Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point
- numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective
- transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional
- coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the
- nearest integer coordinates and the corresponding pixel can be used. This is called a
- nearest-neighbor interpolation. However, a better result can be achieved by using more
- sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) ,
- where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y),
- f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the
- interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See
- #resize for details.
- @note The geometrical transformations do not work with `CV_8S` or `CV_32S` images.
- @defgroup imgproc_misc Miscellaneous Image Transformations
- @defgroup imgproc_draw Drawing Functions
- Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be
- rendered with antialiasing (implemented only for 8-bit images for now). All the functions include
- the parameter color that uses an RGB value (that may be constructed with the Scalar constructor )
- for color images and brightness for grayscale images. For color images, the channel ordering is
- normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a
- color using the Scalar constructor, it should look like:
- \f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f]
- If you are using your own image rendering and I/O functions, you can use any channel ordering. The
- drawing functions process each channel independently and do not depend on the channel order or even
- on the used color space. The whole image can be converted from BGR to RGB or to a different color
- space using cvtColor .
- If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also,
- many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means
- that the coordinates can be passed as fixed-point numbers encoded as integers. The number of
- fractional bits is specified by the shift parameter and the real point coordinates are calculated as
- \f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is
- especially effective when rendering antialiased shapes.
- @note The functions do not support alpha-transparency when the target image is 4-channel. In this
- case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint
- semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main
- image.
- @defgroup imgproc_color_conversions Color Space Conversions
- @defgroup imgproc_colormap ColorMaps in OpenCV
- The human perception isn't built for observing fine changes in grayscale images. Human eyes are more
- sensitive to observing changes between colors, so you often need to recolor your grayscale images to
- get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your
- computer vision application.
- In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample
- code reads the path to an image from command line, applies a Jet colormap on it and shows the
- result:
- @include snippets/imgproc_applyColorMap.cpp
- @see #ColormapTypes
- @defgroup imgproc_subdiv2d Planar Subdivision
- The Subdiv2D class described in this section is used to perform various planar subdivision on
- a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles
- using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram.
- In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi
- diagram with red lines.
- ![Delaunay triangulation (black) and Voronoi (red)](pics/delaunay_voronoi.png)
- The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast
- location of points on the plane, building special graphs (such as NNG,RNG), and so forth.
- @defgroup imgproc_hist Histograms
- @defgroup imgproc_shape Structural Analysis and Shape Descriptors
- @defgroup imgproc_motion Motion Analysis and Object Tracking
- @defgroup imgproc_feature Feature Detection
- @defgroup imgproc_object Object Detection
- @defgroup imgproc_segmentation Image Segmentation
- @defgroup imgproc_c C API
- @defgroup imgproc_hal Hardware Acceleration Layer
- @{
- @defgroup imgproc_hal_functions Functions
- @defgroup imgproc_hal_interface Interface
- @}
- @}
- */
- namespace cv
- {
- /** @addtogroup imgproc
- @{
- */
- //! @addtogroup imgproc_filter
- //! @{
- enum SpecialFilter {
- FILTER_SCHARR = -1
- };
- //! type of morphological operation
- enum MorphTypes{
- MORPH_ERODE = 0, //!< see #erode
- MORPH_DILATE = 1, //!< see #dilate
- MORPH_OPEN = 2, //!< an opening operation
- //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f]
- MORPH_CLOSE = 3, //!< a closing operation
- //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f]
- MORPH_GRADIENT = 4, //!< a morphological gradient
- //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f]
- MORPH_TOPHAT = 5, //!< "top hat"
- //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f]
- MORPH_BLACKHAT = 6, //!< "black hat"
- //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f]
- MORPH_HITMISS = 7 //!< "hit or miss"
- //!< .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation
- };
- //! shape of the structuring element
- enum MorphShapes {
- MORPH_RECT = 0, //!< a rectangular structuring element: \f[E_{ij}=1\f]
- MORPH_CROSS = 1, //!< a cross-shaped structuring element:
- //!< \f[E_{ij} = \begin{cases} 1 & \texttt{if } {i=\texttt{anchor.y } {or } {j=\texttt{anchor.x}}} \\0 & \texttt{otherwise} \end{cases}\f]
- MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed
- //!< into the rectangle Rect(0, 0, esize.width, 0.esize.height)
- };
- //! @} imgproc_filter
- //! @addtogroup imgproc_transform
- //! @{
- //! interpolation algorithm
- enum InterpolationFlags{
- /** nearest neighbor interpolation */
- INTER_NEAREST = 0,
- /** bilinear interpolation */
- INTER_LINEAR = 1,
- /** bicubic interpolation */
- INTER_CUBIC = 2,
- /** resampling using pixel area relation. It may be a preferred method for image decimation, as
- it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
- method. */
- INTER_AREA = 3,
- /** Lanczos interpolation over 8x8 neighborhood */
- INTER_LANCZOS4 = 4,
- /** Bit exact bilinear interpolation */
- INTER_LINEAR_EXACT = 5,
- /** Bit exact nearest neighbor interpolation. This will produce same results as
- the nearest neighbor method in PIL, scikit-image or Matlab. */
- INTER_NEAREST_EXACT = 6,
- /** mask for interpolation codes */
- INTER_MAX = 7,
- /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the
- source image, they are set to zero */
- WARP_FILL_OUTLIERS = 8,
- /** flag, inverse transformation
- For example, #linearPolar or #logPolar transforms:
- - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$
- - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$
- */
- WARP_INVERSE_MAP = 16
- };
- /** \brief Specify the polar mapping mode
- @sa warpPolar
- */
- enum WarpPolarMode
- {
- WARP_POLAR_LINEAR = 0, ///< Remaps an image to/from polar space.
- WARP_POLAR_LOG = 256 ///< Remaps an image to/from semilog-polar space.
- };
- enum InterpolationMasks {
- INTER_BITS = 5,
- INTER_BITS2 = INTER_BITS * 2,
- INTER_TAB_SIZE = 1 << INTER_BITS,
- INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
- };
- //! @} imgproc_transform
- //! @addtogroup imgproc_misc
- //! @{
- //! Distance types for Distance Transform and M-estimators
- //! @see distanceTransform, fitLine
- enum DistanceTypes {
- DIST_USER = -1, //!< User defined distance
- DIST_L1 = 1, //!< distance = |x1-x2| + |y1-y2|
- DIST_L2 = 2, //!< the simple euclidean distance
- DIST_C = 3, //!< distance = max(|x1-x2|,|y1-y2|)
- DIST_L12 = 4, //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
- DIST_FAIR = 5, //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
- DIST_WELSCH = 6, //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
- DIST_HUBER = 7 //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
- };
- //! Mask size for distance transform
- enum DistanceTransformMasks {
- DIST_MASK_3 = 3, //!< mask=3
- DIST_MASK_5 = 5, //!< mask=5
- DIST_MASK_PRECISE = 0 //!<
- };
- //! type of the threshold operation
- //! ![threshold types](pics/threshold.png)
- enum ThresholdTypes {
- THRESH_BINARY = 0, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
- THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f]
- THRESH_TRUNC = 2, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
- THRESH_TOZERO = 3, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
- THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
- THRESH_MASK = 7,
- THRESH_OTSU = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value
- THRESH_TRIANGLE = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value
- };
- //! adaptive threshold algorithm
- //! @see adaptiveThreshold
- enum AdaptiveThresholdTypes {
- /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times
- \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */
- ADAPTIVE_THRESH_MEAN_C = 0,
- /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian
- window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$
- minus C . The default sigma (standard deviation) is used for the specified blockSize . See
- #getGaussianKernel*/
- ADAPTIVE_THRESH_GAUSSIAN_C = 1
- };
- //! class of the pixel in GrabCut algorithm
- enum GrabCutClasses {
- GC_BGD = 0, //!< an obvious background pixels
- GC_FGD = 1, //!< an obvious foreground (object) pixel
- GC_PR_BGD = 2, //!< a possible background pixel
- GC_PR_FGD = 3 //!< a possible foreground pixel
- };
- //! GrabCut algorithm flags
- enum GrabCutModes {
- /** The function initializes the state and the mask using the provided rectangle. After that it
- runs iterCount iterations of the algorithm. */
- GC_INIT_WITH_RECT = 0,
- /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT
- and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are
- automatically initialized with GC_BGD .*/
- GC_INIT_WITH_MASK = 1,
- /** The value means that the algorithm should just resume. */
- GC_EVAL = 2,
- /** The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model */
- GC_EVAL_FREEZE_MODEL = 3
- };
- //! distanceTransform algorithm flags
- enum DistanceTransformLabelTypes {
- /** each connected component of zeros in src (as well as all the non-zero pixels closest to the
- connected component) will be assigned the same label */
- DIST_LABEL_CCOMP = 0,
- /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */
- DIST_LABEL_PIXEL = 1
- };
- //! floodfill algorithm flags
- enum FloodFillFlags {
- /** If set, the difference between the current pixel and seed pixel is considered. Otherwise,
- the difference between neighbor pixels is considered (that is, the range is floating). */
- FLOODFILL_FIXED_RANGE = 1 << 16,
- /** If set, the function does not change the image ( newVal is ignored), and only fills the
- mask with the value specified in bits 8-16 of flags as described above. This option only make
- sense in function variants that have the mask parameter. */
- FLOODFILL_MASK_ONLY = 1 << 17
- };
- //! @} imgproc_misc
- //! @addtogroup imgproc_shape
- //! @{
- //! connected components statistics
- enum ConnectedComponentsTypes {
- CC_STAT_LEFT = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding
- //!< box in the horizontal direction.
- CC_STAT_TOP = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding
- //!< box in the vertical direction.
- CC_STAT_WIDTH = 2, //!< The horizontal size of the bounding box
- CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box
- CC_STAT_AREA = 4, //!< The total area (in pixels) of the connected component
- #ifndef CV_DOXYGEN
- CC_STAT_MAX = 5 //!< Max enumeration value. Used internally only for memory allocation
- #endif
- };
- //! connected components algorithm
- enum ConnectedComponentsAlgorithmsTypes {
- CCL_DEFAULT = -1, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity.
- CCL_WU = 0, //!< SAUF @cite Wu2009 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for SAUF.
- CCL_GRANA = 1, //!< BBDT @cite Grana2010 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both BBDT and SAUF.
- CCL_BOLELLI = 2, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both Spaghetti and Spaghetti4C.
- CCL_SAUF = 3, //!< Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU).
- CCL_BBDT = 4, //!< Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA).
- CCL_SPAGHETTI = 5, //!< Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI).
- };
- //! mode of the contour retrieval algorithm
- enum RetrievalModes {
- /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
- all the contours. */
- RETR_EXTERNAL = 0,
- /** retrieves all of the contours without establishing any hierarchical relationships. */
- RETR_LIST = 1,
- /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top
- level, there are external boundaries of the components. At the second level, there are
- boundaries of the holes. If there is another contour inside a hole of a connected component, it
- is still put at the top level. */
- RETR_CCOMP = 2,
- /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/
- RETR_TREE = 3,
- RETR_FLOODFILL = 4 //!<
- };
- //! the contour approximation algorithm
- enum ContourApproximationModes {
- /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
- (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
- max(abs(x1-x2),abs(y2-y1))==1. */
- CHAIN_APPROX_NONE = 1,
- /** compresses horizontal, vertical, and diagonal segments and leaves only their end points.
- For example, an up-right rectangular contour is encoded with 4 points. */
- CHAIN_APPROX_SIMPLE = 2,
- /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
- CHAIN_APPROX_TC89_L1 = 3,
- /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
- CHAIN_APPROX_TC89_KCOS = 4
- };
- /** @brief Shape matching methods
- \f$A\f$ denotes object1,\f$B\f$ denotes object2
- \f$\begin{array}{l} m^A_i = \mathrm{sign} (h^A_i) \cdot \log{h^A_i} \\ m^B_i = \mathrm{sign} (h^B_i) \cdot \log{h^B_i} \end{array}\f$
- and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively.
- */
- enum ShapeMatchModes {
- CONTOURS_MATCH_I1 =1, //!< \f[I_1(A,B) = \sum _{i=1...7} \left | \frac{1}{m^A_i} - \frac{1}{m^B_i} \right |\f]
- CONTOURS_MATCH_I2 =2, //!< \f[I_2(A,B) = \sum _{i=1...7} \left | m^A_i - m^B_i \right |\f]
- CONTOURS_MATCH_I3 =3 //!< \f[I_3(A,B) = \max _{i=1...7} \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f]
- };
- //! @} imgproc_shape
- //! @addtogroup imgproc_feature
- //! @{
- //! Variants of a Hough transform
- enum HoughModes {
- /** classical or standard Hough transform. Every line is represented by two floating-point
- numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line,
- and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must
- be (the created sequence will be) of CV_32FC2 type */
- HOUGH_STANDARD = 0,
- /** probabilistic Hough transform (more efficient in case if the picture contains a few long
- linear segments). It returns line segments rather than the whole line. Each segment is
- represented by starting and ending points, and the matrix must be (the created sequence will
- be) of the CV_32SC4 type. */
- HOUGH_PROBABILISTIC = 1,
- /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as
- HOUGH_STANDARD. */
- HOUGH_MULTI_SCALE = 2,
- HOUGH_GRADIENT = 3, //!< basically *21HT*, described in @cite Yuen90
- HOUGH_GRADIENT_ALT = 4, //!< variation of HOUGH_GRADIENT to get better accuracy
- };
- //! Variants of Line Segment %Detector
- enum LineSegmentDetectorModes {
- LSD_REFINE_NONE = 0, //!< No refinement applied
- LSD_REFINE_STD = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
- LSD_REFINE_ADV = 2 //!< Advanced refinement. Number of false alarms is calculated, lines are
- //!< refined through increase of precision, decrement in size, etc.
- };
- //! @} imgproc_feature
- /** Histogram comparison methods
- @ingroup imgproc_hist
- */
- enum HistCompMethods {
- /** Correlation
- \f[d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
- where
- \f[\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\f]
- and \f$N\f$ is a total number of histogram bins. */
- HISTCMP_CORREL = 0,
- /** Chi-Square
- \f[d(H_1,H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */
- HISTCMP_CHISQR = 1,
- /** Intersection
- \f[d(H_1,H_2) = \sum _I \min (H_1(I), H_2(I))\f] */
- HISTCMP_INTERSECT = 2,
- /** Bhattacharyya distance
- (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.)
- \f[d(H_1,H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */
- HISTCMP_BHATTACHARYYA = 3,
- HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA
- /** Alternative Chi-Square
- \f[d(H_1,H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f]
- This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */
- HISTCMP_CHISQR_ALT = 4,
- /** Kullback-Leibler divergence
- \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */
- HISTCMP_KL_DIV = 5
- };
- /** the color conversion codes
- @see @ref imgproc_color_conversions
- @ingroup imgproc_color_conversions
- */
- enum ColorConversionCodes {
- COLOR_BGR2BGRA = 0, //!< add alpha channel to RGB or BGR image
- COLOR_RGB2RGBA = COLOR_BGR2BGRA,
- COLOR_BGRA2BGR = 1, //!< remove alpha channel from RGB or BGR image
- COLOR_RGBA2RGB = COLOR_BGRA2BGR,
- COLOR_BGR2RGBA = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)
- COLOR_RGB2BGRA = COLOR_BGR2RGBA,
- COLOR_RGBA2BGR = 3,
- COLOR_BGRA2RGB = COLOR_RGBA2BGR,
- COLOR_BGR2RGB = 4,
- COLOR_RGB2BGR = COLOR_BGR2RGB,
- COLOR_BGRA2RGBA = 5,
- COLOR_RGBA2BGRA = COLOR_BGRA2RGBA,
- COLOR_BGR2GRAY = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
- COLOR_RGB2GRAY = 7,
- COLOR_GRAY2BGR = 8,
- COLOR_GRAY2RGB = COLOR_GRAY2BGR,
- COLOR_GRAY2BGRA = 9,
- COLOR_GRAY2RGBA = COLOR_GRAY2BGRA,
- COLOR_BGRA2GRAY = 10,
- COLOR_RGBA2GRAY = 11,
- COLOR_BGR2BGR565 = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)
- COLOR_RGB2BGR565 = 13,
- COLOR_BGR5652BGR = 14,
- COLOR_BGR5652RGB = 15,
- COLOR_BGRA2BGR565 = 16,
- COLOR_RGBA2BGR565 = 17,
- COLOR_BGR5652BGRA = 18,
- COLOR_BGR5652RGBA = 19,
- COLOR_GRAY2BGR565 = 20, //!< convert between grayscale to BGR565 (16-bit images)
- COLOR_BGR5652GRAY = 21,
- COLOR_BGR2BGR555 = 22, //!< convert between RGB/BGR and BGR555 (16-bit images)
- COLOR_RGB2BGR555 = 23,
- COLOR_BGR5552BGR = 24,
- COLOR_BGR5552RGB = 25,
- COLOR_BGRA2BGR555 = 26,
- COLOR_RGBA2BGR555 = 27,
- COLOR_BGR5552BGRA = 28,
- COLOR_BGR5552RGBA = 29,
- COLOR_GRAY2BGR555 = 30, //!< convert between grayscale and BGR555 (16-bit images)
- COLOR_BGR5552GRAY = 31,
- COLOR_BGR2XYZ = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
- COLOR_RGB2XYZ = 33,
- COLOR_XYZ2BGR = 34,
- COLOR_XYZ2RGB = 35,
- COLOR_BGR2YCrCb = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
- COLOR_RGB2YCrCb = 37,
- COLOR_YCrCb2BGR = 38,
- COLOR_YCrCb2RGB = 39,
- COLOR_BGR2HSV = 40, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
- COLOR_RGB2HSV = 41,
- COLOR_BGR2Lab = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
- COLOR_RGB2Lab = 45,
- COLOR_BGR2Luv = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
- COLOR_RGB2Luv = 51,
- COLOR_BGR2HLS = 52, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
- COLOR_RGB2HLS = 53,
- COLOR_HSV2BGR = 54, //!< backward conversions HSV to RGB/BGR with H range 0..180 if 8 bit image
- COLOR_HSV2RGB = 55,
- COLOR_Lab2BGR = 56,
- COLOR_Lab2RGB = 57,
- COLOR_Luv2BGR = 58,
- COLOR_Luv2RGB = 59,
- COLOR_HLS2BGR = 60, //!< backward conversions HLS to RGB/BGR with H range 0..180 if 8 bit image
- COLOR_HLS2RGB = 61,
- COLOR_BGR2HSV_FULL = 66, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
- COLOR_RGB2HSV_FULL = 67,
- COLOR_BGR2HLS_FULL = 68, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
- COLOR_RGB2HLS_FULL = 69,
- COLOR_HSV2BGR_FULL = 70, //!< backward conversions HSV to RGB/BGR with H range 0..255 if 8 bit image
- COLOR_HSV2RGB_FULL = 71,
- COLOR_HLS2BGR_FULL = 72, //!< backward conversions HLS to RGB/BGR with H range 0..255 if 8 bit image
- COLOR_HLS2RGB_FULL = 73,
- COLOR_LBGR2Lab = 74,
- COLOR_LRGB2Lab = 75,
- COLOR_LBGR2Luv = 76,
- COLOR_LRGB2Luv = 77,
- COLOR_Lab2LBGR = 78,
- COLOR_Lab2LRGB = 79,
- COLOR_Luv2LBGR = 80,
- COLOR_Luv2LRGB = 81,
- COLOR_BGR2YUV = 82, //!< convert between RGB/BGR and YUV
- COLOR_RGB2YUV = 83,
- COLOR_YUV2BGR = 84,
- COLOR_YUV2RGB = 85,
- //! YUV 4:2:0 family to RGB
- COLOR_YUV2RGB_NV12 = 90,
- COLOR_YUV2BGR_NV12 = 91,
- COLOR_YUV2RGB_NV21 = 92,
- COLOR_YUV2BGR_NV21 = 93,
- COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
- COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,
- COLOR_YUV2RGBA_NV12 = 94,
- COLOR_YUV2BGRA_NV12 = 95,
- COLOR_YUV2RGBA_NV21 = 96,
- COLOR_YUV2BGRA_NV21 = 97,
- COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
- COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
- COLOR_YUV2RGB_YV12 = 98,
- COLOR_YUV2BGR_YV12 = 99,
- COLOR_YUV2RGB_IYUV = 100,
- COLOR_YUV2BGR_IYUV = 101,
- COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
- COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
- COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
- COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,
- COLOR_YUV2RGBA_YV12 = 102,
- COLOR_YUV2BGRA_YV12 = 103,
- COLOR_YUV2RGBA_IYUV = 104,
- COLOR_YUV2BGRA_IYUV = 105,
- COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
- COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
- COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
- COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,
- COLOR_YUV2GRAY_420 = 106,
- COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
- COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
- COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,
- //! YUV 4:2:2 family to RGB
- COLOR_YUV2RGB_UYVY = 107,
- COLOR_YUV2BGR_UYVY = 108,
- //COLOR_YUV2RGB_VYUY = 109,
- //COLOR_YUV2BGR_VYUY = 110,
- COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
- COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
- COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
- COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
- COLOR_YUV2RGBA_UYVY = 111,
- COLOR_YUV2BGRA_UYVY = 112,
- //COLOR_YUV2RGBA_VYUY = 113,
- //COLOR_YUV2BGRA_VYUY = 114,
- COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
- COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
- COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
- COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
- COLOR_YUV2RGB_YUY2 = 115,
- COLOR_YUV2BGR_YUY2 = 116,
- COLOR_YUV2RGB_YVYU = 117,
- COLOR_YUV2BGR_YVYU = 118,
- COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
- COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
- COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
- COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
- COLOR_YUV2RGBA_YUY2 = 119,
- COLOR_YUV2BGRA_YUY2 = 120,
- COLOR_YUV2RGBA_YVYU = 121,
- COLOR_YUV2BGRA_YVYU = 122,
- COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
- COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
- COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
- COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
- COLOR_YUV2GRAY_UYVY = 123,
- COLOR_YUV2GRAY_YUY2 = 124,
- //CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,
- COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
- COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
- COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
- COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
- COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
- //! alpha premultiplication
- COLOR_RGBA2mRGBA = 125,
- COLOR_mRGBA2RGBA = 126,
- //! RGB to YUV 4:2:0 family
- COLOR_RGB2YUV_I420 = 127,
- COLOR_BGR2YUV_I420 = 128,
- COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
- COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,
- COLOR_RGBA2YUV_I420 = 129,
- COLOR_BGRA2YUV_I420 = 130,
- COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
- COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
- COLOR_RGB2YUV_YV12 = 131,
- COLOR_BGR2YUV_YV12 = 132,
- COLOR_RGBA2YUV_YV12 = 133,
- COLOR_BGRA2YUV_YV12 = 134,
- //! Demosaicing, see @ref color_convert_bayer "color conversions" for additional information
- COLOR_BayerBG2BGR = 46, //!< equivalent to RGGB Bayer pattern
- COLOR_BayerGB2BGR = 47, //!< equivalent to GRBG Bayer pattern
- COLOR_BayerRG2BGR = 48, //!< equivalent to BGGR Bayer pattern
- COLOR_BayerGR2BGR = 49, //!< equivalent to GBRG Bayer pattern
- COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR,
- COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR,
- COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR,
- COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR,
- COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR,
- COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR,
- COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR,
- COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR,
- COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, //!< equivalent to RGGB Bayer pattern
- COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, //!< equivalent to GRBG Bayer pattern
- COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, //!< equivalent to BGGR Bayer pattern
- COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, //!< equivalent to GBRG Bayer pattern
- COLOR_BayerBG2GRAY = 86, //!< equivalent to RGGB Bayer pattern
- COLOR_BayerGB2GRAY = 87, //!< equivalent to GRBG Bayer pattern
- COLOR_BayerRG2GRAY = 88, //!< equivalent to BGGR Bayer pattern
- COLOR_BayerGR2GRAY = 89, //!< equivalent to GBRG Bayer pattern
- COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY,
- COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY,
- COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY,
- COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY,
- //! Demosaicing using Variable Number of Gradients
- COLOR_BayerBG2BGR_VNG = 62, //!< equivalent to RGGB Bayer pattern
- COLOR_BayerGB2BGR_VNG = 63, //!< equivalent to GRBG Bayer pattern
- COLOR_BayerRG2BGR_VNG = 64, //!< equivalent to BGGR Bayer pattern
- COLOR_BayerGR2BGR_VNG = 65, //!< equivalent to GBRG Bayer pattern
- COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG,
- COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG,
- COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG,
- COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG,
- COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG,
- COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG,
- COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG,
- COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG,
- COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, //!< equivalent to RGGB Bayer pattern
- COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, //!< equivalent to GRBG Bayer pattern
- COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, //!< equivalent to BGGR Bayer pattern
- COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, //!< equivalent to GBRG Bayer pattern
- //! Edge-Aware Demosaicing
- COLOR_BayerBG2BGR_EA = 135, //!< equivalent to RGGB Bayer pattern
- COLOR_BayerGB2BGR_EA = 136, //!< equivalent to GRBG Bayer pattern
- COLOR_BayerRG2BGR_EA = 137, //!< equivalent to BGGR Bayer pattern
- COLOR_BayerGR2BGR_EA = 138, //!< equivalent to GBRG Bayer pattern
- COLOR_BayerRGGB2BGR_EA = COLOR_BayerBG2BGR_EA,
- COLOR_BayerGRBG2BGR_EA = COLOR_BayerGB2BGR_EA,
- COLOR_BayerBGGR2BGR_EA = COLOR_BayerRG2BGR_EA,
- COLOR_BayerGBRG2BGR_EA = COLOR_BayerGR2BGR_EA,
- COLOR_BayerRGGB2RGB_EA = COLOR_BayerBGGR2BGR_EA,
- COLOR_BayerGRBG2RGB_EA = COLOR_BayerGBRG2BGR_EA,
- COLOR_BayerBGGR2RGB_EA = COLOR_BayerRGGB2BGR_EA,
- COLOR_BayerGBRG2RGB_EA = COLOR_BayerGRBG2BGR_EA,
- COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA, //!< equivalent to RGGB Bayer pattern
- COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA, //!< equivalent to GRBG Bayer pattern
- COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA, //!< equivalent to BGGR Bayer pattern
- COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA, //!< equivalent to GBRG Bayer pattern
- //! Demosaicing with alpha channel
- COLOR_BayerBG2BGRA = 139, //!< equivalent to RGGB Bayer pattern
- COLOR_BayerGB2BGRA = 140, //!< equivalent to GRBG Bayer pattern
- COLOR_BayerRG2BGRA = 141, //!< equivalent to BGGR Bayer pattern
- COLOR_BayerGR2BGRA = 142, //!< equivalent to GBRG Bayer pattern
- COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA,
- COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA,
- COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA,
- COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA,
- COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA,
- COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA,
- COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA,
- COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA,
- COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, //!< equivalent to RGGB Bayer pattern
- COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, //!< equivalent to GRBG Bayer pattern
- COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, //!< equivalent to BGGR Bayer pattern
- COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, //!< equivalent to GBRG Bayer pattern
- COLOR_COLORCVT_MAX = 143
- };
- //! @addtogroup imgproc_shape
- //! @{
- //! types of intersection between rectangles
- enum RectanglesIntersectTypes {
- INTERSECT_NONE = 0, //!< No intersection
- INTERSECT_PARTIAL = 1, //!< There is a partial intersection
- INTERSECT_FULL = 2 //!< One of the rectangle is fully enclosed in the other
- };
- /** types of line
- @ingroup imgproc_draw
- */
- enum LineTypes {
- FILLED = -1,
- LINE_4 = 4, //!< 4-connected line
- LINE_8 = 8, //!< 8-connected line
- LINE_AA = 16 //!< antialiased line
- };
- /** Only a subset of Hershey fonts <https://en.wikipedia.org/wiki/Hershey_fonts> are supported
- @ingroup imgproc_draw
- */
- enum HersheyFonts {
- FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font
- FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font
- FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
- FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font
- FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
- FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
- FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
- FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
- FONT_ITALIC = 16 //!< flag for italic font
- };
- /** Possible set of marker types used for the cv::drawMarker function
- @ingroup imgproc_draw
- */
- enum MarkerTypes
- {
- MARKER_CROSS = 0, //!< A crosshair marker shape
- MARKER_TILTED_CROSS = 1, //!< A 45 degree tilted crosshair marker shape
- MARKER_STAR = 2, //!< A star marker shape, combination of cross and tilted cross
- MARKER_DIAMOND = 3, //!< A diamond marker shape
- MARKER_SQUARE = 4, //!< A square marker shape
- MARKER_TRIANGLE_UP = 5, //!< An upwards pointing triangle marker shape
- MARKER_TRIANGLE_DOWN = 6 //!< A downwards pointing triangle marker shape
- };
- /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
- */
- class CV_EXPORTS_W GeneralizedHough : public Algorithm
- {
- public:
- //! set template to search
- CV_WRAP virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
- CV_WRAP virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
- //! find template on image
- CV_WRAP virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
- CV_WRAP virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
- //! Canny low threshold.
- CV_WRAP virtual void setCannyLowThresh(int cannyLowThresh) = 0;
- CV_WRAP virtual int getCannyLowThresh() const = 0;
- //! Canny high threshold.
- CV_WRAP virtual void setCannyHighThresh(int cannyHighThresh) = 0;
- CV_WRAP virtual int getCannyHighThresh() const = 0;
- //! Minimum distance between the centers of the detected objects.
- CV_WRAP virtual void setMinDist(double minDist) = 0;
- CV_WRAP virtual double getMinDist() const = 0;
- //! Inverse ratio of the accumulator resolution to the image resolution.
- CV_WRAP virtual void setDp(double dp) = 0;
- CV_WRAP virtual double getDp() const = 0;
- //! Maximal size of inner buffers.
- CV_WRAP virtual void setMaxBufferSize(int maxBufferSize) = 0;
- CV_WRAP virtual int getMaxBufferSize() const = 0;
- };
- /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
- Detects position only without translation and rotation @cite Ballard1981 .
- */
- class CV_EXPORTS_W GeneralizedHoughBallard : public GeneralizedHough
- {
- public:
- //! R-Table levels.
- CV_WRAP virtual void setLevels(int levels) = 0;
- CV_WRAP virtual int getLevels() const = 0;
- //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
- CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0;
- CV_WRAP virtual int getVotesThreshold() const = 0;
- };
- /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
- Detects position, translation and rotation @cite Guil1999 .
- */
- class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough
- {
- public:
- //! Angle difference in degrees between two points in feature.
- CV_WRAP virtual void setXi(double xi) = 0;
- CV_WRAP virtual double getXi() const = 0;
- //! Feature table levels.
- CV_WRAP virtual void setLevels(int levels) = 0;
- CV_WRAP virtual int getLevels() const = 0;
- //! Maximal difference between angles that treated as equal.
- CV_WRAP virtual void setAngleEpsilon(double angleEpsilon) = 0;
- CV_WRAP virtual double getAngleEpsilon() const = 0;
- //! Minimal rotation angle to detect in degrees.
- CV_WRAP virtual void setMinAngle(double minAngle) = 0;
- CV_WRAP virtual double getMinAngle() const = 0;
- //! Maximal rotation angle to detect in degrees.
- CV_WRAP virtual void setMaxAngle(double maxAngle) = 0;
- CV_WRAP virtual double getMaxAngle() const = 0;
- //! Angle step in degrees.
- CV_WRAP virtual void setAngleStep(double angleStep) = 0;
- CV_WRAP virtual double getAngleStep() const = 0;
- //! Angle votes threshold.
- CV_WRAP virtual void setAngleThresh(int angleThresh) = 0;
- CV_WRAP virtual int getAngleThresh() const = 0;
- //! Minimal scale to detect.
- CV_WRAP virtual void setMinScale(double minScale) = 0;
- CV_WRAP virtual double getMinScale() const = 0;
- //! Maximal scale to detect.
- CV_WRAP virtual void setMaxScale(double maxScale) = 0;
- CV_WRAP virtual double getMaxScale() const = 0;
- //! Scale step.
- CV_WRAP virtual void setScaleStep(double scaleStep) = 0;
- CV_WRAP virtual double getScaleStep() const = 0;
- //! Scale votes threshold.
- CV_WRAP virtual void setScaleThresh(int scaleThresh) = 0;
- CV_WRAP virtual int getScaleThresh() const = 0;
- //! Position votes threshold.
- CV_WRAP virtual void setPosThresh(int posThresh) = 0;
- CV_WRAP virtual int getPosThresh() const = 0;
- };
- //! @} imgproc_shape
- //! @addtogroup imgproc_hist
- //! @{
- /** @brief Base class for Contrast Limited Adaptive Histogram Equalization.
- */
- class CV_EXPORTS_W CLAHE : public Algorithm
- {
- public:
- /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
- @param src Source image of type CV_8UC1 or CV_16UC1.
- @param dst Destination image.
- */
- CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
- /** @brief Sets threshold for contrast limiting.
- @param clipLimit threshold value.
- */
- CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
- //! Returns threshold value for contrast limiting.
- CV_WRAP virtual double getClipLimit() const = 0;
- /** @brief Sets size of grid for histogram equalization. Input image will be divided into
- equally sized rectangular tiles.
- @param tileGridSize defines the number of tiles in row and column.
- */
- CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
- //!@brief Returns Size defines the number of tiles in row and column.
- CV_WRAP virtual Size getTilesGridSize() const = 0;
- CV_WRAP virtual void collectGarbage() = 0;
- };
- //! @} imgproc_hist
- //! @addtogroup imgproc_subdiv2d
- //! @{
- class CV_EXPORTS_W Subdiv2D
- {
- public:
- /** Subdiv2D point location cases */
- enum { PTLOC_ERROR = -2, //!< Point location error
- PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect
- PTLOC_INSIDE = 0, //!< Point inside some facet
- PTLOC_VERTEX = 1, //!< Point coincides with one of the subdivision vertices
- PTLOC_ON_EDGE = 2 //!< Point on some edge
- };
- /** Subdiv2D edge type navigation (see: getEdge()) */
- enum { NEXT_AROUND_ORG = 0x00,
- NEXT_AROUND_DST = 0x22,
- PREV_AROUND_ORG = 0x11,
- PREV_AROUND_DST = 0x33,
- NEXT_AROUND_LEFT = 0x13,
- NEXT_AROUND_RIGHT = 0x31,
- PREV_AROUND_LEFT = 0x20,
- PREV_AROUND_RIGHT = 0x02
- };
- /** creates an empty Subdiv2D object.
- To create a new empty Delaunay subdivision you need to use the #initDelaunay function.
- */
- CV_WRAP Subdiv2D();
- /** @overload
- @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
- The function creates an empty Delaunay subdivision where 2D points can be added using the function
- insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime
- error is raised.
- */
- CV_WRAP Subdiv2D(Rect rect);
- /** @brief Creates a new empty Delaunay subdivision
- @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
- */
- CV_WRAP void initDelaunay(Rect rect);
- /** @brief Insert a single point into a Delaunay triangulation.
- @param pt Point to insert.
- The function inserts a single point into a subdivision and modifies the subdivision topology
- appropriately. If a point with the same coordinates exists already, no new point is added.
- @returns the ID of the point.
- @note If the point is outside of the triangulation specified rect a runtime error is raised.
- */
- CV_WRAP int insert(Point2f pt);
- /** @brief Insert multiple points into a Delaunay triangulation.
- @param ptvec Points to insert.
- The function inserts a vector of points into a subdivision and modifies the subdivision topology
- appropriately.
- */
- CV_WRAP void insert(const std::vector<Point2f>& ptvec);
- /** @brief Returns the location of a point within a Delaunay triangulation.
- @param pt Point to locate.
- @param edge Output edge that the point belongs to or is located to the right of it.
- @param vertex Optional output vertex the input point coincides with.
- The function locates the input point within the subdivision and gives one of the triangle edges
- or vertices.
- @returns an integer which specify one of the following five cases for point location:
- - The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of
- edges of the facet.
- - The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge.
- - The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and
- vertex will contain a pointer to the vertex.
- - The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT
- and no pointers are filled.
- - One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error
- processing mode is selected, #PTLOC_ERROR is returned.
- */
- CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
- /** @brief Finds the subdivision vertex closest to the given point.
- @param pt Input point.
- @param nearestPt Output subdivision vertex point.
- The function is another function that locates the input point within the subdivision. It finds the
- subdivision vertex that is the closest to the input point. It is not necessarily one of vertices
- of the facet containing the input point, though the facet (located using locate() ) is used as a
- starting point.
- @returns vertex ID.
- */
- CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0);
- /** @brief Returns a list of all edges.
- @param edgeList Output vector.
- The function gives each edge as a 4 numbers vector, where each two are one of the edge
- vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3].
- */
- CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const;
- /** @brief Returns a list of the leading edge ID connected to each triangle.
- @param leadingEdgeList Output vector.
- The function gives one edge ID for each triangle.
- */
- CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const;
- /** @brief Returns a list of all triangles.
- @param triangleList Output vector.
- The function gives each triangle as a 6 numbers vector, where each two are one of the triangle
- vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5].
- */
- CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const;
- /** @brief Returns a list of all Voronoi facets.
- @param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector.
- @param facetList Output vector of the Voronoi facets.
- @param facetCenters Output vector of the Voronoi facets center points.
- */
- CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList,
- CV_OUT std::vector<Point2f>& facetCenters);
- /** @brief Returns vertex location from vertex ID.
- @param vertex vertex ID.
- @param firstEdge Optional. The first edge ID which is connected to the vertex.
- @returns vertex (x,y)
- */
- CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const;
- /** @brief Returns one of the edges related to the given edge.
- @param edge Subdivision edge ID.
- @param nextEdgeType Parameter specifying which of the related edges to return.
- The following values are possible:
- - NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge)
- - NEXT_AROUND_DST next around the edge vertex ( eDnext )
- - PREV_AROUND_ORG previous around the edge origin (reversed eRnext )
- - PREV_AROUND_DST previous around the edge destination (reversed eLnext )
- - NEXT_AROUND_LEFT next around the left facet ( eLnext )
- - NEXT_AROUND_RIGHT next around the right facet ( eRnext )
- - PREV_AROUND_LEFT previous around the left facet (reversed eOnext )
- - PREV_AROUND_RIGHT previous around the right facet (reversed eDnext )
- ![sample output](pics/quadedge.png)
- @returns edge ID related to the input edge.
- */
- CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
- /** @brief Returns next edge around the edge origin.
- @param edge Subdivision edge ID.
- @returns an integer which is next edge ID around the edge origin: eOnext on the
- picture above if e is the input edge).
- */
- CV_WRAP int nextEdge(int edge) const;
- /** @brief Returns another edge of the same quad-edge.
- @param edge Subdivision edge ID.
- @param rotate Parameter specifying which of the edges of the same quad-edge as the input
- one to return. The following values are possible:
- - 0 - the input edge ( e on the picture below if e is the input edge)
- - 1 - the rotated edge ( eRot )
- - 2 - the reversed edge (reversed e (in green))
- - 3 - the reversed rotated edge (reversed eRot (in green))
- @returns one of the edges ID of the same quad-edge as the input edge.
- */
- CV_WRAP int rotateEdge(int edge, int rotate) const;
- CV_WRAP int symEdge(int edge) const;
- /** @brief Returns the edge origin.
- @param edge Subdivision edge ID.
- @param orgpt Output vertex location.
- @returns vertex ID.
- */
- CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const;
- /** @brief Returns the edge destination.
- @param edge Subdivision edge ID.
- @param dstpt Output vertex location.
- @returns vertex ID.
- */
- CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const;
- protected:
- int newEdge();
- void deleteEdge(int edge);
- int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0);
- void deletePoint(int vtx);
- void setEdgePoints( int edge, int orgPt, int dstPt );
- void splice( int edgeA, int edgeB );
- int connectEdges( int edgeA, int edgeB );
- void swapEdges( int edge );
- int isRightOf(Point2f pt, int edge) const;
- void calcVoronoi();
- void clearVoronoi();
- void checkSubdiv() const;
- struct CV_EXPORTS Vertex
- {
- Vertex();
- Vertex(Point2f pt, bool isvirtual, int firstEdge=0);
- bool isvirtual() const;
- bool isfree() const;
- int firstEdge;
- int type;
- Point2f pt;
- };
- struct CV_EXPORTS QuadEdge
- {
- QuadEdge();
- QuadEdge(int edgeidx);
- bool isfree() const;
- int next[4];
- int pt[4];
- };
- //! All of the vertices
- std::vector<Vertex> vtx;
- //! All of the edges
- std::vector<QuadEdge> qedges;
- int freeQEdge;
- int freePoint;
- bool validGeometry;
- int recentEdge;
- //! Top left corner of the bounding rect
- Point2f topLeft;
- //! Bottom right corner of the bounding rect
- Point2f bottomRight;
- };
- //! @} imgproc_subdiv2d
- //! @addtogroup imgproc_feature
- //! @{
- /** @example samples/cpp/lsd_lines.cpp
- An example using the LineSegmentDetector
- \image html building_lsd.png "Sample output image" width=434 height=300
- */
- /** @brief Line segment detector class
- following the algorithm described at @cite Rafael12 .
- @note Implementation has been removed from OpenCV version 3.4.6 to 3.4.15 and version 4.1.0 to 4.5.3 due original code license conflict.
- restored again after [Computation of a NFA](https://github.com/rafael-grompone-von-gioi/binomial_nfa) code published under the MIT license.
- */
- class CV_EXPORTS_W LineSegmentDetector : public Algorithm
- {
- public:
- /** @brief Finds lines in the input image.
- This is the output of the default parameters of the algorithm on the above shown image.
- ![image](pics/building_lsd.png)
- @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
- `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
- @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where
- Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
- oriented depending on the gradient.
- @param width Vector of widths of the regions, where the lines are found. E.g. Width of line.
- @param prec Vector of precisions with which the lines are found.
- @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The
- bigger the value, logarithmically better the detection.
- - -1 corresponds to 10 mean false alarms
- - 0 corresponds to 1 mean false alarm
- - 1 corresponds to 0.1 mean false alarms
- This vector will be calculated only when the objects type is #LSD_REFINE_ADV.
- */
- CV_WRAP virtual void detect(InputArray image, OutputArray lines,
- OutputArray width = noArray(), OutputArray prec = noArray(),
- OutputArray nfa = noArray()) = 0;
- /** @brief Draws the line segments on a given image.
- @param image The image, where the lines will be drawn. Should be bigger or equal to the image,
- where the lines were found.
- @param lines A vector of the lines that needed to be drawn.
- */
- CV_WRAP virtual void drawSegments(InputOutputArray image, InputArray lines) = 0;
- /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
- @param size The size of the image, where lines1 and lines2 were found.
- @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color.
- @param lines2 The second group of lines. They visualized in red color.
- @param image Optional image, where the lines will be drawn. The image should be color(3-channel)
- in order for lines1 and lines2 to be drawn in the above mentioned colors.
- */
- CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray image = noArray()) = 0;
- virtual ~LineSegmentDetector() { }
- };
- /** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it.
- The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- to edit those, as to tailor it for their own application.
- @param refine The way found lines will be refined, see #LineSegmentDetectorModes
- @param scale The scale of the image that will be used to find the lines. Range (0..1].
- @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
- @param quant Bound to the quantization error on the gradient norm.
- @param ang_th Gradient angle tolerance in degrees.
- @param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen.
- @param density_th Minimal density of aligned region points in the enclosing rectangle.
- @param n_bins Number of bins in pseudo-ordering of gradient modulus.
- */
- CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector(
- int refine = LSD_REFINE_STD, double scale = 0.8,
- double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5,
- double log_eps = 0, double density_th = 0.7, int n_bins = 1024);
- //! @} imgproc_feature
- //! @addtogroup imgproc_filter
- //! @{
- /** @brief Returns Gaussian filter coefficients.
- The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
- coefficients:
- \f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
- where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
- Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
- smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
- You may also use the higher-level GaussianBlur.
- @param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive.
- @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
- `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`.
- @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
- @sa sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
- */
- CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F );
- /** @brief Returns filter coefficients for computing spatial image derivatives.
- The function computes and returns the filter coefficients for spatial image derivatives. When
- `ksize=FILTER_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel
- kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
- @param kx Output matrix of row filter coefficients. It has the type ktype .
- @param ky Output matrix of column filter coefficients. It has the type ktype .
- @param dx Derivative order in respect of x.
- @param dy Derivative order in respect of y.
- @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
- @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
- Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
- going to filter floating-point images, you are likely to use the normalized kernels. But if you
- compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
- all the fractional bits, you may want to set normalize=false .
- @param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
- */
- CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
- int dx, int dy, int ksize,
- bool normalize = false, int ktype = CV_32F );
- /** @brief Returns Gabor filter coefficients.
- For more details about gabor filter equations and parameters, see: [Gabor
- Filter](http://en.wikipedia.org/wiki/Gabor_filter).
- @param ksize Size of the filter returned.
- @param sigma Standard deviation of the gaussian envelope.
- @param theta Orientation of the normal to the parallel stripes of a Gabor function.
- @param lambd Wavelength of the sinusoidal factor.
- @param gamma Spatial aspect ratio.
- @param psi Phase offset.
- @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
- */
- CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
- double gamma, double psi = CV_PI*0.5, int ktype = CV_64F );
- //! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
- static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
- /** @brief Returns a structuring element of the specified size and shape for morphological operations.
- The function constructs and returns the structuring element that can be further passed to #erode,
- #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
- the structuring element.
- @param shape Element shape that could be one of #MorphShapes
- @param ksize Size of the structuring element.
- @param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
- anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
- position. In other cases the anchor just regulates how much the result of the morphological
- operation is shifted.
- */
- CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
- /** @example samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp
- Sample code for simple filters
- ![Sample screenshot](Smoothing_Tutorial_Result_Median_Filter.jpg)
- Check @ref tutorial_gausian_median_blur_bilateral_filter "the corresponding tutorial" for more details
- */
- /** @brief Blurs an image using the median filter.
- The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
- \texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
- In-place operation is supported.
- @note The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
- @param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
- CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
- @param dst destination array of the same size and type as src.
- @param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
- @sa bilateralFilter, blur, boxFilter, GaussianBlur
- */
- CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
- /** @brief Blurs an image using a Gaussian filter.
- The function convolves the source image with the specified Gaussian kernel. In-place filtering is
- supported.
- @param src input image; the image can have any number of channels, which are processed
- independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- @param dst output image of the same size and type as src.
- @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
- positive and odd. Or, they can be zero's and then they are computed from sigma.
- @param sigmaX Gaussian kernel standard deviation in X direction.
- @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
- equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
- respectively (see #getGaussianKernel for details); to fully control the result regardless of
- possible future modifications of all this semantics, it is recommended to specify all of ksize,
- sigmaX, and sigmaY.
- @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- @sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
- */
- CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
- double sigmaX, double sigmaY = 0,
- int borderType = BORDER_DEFAULT );
- /** @brief Applies the bilateral filter to an image.
- The function applies bilateral filtering to the input image, as described in
- http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
- bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
- very slow compared to most filters.
- _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
- 10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
- strong effect, making the image look "cartoonish".
- _Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
- applications, and perhaps d=9 for offline applications that need heavy noise filtering.
- This filter does not work inplace.
- @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- @param dst Destination image of the same size and type as src .
- @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- it is computed from sigmaSpace.
- @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
- in larger areas of semi-equal color.
- @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- farther pixels will influence each other as long as their colors are close enough (see sigmaColor
- ). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
- proportional to sigmaSpace.
- @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
- */
- CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
- double sigmaColor, double sigmaSpace,
- int borderType = BORDER_DEFAULT );
- /** @brief Blurs an image using the box filter.
- The function smooths an image using the kernel:
- \f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f]
- where
- \f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}\f]
- Unnormalized box filter is useful for computing various integral characteristics over each pixel
- neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
- algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
- @param src input image.
- @param dst output image of the same size and type as src.
- @param ddepth the output image depth (-1 to use src.depth()).
- @param ksize blurring kernel size.
- @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
- center.
- @param normalize flag, specifying whether the kernel is normalized by its area or not.
- @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
- @sa blur, bilateralFilter, GaussianBlur, medianBlur, integral
- */
- CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
- Size ksize, Point anchor = Point(-1,-1),
- bool normalize = true,
- int borderType = BORDER_DEFAULT );
- /** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter.
- For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
- pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
- The unnormalized square box filter can be useful in computing local image statistics such as the local
- variance and standard deviation around the neighborhood of a pixel.
- @param src input image
- @param dst output image of the same size and type as src
- @param ddepth the output image depth (-1 to use src.depth())
- @param ksize kernel size
- @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
- center.
- @param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
- @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
- @sa boxFilter
- */
- CV_EXPORTS_W void sqrBoxFilter( InputArray src, OutputArray dst, int ddepth,
- Size ksize, Point anchor = Point(-1, -1),
- bool normalize = true,
- int borderType = BORDER_DEFAULT );
- /** @brief Blurs an image using the normalized box filter.
- The function smooths an image using the kernel:
- \f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f]
- The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize,
- anchor, true, borderType)`.
- @param src input image; it can have any number of channels, which are processed independently, but
- the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- @param dst output image of the same size and type as src.
- @param ksize blurring kernel size.
- @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
- center.
- @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
- @sa boxFilter, bilateralFilter, GaussianBlur, medianBlur
- */
- CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
- Size ksize, Point anchor = Point(-1,-1),
- int borderType = BORDER_DEFAULT );
- /** @brief Blurs an image using the stackBlur.
- The function applies and stackBlur to an image.
- stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size.
- It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side
- of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one,
- depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE.
- Original paper was proposed by Mario Klingemann, which can be found http://underdestruction.com/2004/02/25/stackblur-2004.
- @param src input image. The number of channels can be arbitrary, but the depth should be one of
- CV_8U, CV_16U, CV_16S or CV_32F.
- @param dst output image of the same size and type as src.
- @param ksize stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be
- positive and odd.
- */
- CV_EXPORTS_W void stackBlur(InputArray src, OutputArray dst, Size ksize);
- /** @brief Convolves an image with the kernel.
- The function applies an arbitrary linear filter to an image. In-place operation is supported. When
- the aperture is partially outside the image, the function interpolates outlier pixel values
- according to the specified border mode.
- The function does actually compute correlation, not the convolution:
- \f[\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
- That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
- the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
- anchor.y - 1)`.
- The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
- larger) and the direct algorithm for small kernels.
- @param src input image.
- @param dst output image of the same size and the same number of channels as src.
- @param ddepth desired depth of the destination image, see @ref filter_depths "combinations"
- @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
- matrix; if you want to apply different kernels to different channels, split the image into
- separate color planes using split and process them individually.
- @param anchor anchor of the kernel that indicates the relative position of a filtered point within
- the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
- is at the kernel center.
- @param delta optional value added to the filtered pixels before storing them in dst.
- @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- @sa sepFilter2D, dft, matchTemplate
- */
- CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
- InputArray kernel, Point anchor = Point(-1,-1),
- double delta = 0, int borderType = BORDER_DEFAULT );
- /** @brief Applies a separable linear filter to an image.
- The function applies a separable linear filter to the image. That is, first, every row of src is
- filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
- kernel kernelY. The final result shifted by delta is stored in dst .
- @param src Source image.
- @param dst Destination image of the same size and the same number of channels as src .
- @param ddepth Destination image depth, see @ref filter_depths "combinations"
- @param kernelX Coefficients for filtering each row.
- @param kernelY Coefficients for filtering each column.
- @param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
- is at the kernel center.
- @param delta Value added to the filtered results before storing them.
- @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- @sa filter2D, Sobel, GaussianBlur, boxFilter, blur
- */
- CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
- InputArray kernelX, InputArray kernelY,
- Point anchor = Point(-1,-1),
- double delta = 0, int borderType = BORDER_DEFAULT );
- /** @example samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp
- Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector
- ![Sample screenshot](Sobel_Derivatives_Tutorial_Result.jpg)
- Check @ref tutorial_sobel_derivatives "the corresponding tutorial" for more details
- */
- /** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
- In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
- calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
- kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
- or the second x- or y- derivatives.
- There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
- filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
- \f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
- for the x-derivative, or transposed for the y-derivative.
- The function calculates an image derivative by convolving the image with the appropriate kernel:
- \f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
- The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
- resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
- or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
- case corresponds to a kernel of:
- \f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
- The second case corresponds to a kernel of:
- \f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
- @param src input image.
- @param dst output image of the same size and the same number of channels as src .
- @param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
- 8-bit input images it will result in truncated derivatives.
- @param dx order of the derivative x.
- @param dy order of the derivative y.
- @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
- @param scale optional scale factor for the computed derivative values; by default, no scaling is
- applied (see #getDerivKernels for details).
- @param delta optional delta value that is added to the results prior to storing them in dst.
- @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- @sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
- */
- CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
- int dx, int dy, int ksize = 3,
- double scale = 1, double delta = 0,
- int borderType = BORDER_DEFAULT );
- /** @brief Calculates the first order image derivative in both x and y using a Sobel operator
- Equivalent to calling:
- @code
- Sobel( src, dx, CV_16SC1, 1, 0, 3 );
- Sobel( src, dy, CV_16SC1, 0, 1, 3 );
- @endcode
- @param src input image.
- @param dx output image with first-order derivative in x.
- @param dy output image with first-order derivative in y.
- @param ksize size of Sobel kernel. It must be 3.
- @param borderType pixel extrapolation method, see #BorderTypes.
- Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
- @sa Sobel
- */
- CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx,
- OutputArray dy, int ksize = 3,
- int borderType = BORDER_DEFAULT );
- /** @brief Calculates the first x- or y- image derivative using Scharr operator.
- The function computes the first x- or y- spatial image derivative using the Scharr operator. The
- call
- \f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
- is equivalent to
- \f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f]
- @param src input image.
- @param dst output image of the same size and the same number of channels as src.
- @param ddepth output image depth, see @ref filter_depths "combinations"
- @param dx order of the derivative x.
- @param dy order of the derivative y.
- @param scale optional scale factor for the computed derivative values; by default, no scaling is
- applied (see #getDerivKernels for details).
- @param delta optional delta value that is added to the results prior to storing them in dst.
- @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- @sa cartToPolar
- */
- CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
- int dx, int dy, double scale = 1, double delta = 0,
- int borderType = BORDER_DEFAULT );
- /** @example samples/cpp/laplace.cpp
- An example using Laplace transformations for edge detection
- */
- /** @brief Calculates the Laplacian of an image.
- The function calculates the Laplacian of the source image by adding up the second x and y
- derivatives calculated using the Sobel operator:
- \f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
- This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
- with the following \f$3 \times 3\f$ aperture:
- \f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
- @param src Source image.
- @param dst Destination image of the same size and the same number of channels as src .
- @param ddepth Desired depth of the destination image, see @ref filter_depths "combinations".
- @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
- details. The size must be positive and odd.
- @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
- applied. See #getDerivKernels for details.
- @param delta Optional delta value that is added to the results prior to storing them in dst .
- @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- @sa Sobel, Scharr
- */
- CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
- int ksize = 1, double scale = 1, double delta = 0,
- int borderType = BORDER_DEFAULT );
- //! @} imgproc_filter
- //! @addtogroup imgproc_feature
- //! @{
- /** @example samples/cpp/edge.cpp
- This program demonstrates usage of the Canny edge detector
- Check @ref tutorial_canny_detector "the corresponding tutorial" for more details
- */
- /** @brief Finds edges in an image using the Canny algorithm @cite Canny86 .
- The function finds edges in the input image and marks them in the output map edges using the
- Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
- largest value is used to find initial segments of strong edges. See
- <http://en.wikipedia.org/wiki/Canny_edge_detector>
- @param image 8-bit input image.
- @param edges output edge map; single channels 8-bit image, which has the same size as image .
- @param threshold1 first threshold for the hysteresis procedure.
- @param threshold2 second threshold for the hysteresis procedure.
- @param apertureSize aperture size for the Sobel operator.
- @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
- \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
- L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
- L2gradient=false ).
- */
- CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
- double threshold1, double threshold2,
- int apertureSize = 3, bool L2gradient = false );
- /** \overload
- Finds edges in an image using the Canny algorithm with custom image gradient.
- @param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
- @param dy 16-bit y derivative of input image (same type as dx).
- @param edges output edge map; single channels 8-bit image, which has the same size as image .
- @param threshold1 first threshold for the hysteresis procedure.
- @param threshold2 second threshold for the hysteresis procedure.
- @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
- \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
- L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
- L2gradient=false ).
- */
- CV_EXPORTS_W void Canny( InputArray dx, InputArray dy,
- OutputArray edges,
- double threshold1, double threshold2,
- bool L2gradient = false );
- /** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection.
- The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
- eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
- of the formulae in the cornerEigenValsAndVecs description.
- @param src Input single-channel 8-bit or floating-point image.
- @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
- src .
- @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
- @param ksize Aperture parameter for the Sobel operator.
- @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
- */
- CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
- int blockSize, int ksize = 3,
- int borderType = BORDER_DEFAULT );
- /** @brief Harris corner detector.
- The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
- cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
- matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
- computes the following characteristic:
- \f[\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f]
- Corners in the image can be found as the local maxima of this response map.
- @param src Input single-channel 8-bit or floating-point image.
- @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
- size as src .
- @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
- @param ksize Aperture parameter for the Sobel operator.
- @param k Harris detector free parameter. See the formula above.
- @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
- */
- CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
- int ksize, double k,
- int borderType = BORDER_DEFAULT );
- /** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection.
- For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
- neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as:
- \f[M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
- where the derivatives are computed using the Sobel operator.
- After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
- \f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
- - \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
- - \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
- - \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$
- The output of the function can be used for robust edge or corner detection.
- @param src Input single-channel 8-bit or floating-point image.
- @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
- @param blockSize Neighborhood size (see details below).
- @param ksize Aperture parameter for the Sobel operator.
- @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
- @sa cornerMinEigenVal, cornerHarris, preCornerDetect
- */
- CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
- int blockSize, int ksize,
- int borderType = BORDER_DEFAULT );
- /** @brief Calculates a feature map for corner detection.
- The function calculates the complex spatial derivative-based function of the source image
- \f[\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\f]
- where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
- derivatives, and \f$D_{xy}\f$ is the mixed derivative.
- The corners can be found as local maximums of the functions, as shown below:
- @code
- Mat corners, dilated_corners;
- preCornerDetect(image, corners, 3);
- // dilation with 3x3 rectangular structuring element
- dilate(corners, dilated_corners, Mat(), 1);
- Mat corner_mask = corners == dilated_corners;
- @endcode
- @param src Source single-channel 8-bit of floating-point image.
- @param dst Output image that has the type CV_32F and the same size as src .
- @param ksize %Aperture size of the Sobel .
- @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
- */
- CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
- int borderType = BORDER_DEFAULT );
- /** @brief Refines the corner locations.
- The function iterates to find the sub-pixel accurate location of corners or radial saddle
- points as described in @cite forstner1987fast, and as shown on the figure below.
- ![image](pics/cornersubpix.png)
- Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$
- to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$
- subject to image and measurement noise. Consider the expression:
- \f[\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)\f]
- where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The
- value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up
- with \f$\epsilon_i\f$ set to zero:
- \f[\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) \cdot q - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)\f]
- where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first
- gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
- \f[q = G^{-1} \cdot b\f]
- The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
- until the center stays within a set threshold.
- @param image Input single-channel, 8-bit or float image.
- @param corners Initial coordinates of the input corners and refined coordinates provided for
- output.
- @param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
- then a \f$(5*2+1) \times (5*2+1) = 11 \times 11\f$ search window is used.
- @param zeroZone Half of the size of the dead region in the middle of the search zone over which
- the summation in the formula below is not done. It is used sometimes to avoid possible
- singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
- a size.
- @param criteria Criteria for termination of the iterative process of corner refinement. That is,
- the process of corner position refinement stops either after criteria.maxCount iterations or when
- the corner position moves by less than criteria.epsilon on some iteration.
- */
- CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
- Size winSize, Size zeroZone,
- TermCriteria criteria );
- /** @brief Determines strong corners on an image.
- The function finds the most prominent corners in the image or in the specified image region, as
- described in @cite Shi94
- - Function calculates the corner quality measure at every source image pixel using the
- #cornerMinEigenVal or #cornerHarris .
- - Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
- retained).
- - The corners with the minimal eigenvalue less than
- \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
- - The remaining corners are sorted by the quality measure in the descending order.
- - Function throws away each corner for which there is a stronger corner at a distance less than
- maxDistance.
- The function can be used to initialize a point-based tracker of an object.
- @note If the function is called with different values A and B of the parameter qualityLevel , and
- A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
- with qualityLevel=B .
- @param image Input 8-bit or floating-point 32-bit, single-channel image.
- @param corners Output vector of detected corners.
- @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- and all detected corners are returned.
- @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- quality measure less than the product are rejected. For example, if the best corner has the
- quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- less than 15 are rejected.
- @param minDistance Minimum possible Euclidean distance between the returned corners.
- @param mask Optional region of interest. If the image is not empty (it needs to have the type
- CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- @param blockSize Size of an average block for computing a derivative covariation matrix over each
- pixel neighborhood. See cornerEigenValsAndVecs .
- @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
- or #cornerMinEigenVal.
- @param k Free parameter of the Harris detector.
- @sa cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
- */
- CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
- int maxCorners, double qualityLevel, double minDistance,
- InputArray mask = noArray(), int blockSize = 3,
- bool useHarrisDetector = false, double k = 0.04 );
- CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
- int maxCorners, double qualityLevel, double minDistance,
- InputArray mask, int blockSize,
- int gradientSize, bool useHarrisDetector = false,
- double k = 0.04 );
- /** @brief Same as above, but returns also quality measure of the detected corners.
- @param image Input 8-bit or floating-point 32-bit, single-channel image.
- @param corners Output vector of detected corners.
- @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- and all detected corners are returned.
- @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- quality measure less than the product are rejected. For example, if the best corner has the
- quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- less than 15 are rejected.
- @param minDistance Minimum possible Euclidean distance between the returned corners.
- @param mask Region of interest. If the image is not empty (it needs to have the type
- CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- @param cornersQuality Output vector of quality measure of the detected corners.
- @param blockSize Size of an average block for computing a derivative covariation matrix over each
- pixel neighborhood. See cornerEigenValsAndVecs .
- @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
- See cornerEigenValsAndVecs .
- @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
- or #cornerMinEigenVal.
- @param k Free parameter of the Harris detector.
- */
- CV_EXPORTS CV_WRAP_AS(goodFeaturesToTrackWithQuality) void goodFeaturesToTrack(
- InputArray image, OutputArray corners,
- int maxCorners, double qualityLevel, double minDistance,
- InputArray mask, OutputArray cornersQuality, int blockSize = 3,
- int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04);
- /** @example samples/cpp/tutorial_code/ImgTrans/houghlines.cpp
- An example using the Hough line detector
- ![Sample input image](Hough_Lines_Tutorial_Original_Image.jpg) ![Output image](Hough_Lines_Tutorial_Result.jpg)
- */
- /** @brief Finds lines in a binary image using the standard Hough transform.
- The function implements the standard or standard multi-scale Hough transform algorithm for line
- detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
- transform.
- @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
- \f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from
- the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation
- angle in radians ( \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ), and
- \f$\textrm{votes}\f$ is the value of accumulator.
- @param rho Distance resolution of the accumulator in pixels.
- @param theta Angle resolution of the accumulator in radians.
- @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
- votes ( \f$>\texttt{threshold}\f$ ).
- @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho.
- The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
- rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these
- parameters should be positive.
- @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
- @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
- Must fall between 0 and max_theta.
- @param max_theta For standard and multi-scale Hough transform, an upper bound for the angle.
- Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
- less than max_theta, depending on the parameters min_theta and theta.
- */
- CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
- double rho, double theta, int threshold,
- double srn = 0, double stn = 0,
- double min_theta = 0, double max_theta = CV_PI );
- /** @brief Finds line segments in a binary image using the probabilistic Hough transform.
- The function implements the probabilistic Hough transform algorithm for line detection, described
- in @cite Matas00
- See the line detection example below:
- @include snippets/imgproc_HoughLinesP.cpp
- This is a sample picture the function parameters have been tuned for:
- ![image](pics/building.jpg)
- And this is the output of the above program in case of the probabilistic Hough transform:
- ![image](pics/houghp.png)
- @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- @param lines Output vector of lines. Each line is represented by a 4-element vector
- \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
- line segment.
- @param rho Distance resolution of the accumulator in pixels.
- @param theta Angle resolution of the accumulator in radians.
- @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
- votes ( \f$>\texttt{threshold}\f$ ).
- @param minLineLength Minimum line length. Line segments shorter than that are rejected.
- @param maxLineGap Maximum allowed gap between points on the same line to link them.
- @sa LineSegmentDetector
- */
- CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
- double rho, double theta, int threshold,
- double minLineLength = 0, double maxLineGap = 0 );
- /** @brief Finds lines in a set of points using the standard Hough transform.
- The function finds lines in a set of points using a modification of the Hough transform.
- @include snippets/imgproc_HoughLinesPointSet.cpp
- @param point Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2.
- @param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$.
- The larger the value of 'votes', the higher the reliability of the Hough line.
- @param lines_max Max count of Hough lines.
- @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
- votes ( \f$>\texttt{threshold}\f$ ).
- @param min_rho Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.).
- @param max_rho Maximum value for \f$\rho\f$ for the accumulator.
- @param rho_step Distance resolution of the accumulator.
- @param min_theta Minimum angle value of the accumulator in radians.
- @param max_theta Upper bound for the angle value of the accumulator in radians. The actual maximum
- angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step.
- @param theta_step Angle resolution of the accumulator in radians.
- */
- CV_EXPORTS_W void HoughLinesPointSet( InputArray point, OutputArray lines, int lines_max, int threshold,
- double min_rho, double max_rho, double rho_step,
- double min_theta, double max_theta, double theta_step );
- /** @example samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp
- An example using the Hough circle detector
- */
- /** @brief Finds circles in a grayscale image using the Hough transform.
- The function finds circles in a grayscale image using a modification of the Hough transform.
- Example: :
- @include snippets/imgproc_HoughLinesCircles.cpp
- @note Usually the function detects the centers of circles well. However, it may fail to find correct
- radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
- you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
- to return centers only without radius search, and find the correct radius using an additional procedure.
- It also helps to smooth image a bit unless it's already soft. For example,
- GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
- @param image 8-bit, single-channel, grayscale input image.
- @param circles Output vector of found circles. Each vector is encoded as 3 or 4 element
- floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$ .
- @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
- @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
- dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
- half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
- unless some small very circles need to be detected.
- @param minDist Minimum distance between the centers of the detected circles. If the parameter is
- too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
- too large, some circles may be missed.
- @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
- it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
- Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
- shough normally be higher, such as 300 or normally exposed and contrasty images.
- @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
- accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
- false circles may be detected. Circles, corresponding to the larger accumulator values, will be
- returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
- The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
- If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
- But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
- @param minRadius Minimum circle radius.
- @param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns
- centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
- @sa fitEllipse, minEnclosingCircle
- */
- CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
- int method, double dp, double minDist,
- double param1 = 100, double param2 = 100,
- int minRadius = 0, int maxRadius = 0 );
- //! @} imgproc_feature
- //! @addtogroup imgproc_filter
- //! @{
- /** @example samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp
- Advanced morphology Transformations sample code
- ![Sample screenshot](Morphology_2_Tutorial_Result.jpg)
- Check @ref tutorial_opening_closing_hats "the corresponding tutorial" for more details
- */
- /** @brief Erodes an image by using a specific structuring element.
- The function erodes the source image using the specified structuring element that determines the
- shape of a pixel neighborhood over which the minimum is taken:
- \f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
- The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
- case of multi-channel images, each channel is processed independently.
- @param src input image; the number of channels can be arbitrary, but the depth should be one of
- CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- @param dst output image of the same size and type as src.
- @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
- structuring element is used. Kernel can be created using #getStructuringElement.
- @param anchor position of the anchor within the element; default value (-1, -1) means that the
- anchor is at the element center.
- @param iterations number of times erosion is applied.
- @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- @param borderValue border value in case of a constant border
- @sa dilate, morphologyEx, getStructuringElement
- */
- CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
- Point anchor = Point(-1,-1), int iterations = 1,
- int borderType = BORDER_CONSTANT,
- const Scalar& borderValue = morphologyDefaultBorderValue() );
- /** @example samples/cpp/tutorial_code/ImgProc/Morphology_1.cpp
- Erosion and Dilation sample code
- ![Sample Screenshot-Erosion](Morphology_1_Tutorial_Erosion_Result.jpg)![Sample Screenshot-Dilation](Morphology_1_Tutorial_Dilation_Result.jpg)
- Check @ref tutorial_erosion_dilatation "the corresponding tutorial" for more details
- */
- /** @brief Dilates an image by using a specific structuring element.
- The function dilates the source image using the specified structuring element that determines the
- shape of a pixel neighborhood over which the maximum is taken:
- \f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
- The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
- case of multi-channel images, each channel is processed independently.
- @param src input image; the number of channels can be arbitrary, but the depth should be one of
- CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- @param dst output image of the same size and type as src.
- @param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular
- structuring element is used. Kernel can be created using #getStructuringElement
- @param anchor position of the anchor within the element; default value (-1, -1) means that the
- anchor is at the element center.
- @param iterations number of times dilation is applied.
- @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
- @param borderValue border value in case of a constant border
- @sa erode, morphologyEx, getStructuringElement
- */
- CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
- Point anchor = Point(-1,-1), int iterations = 1,
- int borderType = BORDER_CONSTANT,
- const Scalar& borderValue = morphologyDefaultBorderValue() );
- /** @brief Performs advanced morphological transformations.
- The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
- basic operations.
- Any of the operations can be done in-place. In case of multi-channel images, each channel is
- processed independently.
- @param src Source image. The number of channels can be arbitrary. The depth should be one of
- CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- @param dst Destination image of the same size and type as source image.
- @param op Type of a morphological operation, see #MorphTypes
- @param kernel Structuring element. It can be created using #getStructuringElement.
- @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
- kernel center.
- @param iterations Number of times erosion and dilation are applied.
- @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- @param borderValue Border value in case of a constant border. The default value has a special
- meaning.
- @sa dilate, erode, getStructuringElement
- @note The number of iterations is the number of times erosion or dilatation operation will be applied.
- For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
- successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
- */
- CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
- int op, InputArray kernel,
- Point anchor = Point(-1,-1), int iterations = 1,
- int borderType = BORDER_CONSTANT,
- const Scalar& borderValue = morphologyDefaultBorderValue() );
- //! @} imgproc_filter
- //! @addtogroup imgproc_transform
- //! @{
- /** @brief Resizes an image.
- The function resize resizes the image src down to or up to the specified size. Note that the
- initial dst type or size are not taken into account. Instead, the size and type are derived from
- the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
- you may call the function as follows:
- @code
- // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
- resize(src, dst, dst.size(), 0, 0, interpolation);
- @endcode
- If you want to decimate the image by factor of 2 in each direction, you can call the function this
- way:
- @code
- // specify fx and fy and let the function compute the destination image size.
- resize(src, dst, Size(), 0.5, 0.5, interpolation);
- @endcode
- To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
- enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
- (faster but still looks OK).
- @param src input image.
- @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
- src.size(), fx, and fy; the type of dst is the same as of src.
- @param dsize output image size; if it equals zero (`None` in Python), it is computed as:
- \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
- Either dsize or both fx and fy must be non-zero.
- @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
- \f[\texttt{(double)dsize.width/src.cols}\f]
- @param fy scale factor along the vertical axis; when it equals 0, it is computed as
- \f[\texttt{(double)dsize.height/src.rows}\f]
- @param interpolation interpolation method, see #InterpolationFlags
- @sa warpAffine, warpPerspective, remap
- */
- CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
- Size dsize, double fx = 0, double fy = 0,
- int interpolation = INTER_LINEAR );
- /** @brief Applies an affine transformation to an image.
- The function warpAffine transforms the source image using the specified matrix:
- \f[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f]
- when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
- with #invertAffineTransform and then put in the formula above instead of M. The function cannot
- operate in-place.
- @param src input image.
- @param dst output image that has the size dsize and the same type as src .
- @param M \f$2\times 3\f$ transformation matrix.
- @param dsize size of the output image.
- @param flags combination of interpolation methods (see #InterpolationFlags) and the optional
- flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
- \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
- @param borderMode pixel extrapolation method (see #BorderTypes); when
- borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
- the "outliers" in the source image are not modified by the function.
- @param borderValue value used in case of a constant border; by default, it is 0.
- @sa warpPerspective, resize, remap, getRectSubPix, transform
- */
- CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
- InputArray M, Size dsize,
- int flags = INTER_LINEAR,
- int borderMode = BORDER_CONSTANT,
- const Scalar& borderValue = Scalar());
- /** @example samples/cpp/warpPerspective_demo.cpp
- An example program shows using cv::getPerspectiveTransform and cv::warpPerspective for image warping
- */
- /** @brief Applies a perspective transformation to an image.
- The function warpPerspective transforms the source image using the specified matrix:
- \f[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
- \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
- when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
- and then put in the formula above instead of M. The function cannot operate in-place.
- @param src input image.
- @param dst output image that has the size dsize and the same type as src .
- @param M \f$3\times 3\f$ transformation matrix.
- @param dsize size of the output image.
- @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
- optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
- \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
- @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
- @param borderValue value used in case of a constant border; by default, it equals 0.
- @sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform
- */
- CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
- InputArray M, Size dsize,
- int flags = INTER_LINEAR,
- int borderMode = BORDER_CONSTANT,
- const Scalar& borderValue = Scalar());
- /** @brief Applies a generic geometrical transformation to an image.
- The function remap transforms the source image using the specified map:
- \f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f]
- where values of pixels with non-integer coordinates are computed using one of available
- interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
- in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
- \f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to
- convert from floating to fixed-point representations of a map is that they can yield much faster
- (\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
- cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
- This function cannot operate in-place.
- @param src Source image.
- @param dst Destination image. It has the same size as map1 and the same type as src .
- @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
- CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
- representation to fixed-point for speed.
- @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
- if map1 is (x,y) points), respectively.
- @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
- and #INTER_LINEAR_EXACT are not supported by this function.
- @param borderMode Pixel extrapolation method (see #BorderTypes). When
- borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
- corresponds to the "outliers" in the source image are not modified by the function.
- @param borderValue Value used in case of a constant border. By default, it is 0.
- @note
- Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
- */
- CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
- InputArray map1, InputArray map2,
- int interpolation, int borderMode = BORDER_CONSTANT,
- const Scalar& borderValue = Scalar());
- /** @brief Converts image transformation maps from one representation to another.
- The function converts a pair of maps for remap from one representation to another. The following
- options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are
- supported:
- - \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
- most frequently used conversion operation, in which the original floating-point maps (see #remap)
- are converted to a more compact and much faster fixed-point representation. The first output array
- contains the rounded coordinates and the second array (created only when nninterpolation=false )
- contains indices in the interpolation tables.
- - \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
- the original maps are stored in one 2-channel matrix.
- - Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
- as the originals.
- @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
- @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
- respectively.
- @param dstmap1 The first output map that has the type dstmap1type and the same size as src .
- @param dstmap2 The second output map.
- @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
- CV_32FC2 .
- @param nninterpolation Flag indicating whether the fixed-point maps are used for the
- nearest-neighbor or for a more complex interpolation.
- @sa remap, undistort, initUndistortRectifyMap
- */
- CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
- OutputArray dstmap1, OutputArray dstmap2,
- int dstmap1type, bool nninterpolation = false );
- /** @brief Calculates an affine matrix of 2D rotation.
- The function calculates the following matrix:
- \f[\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\f]
- where
- \f[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f]
- The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
- @param center Center of the rotation in the source image.
- @param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
- coordinate origin is assumed to be the top-left corner).
- @param scale Isotropic scale factor.
- @sa getAffineTransform, warpAffine, transform
- */
- CV_EXPORTS_W Mat getRotationMatrix2D(Point2f center, double angle, double scale);
- /** @sa getRotationMatrix2D */
- CV_EXPORTS Matx23d getRotationMatrix2D_(Point2f center, double angle, double scale);
- inline
- Mat getRotationMatrix2D(Point2f center, double angle, double scale)
- {
- return Mat(getRotationMatrix2D_(center, angle, scale), true);
- }
- /** @brief Calculates an affine transform from three pairs of the corresponding points.
- The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that:
- \f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
- where
- \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f]
- @param src Coordinates of triangle vertices in the source image.
- @param dst Coordinates of the corresponding triangle vertices in the destination image.
- @sa warpAffine, transform
- */
- CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
- /** @brief Inverts an affine transformation.
- The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
- \f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
- The result is also a \f$2 \times 3\f$ matrix of the same type as M.
- @param M Original affine transformation.
- @param iM Output reverse affine transformation.
- */
- CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
- /** @brief Calculates a perspective transform from four pairs of the corresponding points.
- The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
- \f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
- where
- \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
- @param src Coordinates of quadrangle vertices in the source image.
- @param dst Coordinates of the corresponding quadrangle vertices in the destination image.
- @param solveMethod method passed to cv::solve (#DecompTypes)
- @sa findHomography, warpPerspective, perspectiveTransform
- */
- CV_EXPORTS_W Mat getPerspectiveTransform(InputArray src, InputArray dst, int solveMethod = DECOMP_LU);
- /** @overload */
- CV_EXPORTS Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[], int solveMethod = DECOMP_LU);
- CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
- /** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy.
- The function getRectSubPix extracts pixels from src:
- \f[patch(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f]
- where the values of the pixels at non-integer coordinates are retrieved using bilinear
- interpolation. Every channel of multi-channel images is processed independently. Also
- the image should be a single channel or three channel image. While the center of the
- rectangle must be inside the image, parts of the rectangle may be outside.
- @param image Source image.
- @param patchSize Size of the extracted patch.
- @param center Floating point coordinates of the center of the extracted rectangle within the
- source image. The center must be inside the image.
- @param patch Extracted patch that has the size patchSize and the same number of channels as src .
- @param patchType Depth of the extracted pixels. By default, they have the same depth as src .
- @sa warpAffine, warpPerspective
- */
- CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
- Point2f center, OutputArray patch, int patchType = -1 );
- /** @example samples/cpp/polar_transforms.cpp
- An example using the cv::linearPolar and cv::logPolar operations
- */
- /** @brief Remaps an image to semilog-polar coordinates space.
- @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
- @internal
- Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"):
- \f[\begin{array}{l}
- dst( \rho , \phi ) = src(x,y) \\
- dst.size() \leftarrow src.size()
- \end{array}\f]
- where
- \f[\begin{array}{l}
- I = (dx,dy) = (x - center.x,y - center.y) \\
- \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
- \phi = Kangle \cdot \texttt{angle} (I) \\
- \end{array}\f]
- and
- \f[\begin{array}{l}
- M = src.cols / log_e(maxRadius) \\
- Kangle = src.rows / 2\Pi \\
- \end{array}\f]
- The function emulates the human "foveal" vision and can be used for fast scale and
- rotation-invariant template matching, for object tracking and so forth.
- @param src Source image
- @param dst Destination image. It will have same size and type as src.
- @param center The transformation center; where the output precision is maximal
- @param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
- @param flags A combination of interpolation methods, see #InterpolationFlags
- @note
- - The function can not operate in-place.
- - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
- @sa cv::linearPolar
- @endinternal
- */
- CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst,
- Point2f center, double M, int flags );
- /** @brief Remaps an image to polar coordinates space.
- @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
- @internal
- Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"):
- \f[\begin{array}{l}
- dst( \rho , \phi ) = src(x,y) \\
- dst.size() \leftarrow src.size()
- \end{array}\f]
- where
- \f[\begin{array}{l}
- I = (dx,dy) = (x - center.x,y - center.y) \\
- \rho = Kmag \cdot \texttt{magnitude} (I) ,\\
- \phi = angle \cdot \texttt{angle} (I)
- \end{array}\f]
- and
- \f[\begin{array}{l}
- Kx = src.cols / maxRadius \\
- Ky = src.rows / 2\Pi
- \end{array}\f]
- @param src Source image
- @param dst Destination image. It will have same size and type as src.
- @param center The transformation center;
- @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
- @param flags A combination of interpolation methods, see #InterpolationFlags
- @note
- - The function can not operate in-place.
- - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
- @sa cv::logPolar
- @endinternal
- */
- CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst,
- Point2f center, double maxRadius, int flags );
- /** \brief Remaps an image to polar or semilog-polar coordinates space
- @anchor polar_remaps_reference_image
- ![Polar remaps reference](pics/polar_remap_doc.png)
- Transform the source image using the following transformation:
- \f[
- dst(\rho , \phi ) = src(x,y)
- \f]
- where
- \f[
- \begin{array}{l}
- \vec{I} = (x - center.x, \;y - center.y) \\
- \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\
- \rho = \left\{\begin{matrix}
- Klin \cdot \texttt{magnitude} (\vec{I}) & default \\
- Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\
- \end{matrix}\right.
- \end{array}
- \f]
- and
- \f[
- \begin{array}{l}
- Kangle = dsize.height / 2\Pi \\
- Klin = dsize.width / maxRadius \\
- Klog = dsize.width / log_e(maxRadius) \\
- \end{array}
- \f]
- \par Linear vs semilog mapping
- Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode.
- Linear is the default mode.
- The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
- in contrast to peripheral vision where acuity is minor.
- \par Option on `dsize`:
- - if both values in `dsize <=0 ` (default),
- the destination image will have (almost) same area of source bounding circle:
- \f[\begin{array}{l}
- dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\
- dsize.width = \texttt{cvRound}(maxRadius) \\
- dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\
- \end{array}\f]
- - if only `dsize.height <= 0`,
- the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`:
- \f[\begin{array}{l}
- dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\
- \end{array}
- \f]
- - if both values in `dsize > 0 `,
- the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`.
- \par Reverse mapping
- You can get reverse mapping adding #WARP_INVERSE_MAP to `flags`
- \snippet polar_transforms.cpp InverseMap
- In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$:
- \snippet polar_transforms.cpp InverseCoordinate
- @param src Source image.
- @param dst Destination image. It will have same type as src.
- @param dsize The destination image size (see description for valid options).
- @param center The transformation center.
- @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
- @param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
- - Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
- - Add #WARP_POLAR_LOG to select semilog polar mapping
- - Add #WARP_INVERSE_MAP for reverse mapping.
- @note
- - The function can not operate in-place.
- - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
- - This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
- @sa cv::remap
- */
- CV_EXPORTS_W void warpPolar(InputArray src, OutputArray dst, Size dsize,
- Point2f center, double maxRadius, int flags);
- //! @} imgproc_transform
- //! @addtogroup imgproc_misc
- //! @{
- /** @brief Calculates the integral of an image.
- The function calculates one or more integral images for the source image as follows:
- \f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f]
- \f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f]
- \f[\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\f]
- Using these integral images, you can calculate sum, mean, and standard deviation over a specific
- up-right or rotated rectangular region of the image in a constant time, for example:
- \f[\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
- It makes possible to do a fast blurring or fast block correlation with a variable window size, for
- example. In case of multi-channel images, sums for each channel are accumulated independently.
- As a practical example, the next figure shows the calculation of the integral of a straight
- rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
- original image are shown, as well as the relative pixels in the integral images sum and tilted .
- ![integral calculation example](pics/integral.png)
- @param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).
- @param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f).
- @param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
- floating-point (64f) array.
- @param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
- the same data type as sum.
- @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
- CV_64F.
- @param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
- */
- CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
- OutputArray sqsum, OutputArray tilted,
- int sdepth = -1, int sqdepth = -1 );
- /** @overload */
- CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 );
- /** @overload */
- CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
- OutputArray sqsum, int sdepth = -1, int sqdepth = -1 );
- //! @} imgproc_misc
- //! @addtogroup imgproc_motion
- //! @{
- /** @brief Adds an image to the accumulator image.
- The function adds src or some of its elements to dst :
- \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
- The function supports multi-channel images. Each channel is processed independently.
- The function cv::accumulate can be used, for example, to collect statistics of a scene background
- viewed by a still camera and for the further foreground-background segmentation.
- @param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
- @param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
- @param mask Optional operation mask.
- @sa accumulateSquare, accumulateProduct, accumulateWeighted
- */
- CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
- InputArray mask = noArray() );
- /** @brief Adds the square of a source image to the accumulator image.
- The function adds the input image src or its selected region, raised to a power of 2, to the
- accumulator dst :
- \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
- The function supports multi-channel images. Each channel is processed independently.
- @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
- @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
- floating-point.
- @param mask Optional operation mask.
- @sa accumulateSquare, accumulateProduct, accumulateWeighted
- */
- CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
- InputArray mask = noArray() );
- /** @brief Adds the per-element product of two input images to the accumulator image.
- The function adds the product of two images or their selected regions to the accumulator dst :
- \f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
- The function supports multi-channel images. Each channel is processed independently.
- @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
- @param src2 Second input image of the same type and the same size as src1 .
- @param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
- floating-point.
- @param mask Optional operation mask.
- @sa accumulate, accumulateSquare, accumulateWeighted
- */
- CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
- InputOutputArray dst, InputArray mask=noArray() );
- /** @brief Updates a running average.
- The function calculates the weighted sum of the input image src and the accumulator dst so that dst
- becomes a running average of a frame sequence:
- \f[\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
- That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
- The function supports multi-channel images. Each channel is processed independently.
- @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
- @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
- floating-point.
- @param alpha Weight of the input image.
- @param mask Optional operation mask.
- @sa accumulate, accumulateSquare, accumulateProduct
- */
- CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
- double alpha, InputArray mask = noArray() );
- /** @brief The function is used to detect translational shifts that occur between two images.
- The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
- the frequency domain. It can be used for fast image registration as well as motion estimation. For
- more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
- Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
- with getOptimalDFTSize.
- The function performs the following equations:
- - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
- image to remove possible edge effects. This window is cached until the array size changes to speed
- up processing time.
- - Next it computes the forward DFTs of each source array:
- \f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
- where \f$\mathcal{F}\f$ is the forward DFT.
- - It then computes the cross-power spectrum of each frequency domain array:
- \f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]
- - Next the cross-correlation is converted back into the time domain via the inverse DFT:
- \f[r = \mathcal{F}^{-1}\{R\}\f]
- - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
- achieve sub-pixel accuracy.
- \f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]
- - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
- centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
- peak) and will be smaller when there are multiple peaks.
- @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
- @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
- @param window Floating point array with windowing coefficients to reduce edge effects (optional).
- @param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
- @returns detected phase shift (sub-pixel) between the two arrays.
- @sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
- */
- CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
- InputArray window = noArray(), CV_OUT double* response = 0);
- /** @brief This function computes a Hanning window coefficients in two dimensions.
- See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
- for more information.
- An example is shown below:
- @code
- // create hanning window of size 100x100 and type CV_32F
- Mat hann;
- createHanningWindow(hann, Size(100, 100), CV_32F);
- @endcode
- @param dst Destination array to place Hann coefficients in
- @param winSize The window size specifications (both width and height must be > 1)
- @param type Created array type
- */
- CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
- /** @brief Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
- The function cv::divSpectrums performs the per-element division of the first array by the second array.
- The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
- @param a first input array.
- @param b second input array of the same size and type as src1 .
- @param c output array of the same size and type as src1 .
- @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
- each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
- @param conjB optional flag that conjugates the second input array before the multiplication (true)
- or not (false).
- */
- CV_EXPORTS_W void divSpectrums(InputArray a, InputArray b, OutputArray c,
- int flags, bool conjB = false);
- //! @} imgproc_motion
- //! @addtogroup imgproc_misc
- //! @{
- /** @brief Applies a fixed-level threshold to each array element.
- The function applies fixed-level thresholding to a multiple-channel array. The function is typically
- used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for
- this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
- values. There are several types of thresholding supported by the function. They are determined by
- type parameter.
- Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
- above values. In these cases, the function determines the optimal threshold value using the Otsu's
- or Triangle algorithm and uses it instead of the specified thresh.
- @note Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.
- @param src input array (multiple-channel, 8-bit or 32-bit floating point).
- @param dst output array of the same size and type and the same number of channels as src.
- @param thresh threshold value.
- @param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
- types.
- @param type thresholding type (see #ThresholdTypes).
- @return the computed threshold value if Otsu's or Triangle methods used.
- @sa adaptiveThreshold, findContours, compare, min, max
- */
- CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
- double thresh, double maxval, int type );
- /** @brief Applies an adaptive threshold to an array.
- The function transforms a grayscale image to a binary image according to the formulae:
- - **THRESH_BINARY**
- \f[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
- - **THRESH_BINARY_INV**
- \f[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
- where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
- The function can process the image in-place.
- @param src Source 8-bit single-channel image.
- @param dst Destination image of the same size and the same type as src.
- @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
- @param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
- The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
- @param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
- see #ThresholdTypes.
- @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
- pixel: 3, 5, 7, and so on.
- @param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
- is positive but may be zero or negative as well.
- @sa threshold, blur, GaussianBlur
- */
- CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
- double maxValue, int adaptiveMethod,
- int thresholdType, int blockSize, double C );
- //! @} imgproc_misc
- //! @addtogroup imgproc_filter
- //! @{
- /** @example samples/cpp/tutorial_code/ImgProc/Pyramids/Pyramids.cpp
- An example using pyrDown and pyrUp functions
- */
- /** @brief Blurs an image and downsamples it.
- By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
- any case, the following conditions should be satisfied:
- \f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
- The function performs the downsampling step of the Gaussian pyramid construction. First, it
- convolves the source image with the kernel:
- \f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
- Then, it downsamples the image by rejecting even rows and columns.
- @param src input image.
- @param dst output image; it has the specified size and the same type as src.
- @param dstsize size of the output image.
- @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
- */
- CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
- const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
- /** @brief Upsamples an image and then blurs it.
- By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
- case, the following conditions should be satisfied:
- \f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\f]
- The function performs the upsampling step of the Gaussian pyramid construction, though it can
- actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
- injecting even zero rows and columns and then convolves the result with the same kernel as in
- pyrDown multiplied by 4.
- @param src input image.
- @param dst output image. It has the specified size and the same type as src .
- @param dstsize size of the output image.
- @param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)
- */
- CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
- const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
- /** @brief Constructs the Gaussian pyramid for an image.
- The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
- pyrDown to the previously built pyramid layers, starting from `dst[0]==src`.
- @param src Source image. Check pyrDown for the list of supported types.
- @param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the
- same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on.
- @param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative.
- @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
- */
- CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
- int maxlevel, int borderType = BORDER_DEFAULT );
- //! @} imgproc_filter
- //! @addtogroup imgproc_hist
- //! @{
- /** @example samples/cpp/demhist.cpp
- An example for creating histograms of an image
- */
- /** @brief Calculates a histogram of a set of arrays.
- The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used
- to increment a histogram bin are taken from the corresponding input arrays at the same location. The
- sample below shows how to compute a 2D Hue-Saturation histogram for a color image. :
- @include snippets/imgproc_calcHist.cpp
- @param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
- size. Each of them can have an arbitrary number of channels.
- @param nimages Number of source images.
- @param channels List of the dims channels used to compute the histogram. The first array channels
- are numerated from 0 to images[0].channels()-1 , the second array channels are counted from
- images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
- @param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size
- as images[i] . The non-zero mask elements mark the array elements counted in the histogram.
- @param hist Output histogram, which is a dense or sparse dims -dimensional array.
- @param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS
- (equal to 32 in the current OpenCV version).
- @param histSize Array of histogram sizes in each dimension.
- @param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the
- histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower
- (inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary
- \f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a
- uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform (
- uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:
- \f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$
- . The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not
- counted in the histogram.
- @param uniform Flag indicating whether the histogram is uniform or not (see above).
- @param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning
- when it is allocated. This feature enables you to compute a single histogram from several sets of
- arrays, or to update the histogram in time.
- */
- CV_EXPORTS void calcHist( const Mat* images, int nimages,
- const int* channels, InputArray mask,
- OutputArray hist, int dims, const int* histSize,
- const float** ranges, bool uniform = true, bool accumulate = false );
- /** @overload
- this variant uses %SparseMat for output
- */
- CV_EXPORTS void calcHist( const Mat* images, int nimages,
- const int* channels, InputArray mask,
- SparseMat& hist, int dims,
- const int* histSize, const float** ranges,
- bool uniform = true, bool accumulate = false );
- /** @overload
- this variant supports only uniform histograms.
- ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements
- (histSize.size() element pairs). The first and second elements of each pair specify the lower and
- upper boundaries.
- */
- CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
- const std::vector<int>& channels,
- InputArray mask, OutputArray hist,
- const std::vector<int>& histSize,
- const std::vector<float>& ranges,
- bool accumulate = false );
- /** @brief Calculates the back projection of a histogram.
- The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to
- #calcHist , at each location (x, y) the function collects the values from the selected channels
- in the input images and finds the corresponding histogram bin. But instead of incrementing it, the
- function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of
- statistics, the function computes probability of each element value in respect with the empirical
- probability distribution represented by the histogram. See how, for example, you can find and track
- a bright-colored object in a scene:
- - Before tracking, show the object to the camera so that it covers almost the whole frame.
- Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant
- colors in the object.
- - When tracking, calculate a back projection of a hue plane of each input video frame using that
- pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make
- sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels.
- - Find connected components in the resulting picture and choose, for example, the largest
- component.
- This is an approximate algorithm of the CamShift color object tracker.
- @param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
- size. Each of them can have an arbitrary number of channels.
- @param nimages Number of source images.
- @param channels The list of channels used to compute the back projection. The number of channels
- must match the histogram dimensionality. The first array channels are numerated from 0 to
- images[0].channels()-1 , the second array channels are counted from images[0].channels() to
- images[0].channels() + images[1].channels()-1, and so on.
- @param hist Input histogram that can be dense or sparse.
- @param backProject Destination back projection array that is a single-channel array of the same
- size and depth as images[0] .
- @param ranges Array of arrays of the histogram bin boundaries in each dimension. See #calcHist .
- @param scale Optional scale factor for the output back projection.
- @param uniform Flag indicating whether the histogram is uniform or not (see above).
- @sa calcHist, compareHist
- */
- CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
- const int* channels, InputArray hist,
- OutputArray backProject, const float** ranges,
- double scale = 1, bool uniform = true );
- /** @overload */
- CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
- const int* channels, const SparseMat& hist,
- OutputArray backProject, const float** ranges,
- double scale = 1, bool uniform = true );
- /** @overload */
- CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
- InputArray hist, OutputArray dst,
- const std::vector<float>& ranges,
- double scale );
- /** @brief Compares two histograms.
- The function cv::compareHist compares two dense or two sparse histograms using the specified method.
- The function returns \f$d(H_1, H_2)\f$ .
- While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
- for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
- problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
- or more general sparse configurations of weighted points, consider using the #EMD function.
- @param H1 First compared histogram.
- @param H2 Second compared histogram of the same size as H1 .
- @param method Comparison method, see #HistCompMethods
- */
- CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
- /** @overload */
- CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
- /** @brief Equalizes the histogram of a grayscale image.
- The function equalizes the histogram of the input image using the following algorithm:
- - Calculate the histogram \f$H\f$ for src .
- - Normalize the histogram so that the sum of histogram bins is 255.
- - Compute the integral of the histogram:
- \f[H'_i = \sum _{0 \le j < i} H(j)\f]
- - Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$
- The algorithm normalizes the brightness and increases the contrast of the image.
- @param src Source 8-bit single channel image.
- @param dst Destination image of the same size and type as src .
- */
- CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
- /** @brief Creates a smart pointer to a cv::CLAHE class and initializes it.
- @param clipLimit Threshold for contrast limiting.
- @param tileGridSize Size of grid for histogram equalization. Input image will be divided into
- equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
- */
- CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
- /** @brief Computes the "minimal work" distance between two weighted point configurations.
- The function computes the earth mover distance and/or a lower boundary of the distance between the
- two weighted point configurations. One of the applications described in @cite RubnerSept98,
- @cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
- problem that is solved using some modification of a simplex algorithm, thus the complexity is
- exponential in the worst case, though, on average it is much faster. In the case of a real metric
- the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
- to determine roughly whether the two signatures are far enough so that they cannot relate to the
- same object.
- @param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
- Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
- a single column (weights only) if the user-defined cost matrix is used. The weights must be
- non-negative and have at least one non-zero value.
- @param signature2 Second signature of the same format as signature1 , though the number of rows
- may be different. The total weights may be different. In this case an extra "dummy" point is added
- to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
- value.
- @param distType Used metric. See #DistanceTypes.
- @param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
- is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
- @param lowerBound Optional input/output parameter: lower boundary of a distance between the two
- signatures that is a distance between mass centers. The lower boundary may not be calculated if
- the user-defined cost matrix is used, the total weights of point configurations are not equal, or
- if the signatures consist of weights only (the signature matrices have a single column). You
- **must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
- equal to \*lowerBound (it means that the signatures are far enough), the function does not
- calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
- return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
- should be set to 0.
- @param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
- a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .
- */
- CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
- int distType, InputArray cost=noArray(),
- float* lowerBound = 0, OutputArray flow = noArray() );
- CV_EXPORTS_AS(EMD) float wrapperEMD( InputArray signature1, InputArray signature2,
- int distType, InputArray cost=noArray(),
- CV_IN_OUT Ptr<float> lowerBound = Ptr<float>(), OutputArray flow = noArray() );
- //! @} imgproc_hist
- //! @addtogroup imgproc_segmentation
- //! @{
- /** @example samples/cpp/watershed.cpp
- An example using the watershed algorithm
- */
- /** @brief Performs a marker-based image segmentation using the watershed algorithm.
- The function implements one of the variants of watershed, non-parametric marker-based segmentation
- algorithm, described in @cite Meyer92 .
- Before passing the image to the function, you have to roughly outline the desired regions in the
- image markers with positive (\>0) indices. So, every region is represented as one or more connected
- components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
- mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of
- the future image regions. All the other pixels in markers , whose relation to the outlined regions
- is not known and should be defined by the algorithm, should be set to 0's. In the function output,
- each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
- regions.
- @note Any two neighbor connected components are not necessarily separated by a watershed boundary
- (-1's pixels); for example, they can touch each other in the initial marker image passed to the
- function.
- @param image Input 8-bit 3-channel image.
- @param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
- size as image .
- @sa findContours
- */
- CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
- //! @} imgproc_segmentation
- //! @addtogroup imgproc_filter
- //! @{
- /** @brief Performs initial step of meanshift segmentation of an image.
- The function implements the filtering stage of meanshift segmentation, that is, the output of the
- function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
- At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
- meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
- considered:
- \f[(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\f]
- where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
- (though, the algorithm does not depend on the color space used, so any 3-component color space can
- be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
- (R',G',B') are found and they act as the neighborhood center on the next iteration:
- \f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
- After the iterations over, the color components of the initial pixel (that is, the pixel from where
- the iterations started) are set to the final value (average color at the last iteration):
- \f[I(X,Y) <- (R*,G*,B*)\f]
- When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
- run on the smallest layer first. After that, the results are propagated to the larger layer and the
- iterations are run again only on those pixels where the layer colors differ by more than sr from the
- lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
- results will be actually different from the ones obtained by running the meanshift procedure on the
- whole original image (i.e. when maxLevel==0).
- @param src The source 8-bit, 3-channel image.
- @param dst The destination image of the same format and the same size as the source.
- @param sp The spatial window radius.
- @param sr The color window radius.
- @param maxLevel Maximum level of the pyramid for the segmentation.
- @param termcrit Termination criteria: when to stop meanshift iterations.
- */
- CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
- double sp, double sr, int maxLevel = 1,
- TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
- //! @}
- //! @addtogroup imgproc_segmentation
- //! @{
- /** @example samples/cpp/grabcut.cpp
- An example using the GrabCut algorithm
- ![Sample Screenshot](grabcut_output1.jpg)
- */
- /** @brief Runs the GrabCut algorithm.
- The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
- @param img Input 8-bit 3-channel image.
- @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
- mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
- @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
- "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
- @param bgdModel Temporary array for the background model. Do not modify it while you are
- processing the same image.
- @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
- processing the same image.
- @param iterCount Number of iterations the algorithm should make before returning the result. Note
- that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
- mode==GC_EVAL .
- @param mode Operation mode that could be one of the #GrabCutModes
- */
- CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
- InputOutputArray bgdModel, InputOutputArray fgdModel,
- int iterCount, int mode = GC_EVAL );
- //! @} imgproc_segmentation
- //! @addtogroup imgproc_misc
- //! @{
- /** @example samples/cpp/distrans.cpp
- An example on using the distance transform
- */
- /** @brief Calculates the distance to the closest zero pixel for each pixel of the source image.
- The function cv::distanceTransform calculates the approximate or precise distance from every binary
- image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
- When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
- algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
- In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
- finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
- diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
- distance is calculated as a sum of these basic distances. Since the distance function should be
- symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
- the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
- same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated
- precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
- relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
- uses the values suggested in the original paper:
- - DIST_L1: `a = 1, b = 2`
- - DIST_L2:
- - `3 x 3`: `a=0.955, b=1.3693`
- - `5 x 5`: `a=1, b=1.4, c=2.1969`
- - DIST_C: `a = 1, b = 1`
- Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a
- more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
- Note that both the precise and the approximate algorithms are linear on the number of pixels.
- This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
- but also identifies the nearest connected component consisting of zero pixels
- (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
- component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function
- automatically finds connected components of zero pixels in the input image and marks them with
- distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
- marks all the zero pixels with distinct labels.
- In this mode, the complexity is still linear. That is, the function provides a very fast way to
- compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
- approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
- yet.
- @param src 8-bit, single-channel (binary) source image.
- @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
- single-channel image of the same size as src.
- @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
- CV_32SC1 and the same size as src.
- @param distanceType Type of distance, see #DistanceTypes
- @param maskSize Size of the distance transform mask, see #DistanceTransformMasks.
- #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
- the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
- 5\f$ or any larger aperture.
- @param labelType Type of the label array to build, see #DistanceTransformLabelTypes.
- */
- CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
- OutputArray labels, int distanceType, int maskSize,
- int labelType = DIST_LABEL_CCOMP );
- /** @overload
- @param src 8-bit, single-channel (binary) source image.
- @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
- single-channel image of the same size as src .
- @param distanceType Type of distance, see #DistanceTypes
- @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the
- #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
- the same result as \f$5\times 5\f$ or any larger aperture.
- @param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
- the first variant of the function and distanceType == #DIST_L1.
- */
- CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
- int distanceType, int maskSize, int dstType=CV_32F);
- /** @brief Fills a connected component with the given color.
- The function cv::floodFill fills a connected component starting from the seed point with the specified
- color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
- pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
- - in case of a grayscale image and floating range
- \f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]
- - in case of a grayscale image and fixed range
- \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]
- - in case of a color image and floating range
- \f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
- \f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
- and
- \f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]
- - in case of a color image and fixed range
- \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
- \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
- and
- \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]
- where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
- component. That is, to be added to the connected component, a color/brightness of the pixel should
- be close enough to:
- - Color/brightness of one of its neighbors that already belong to the connected component in case
- of a floating range.
- - Color/brightness of the seed point in case of a fixed range.
- Use these functions to either mark a connected component with the specified color in-place, or build
- a mask and then extract the contour, or copy the region to another image, and so on.
- @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
- function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
- the details below.
- @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
- taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
- input and output parameter, you must take responsibility of initializing it.
- Flood-filling cannot go across non-zero pixels in the input mask. For example,
- an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
- mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
- as described below. Additionally, the function fills the border of the mask with ones to simplify
- internal processing. It is therefore possible to use the same mask in multiple calls to the function
- to make sure the filled areas do not overlap.
- @param seedPoint Starting point.
- @param newVal New value of the repainted domain pixels.
- @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
- one of its neighbors belonging to the component, or a seed pixel being added to the component.
- @param upDiff Maximal upper brightness/color difference between the currently observed pixel and
- one of its neighbors belonging to the component, or a seed pixel being added to the component.
- @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
- repainted domain.
- @param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
- 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
- connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
- will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
- the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
- neighbours and fill the mask with a value of 255. The following additional options occupy higher
- bits and therefore may be further combined with the connectivity and mask fill values using
- bit-wise or (|), see #FloodFillFlags.
- @note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
- pixel \f$(x+1, y+1)\f$ in the mask .
- @sa findContours
- */
- CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
- Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
- Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
- int flags = 4 );
- /** @example samples/cpp/ffilldemo.cpp
- An example using the FloodFill technique
- */
- /** @overload
- variant without `mask` parameter
- */
- CV_EXPORTS int floodFill( InputOutputArray image,
- Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0,
- Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
- int flags = 4 );
- //! Performs linear blending of two images:
- //! \f[ \texttt{dst}(i,j) = \texttt{weights1}(i,j)*\texttt{src1}(i,j) + \texttt{weights2}(i,j)*\texttt{src2}(i,j) \f]
- //! @param src1 It has a type of CV_8UC(n) or CV_32FC(n), where n is a positive integer.
- //! @param src2 It has the same type and size as src1.
- //! @param weights1 It has a type of CV_32FC1 and the same size with src1.
- //! @param weights2 It has a type of CV_32FC1 and the same size with src1.
- //! @param dst It is created if it does not have the same size and type with src1.
- CV_EXPORTS_W void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst);
- //! @} imgproc_misc
- //! @addtogroup imgproc_color_conversions
- //! @{
- /** @brief Converts an image from one color space to another.
- The function converts an input image from one color space to another. In case of a transformation
- to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
- that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
- bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
- component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
- sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
- The conventional ranges for R, G, and B channel values are:
- - 0 to 255 for CV_8U images
- - 0 to 65535 for CV_16U images
- - 0 to 1 for CV_32F images
- In case of linear transformations, the range does not matter. But in case of a non-linear
- transformation, an input RGB image should be normalized to the proper value range to get the correct
- results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a
- 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
- have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
- you need first to scale the image down:
- @code
- img *= 1./255;
- cvtColor(img, img, COLOR_BGR2Luv);
- @endcode
- If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
- applications, this will not be noticeable but it is recommended to use 32-bit images in applications
- that need the full range of colors or that convert an image before an operation and then convert
- back.
- If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
- range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
- @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
- floating-point.
- @param dst output image of the same size and depth as src.
- @param code color space conversion code (see #ColorConversionCodes).
- @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
- channels is derived automatically from src and code.
- @see @ref imgproc_color_conversions
- */
- CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
- /** @brief Converts an image from one color space to another where the source image is
- stored in two planes.
- This function only supports YUV420 to RGB conversion as of now.
- @param src1: 8-bit image (#CV_8U) of the Y plane.
- @param src2: image containing interleaved U/V plane.
- @param dst: output image.
- @param code: Specifies the type of conversion. It can take any of the following values:
- - #COLOR_YUV2BGR_NV12
- - #COLOR_YUV2RGB_NV12
- - #COLOR_YUV2BGRA_NV12
- - #COLOR_YUV2RGBA_NV12
- - #COLOR_YUV2BGR_NV21
- - #COLOR_YUV2RGB_NV21
- - #COLOR_YUV2BGRA_NV21
- - #COLOR_YUV2RGBA_NV21
- */
- CV_EXPORTS_W void cvtColorTwoPlane( InputArray src1, InputArray src2, OutputArray dst, int code );
- /** @brief main function for all demosaicing processes
- @param src input image: 8-bit unsigned or 16-bit unsigned.
- @param dst output image of the same size and depth as src.
- @param code Color space conversion code (see the description below).
- @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
- channels is derived automatically from src and code.
- The function can do the following transformations:
- - Demosaicing using bilinear interpolation
- #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
- #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
- - Demosaicing using Variable Number of Gradients.
- #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
- - Edge-Aware Demosaicing.
- #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
- - Demosaicing with alpha channel
- #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
- @sa cvtColor
- */
- CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dstCn = 0);
- //! @} imgproc_color_conversions
- //! @addtogroup imgproc_shape
- //! @{
- /** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape.
- The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
- results are returned in the structure cv::Moments.
- @param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
- \f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ).
- @param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
- used for images only.
- @returns moments.
- @note Only applicable to contour moments calculations from Python bindings: Note that the numpy
- type for the input array should be either np.int32 or np.float32.
- @sa contourArea, arcLength
- */
- CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false );
- /** @brief Calculates seven Hu invariants.
- The function calculates seven Hu invariants (introduced in @cite Hu62; see also
- <http://en.wikipedia.org/wiki/Image_moment>) defined as:
- \f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f]
- where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ .
- These values are proved to be invariants to the image scale, rotation, and reflection except the
- seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of
- infinite image resolution. In case of raster images, the computed Hu invariants for the original and
- transformed images are a bit different.
- @param moments Input moments computed with moments .
- @param hu Output Hu invariants.
- @sa matchShapes
- */
- CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
- /** @overload */
- CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu );
- //! @} imgproc_shape
- //! @addtogroup imgproc_object
- //! @{
- //! type of the template matching operation
- enum TemplateMatchModes {
- TM_SQDIFF = 0, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f]
- with mask:
- \f[R(x,y)= \sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
- M(x',y') \right)^2\f] */
- TM_SQDIFF_NORMED = 1, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{
- x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
- with mask:
- \f[R(x,y)= \frac{\sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
- M(x',y') \right)^2}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot
- M(x',y') \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot
- M(x',y') \right)^2}}\f] */
- TM_CCORR = 2, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f]
- with mask:
- \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot M(x',y')
- ^2)\f] */
- TM_CCORR_NORMED = 3, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{
- \sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
- with mask:
- \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot
- M(x',y')^2)}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot M(x',y')
- \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot M(x',y')
- \right)^2}}\f] */
- TM_CCOEFF = 4, /*!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f]
- where
- \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{
- x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h)
- \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f]
- with mask:
- \f[\begin{array}{l} T'(x',y')=M(x',y') \cdot \left( T(x',y') -
- \frac{1}{\sum _{x'',y''} M(x'',y'')} \cdot \sum _{x'',y''}
- (T(x'',y'') \cdot M(x'',y'')) \right) \\ I'(x+x',y+y')=M(x',y')
- \cdot \left( I(x+x',y+y') - \frac{1}{\sum _{x'',y''} M(x'',y'')}
- \cdot \sum _{x'',y''} (I(x+x'',y+y'') \cdot M(x'',y'')) \right)
- \end{array} \f] */
- TM_CCOEFF_NORMED = 5 /*!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{
- \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}
- }\f] */
- };
- /** @example samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp
- An example using Template Matching algorithm
- */
- /** @brief Compares a template against overlapped image regions.
- The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
- templ using the specified method and stores the comparison results in result . #TemplateMatchModes
- describes the formulae for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$
- template, \f$R\f$ result, \f$M\f$ the optional mask ). The summation is done over template and/or
- the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
- After the function finishes the comparison, the best matches can be found as global minimums (when
- #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
- #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
- the denominator is done over all of the channels and separate mean values are used for each channel.
- That is, the function can take a color template and a color image. The result will still be a
- single-channel image, which is easier to analyze.
- @param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
- @param templ Searched template. It must be not greater than the source image and have the same
- data type.
- @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
- is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ .
- @param method Parameter specifying the comparison method, see #TemplateMatchModes
- @param mask Optional mask. It must have the same size as templ. It must either have the same number
- of channels as template or only one channel, which is then used for all template and
- image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
- meaning only elements where mask is nonzero are used and are kept unchanged independent
- of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
- used as weights. The exact formulas are documented in #TemplateMatchModes.
- */
- CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
- OutputArray result, int method, InputArray mask = noArray() );
- //! @}
- //! @addtogroup imgproc_shape
- //! @{
- /** @example samples/cpp/connected_components.cpp
- This program demonstrates connected components and use of the trackbar
- */
- /** @brief computes the connected components labeled image of boolean image
- image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
- represents the background label. ltype specifies the output label image type, an important
- consideration based on the total number of labels or alternatively the total number of pixels in
- the source image. ccltype specifies the connected components labeling algorithm to use, currently
- Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
- are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
- a row major ordering of labels while Spaghetti and BBDT do not.
- This function uses parallel version of the algorithms if at least one allowed
- parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
- @param image the 8-bit single-channel image to be labeled
- @param labels destination labeled image
- @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- @param ltype output image label type. Currently CV_32S and CV_16U are supported.
- @param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
- */
- CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels,
- int connectivity, int ltype, int ccltype);
- /** @overload
- @param image the 8-bit single-channel image to be labeled
- @param labels destination labeled image
- @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- @param ltype output image label type. Currently CV_32S and CV_16U are supported.
- */
- CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels,
- int connectivity = 8, int ltype = CV_32S);
- /** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label
- image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
- represents the background label. ltype specifies the output label image type, an important
- consideration based on the total number of labels or alternatively the total number of pixels in
- the source image. ccltype specifies the connected components labeling algorithm to use, currently
- Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
- are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
- a row major ordering of labels while Spaghetti and BBDT do not.
- This function uses parallel version of the algorithms (statistics included) if at least one allowed
- parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
- @param image the 8-bit single-channel image to be labeled
- @param labels destination labeled image
- @param stats statistics output for each label, including the background label.
- Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
- #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
- @param centroids centroid output for each label, including the background label. Centroids are
- accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
- @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- @param ltype output image label type. Currently CV_32S and CV_16U are supported.
- @param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).
- */
- CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels,
- OutputArray stats, OutputArray centroids,
- int connectivity, int ltype, int ccltype);
- /** @overload
- @param image the 8-bit single-channel image to be labeled
- @param labels destination labeled image
- @param stats statistics output for each label, including the background label.
- Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
- #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
- @param centroids centroid output for each label, including the background label. Centroids are
- accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
- @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- @param ltype output image label type. Currently CV_32S and CV_16U are supported.
- */
- CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels,
- OutputArray stats, OutputArray centroids,
- int connectivity = 8, int ltype = CV_32S);
- /** @brief Finds contours in a binary image.
- The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
- are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
- OpenCV sample directory.
- @note Since opencv 3.2 source image is not modified by this function.
- @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
- pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
- #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
- If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
- @param contours Detected contours. Each contour is stored as a vector of points (e.g.
- std::vector<std::vector<cv::Point> >).
- @param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
- as many elements as the number of contours. For each i-th contour contours[i], the elements
- hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
- in contours of the next and previous contours at the same hierarchical level, the first child
- contour and the parent contour, respectively. If for the contour i there are no next, previous,
- parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
- @note In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
- @param mode Contour retrieval mode, see #RetrievalModes
- @param method Contour approximation method, see #ContourApproximationModes
- @param offset Optional offset by which every contour point is shifted. This is useful if the
- contours are extracted from the image ROI and then they should be analyzed in the whole image
- context.
- */
- CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours,
- OutputArray hierarchy, int mode,
- int method, Point offset = Point());
- /** @overload */
- CV_EXPORTS void findContours( InputArray image, OutputArrayOfArrays contours,
- int mode, int method, Point offset = Point());
- /** @example samples/cpp/squares.cpp
- A program using pyramid scaling, Canny, contours and contour simplification to find
- squares in a list of images (pic1-6.png). Returns sequence of squares detected on the image.
- */
- /** @example samples/tapi/squares.cpp
- A program using pyramid scaling, Canny, contours and contour simplification to find
- squares in the input image.
- */
- /** @brief Approximates a polygonal curve(s) with the specified precision.
- The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
- vertices so that the distance between them is less or equal to the specified precision. It uses the
- Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
- @param curve Input vector of a 2D point stored in std::vector or Mat
- @param approxCurve Result of the approximation. The type should match the type of the input curve.
- @param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
- between the original curve and its approximation.
- @param closed If true, the approximated curve is closed (its first and last vertices are
- connected). Otherwise, it is not closed.
- */
- CV_EXPORTS_W void approxPolyDP( InputArray curve,
- OutputArray approxCurve,
- double epsilon, bool closed );
- /** @brief Calculates a contour perimeter or a curve length.
- The function computes a curve length or a closed contour perimeter.
- @param curve Input vector of 2D points, stored in std::vector or Mat.
- @param closed Flag indicating whether the curve is closed or not.
- */
- CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
- /** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
- The function calculates and returns the minimal up-right bounding rectangle for the specified point set or
- non-zero pixels of gray-scale image.
- @param array Input gray-scale image or 2D point set, stored in std::vector or Mat.
- */
- CV_EXPORTS_W Rect boundingRect( InputArray array );
- /** @brief Calculates a contour area.
- The function computes a contour area. Similarly to moments , the area is computed using the Green
- formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
- #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
- results for contours with self-intersections.
- Example:
- @code
- vector<Point> contour;
- contour.push_back(Point2f(0, 0));
- contour.push_back(Point2f(10, 0));
- contour.push_back(Point2f(10, 10));
- contour.push_back(Point2f(5, 4));
- double area0 = contourArea(contour);
- vector<Point> approx;
- approxPolyDP(contour, approx, 5, true);
- double area1 = contourArea(approx);
- cout << "area0 =" << area0 << endl <<
- "area1 =" << area1 << endl <<
- "approx poly vertices" << approx.size() << endl;
- @endcode
- @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
- @param oriented Oriented area flag. If it is true, the function returns a signed area value,
- depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
- determine orientation of a contour by taking the sign of an area. By default, the parameter is
- false, which means that the absolute value is returned.
- */
- CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );
- /** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
- The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
- specified point set. Developer should keep in mind that the returned RotatedRect can contain negative
- indices when data is close to the containing Mat element boundary.
- @param points Input vector of 2D points, stored in std::vector\<\> or Mat
- */
- CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
- /** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
- The function finds the four vertices of a rotated rectangle. This function is useful to draw the
- rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
- visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
- @param box The input rotated rectangle. It may be the output of @ref minAreaRect.
- @param points The output array of four vertices of rectangles.
- */
- CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points);
- /** @brief Finds a circle of the minimum area enclosing a 2D point set.
- The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm.
- @param points Input vector of 2D points, stored in std::vector\<\> or Mat
- @param center Output center of the circle.
- @param radius Output radius of the circle.
- */
- CV_EXPORTS_W void minEnclosingCircle( InputArray points,
- CV_OUT Point2f& center, CV_OUT float& radius );
- /** @example samples/cpp/minarea.cpp
- */
- /** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area.
- The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
- area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
- *red* and the enclosing triangle in *yellow*.
- ![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
- The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
- @cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
- enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
- takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
- 2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher
- than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
- @param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
- @param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
- of the OutputArray must be CV_32F.
- */
- CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle );
- /** @brief Compares two shapes.
- The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
- @param contour1 First contour or grayscale image.
- @param contour2 Second contour or grayscale image.
- @param method Comparison method, see #ShapeMatchModes
- @param parameter Method-specific parameter (not supported now).
- */
- CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
- int method, double parameter );
- /** @example samples/cpp/convexhull.cpp
- An example using the convexHull functionality
- */
- /** @brief Finds the convex hull of a point set.
- The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
- that has *O(N logN)* complexity in the current implementation.
- @param points Input 2D point set, stored in std::vector or Mat.
- @param hull Output convex hull. It is either an integer vector of indices or vector of points. In
- the first case, the hull elements are 0-based indices of the convex hull points in the original
- array (since the set of convex hull points is a subset of the original point set). In the second
- case, hull elements are the convex hull points themselves.
- @param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
- Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
- to the right, and its Y axis pointing upwards.
- @param returnPoints Operation flag. In case of a matrix, when the flag is true, the function
- returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
- output array is std::vector, the flag is ignored, and the output depends on the type of the
- vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
- returnPoints=true.
- @note `points` and `hull` should be different arrays, inplace processing isn't supported.
- Check @ref tutorial_hull "the corresponding tutorial" for more details.
- useful links:
- https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
- */
- CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
- bool clockwise = false, bool returnPoints = true );
- /** @brief Finds the convexity defects of a contour.
- The figure below displays convexity defects of a hand contour:
- ![image](pics/defects.png)
- @param contour Input contour.
- @param convexhull Convex hull obtained using convexHull that should contain indices of the contour
- points that make the hull.
- @param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
- interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
- (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
- in the original contour of the convexity defect beginning, end and the farthest point, and
- fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
- farthest contour point and the hull. That is, to get the floating-point value of the depth will be
- fixpt_depth/256.0.
- */
- CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
- /** @brief Tests a contour convexity.
- The function tests whether the input contour is convex or not. The contour must be simple, that is,
- without self-intersections. Otherwise, the function output is undefined.
- @param contour Input vector of 2D points, stored in std::vector\<\> or Mat
- */
- CV_EXPORTS_W bool isContourConvex( InputArray contour );
- /** @example samples/cpp/intersectExample.cpp
- Examples of how intersectConvexConvex works
- */
- /** @brief Finds intersection of two convex polygons
- @param p1 First polygon
- @param p2 Second polygon
- @param p12 Output polygon describing the intersecting area
- @param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other.
- When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
- of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
- @returns Absolute value of area of intersecting polygon
- @note intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
- */
- CV_EXPORTS_W float intersectConvexConvex( InputArray p1, InputArray p2,
- OutputArray p12, bool handleNested = true );
- /** @example samples/cpp/fitellipse.cpp
- An example using the fitEllipse technique
- */
- /** @brief Fits an ellipse around a set of 2D points.
- The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
- all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95
- is used. Developer should keep in mind that it is possible that the returned
- ellipse/rotatedRect data contains negative indices, due to the data points being close to the
- border of the containing Mat element.
- @param points Input 2D point set, stored in std::vector\<\> or Mat
- */
- CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
- /** @brief Fits an ellipse around a set of 2D points.
- The function calculates the ellipse that fits a set of 2D points.
- It returns the rotated rectangle in which the ellipse is inscribed.
- The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used.
- For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
- which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
- However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
- the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
- quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
- If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used.
- The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves
- by imposing the condition that \f$ A^T ( D_x^T D_x + D_y^T D_y) A = 1 \f$ where
- the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with
- respect to x and y. The matrices are formed row by row applying the following to
- each of the points in the set:
- \f{align*}{
- D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} &
- D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} &
- D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\}
- \f}
- The AMS method minimizes the cost function
- \f{equation*}{
- \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x + D_y^T D_y) A^T }
- \f}
- The minimum cost is found by solving the generalized eigenvalue problem.
- \f{equation*}{
- D^T D A = \lambda \left( D_x^T D_x + D_y^T D_y\right) A
- \f}
- @param points Input 2D point set, stored in std::vector\<\> or Mat
- */
- CV_EXPORTS_W RotatedRect fitEllipseAMS( InputArray points );
- /** @brief Fits an ellipse around a set of 2D points.
- The function calculates the ellipse that fits a set of 2D points.
- It returns the rotated rectangle in which the ellipse is inscribed.
- The Direct least square (Direct) method by @cite Fitzgibbon1999 is used.
- For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
- which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
- However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
- the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
- quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
- The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$.
- The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality
- and as the coefficients can be arbitrarily scaled is not overly restrictive.
- \f{equation*}{
- \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix}
- 0 & 0 & 2 & 0 & 0 & 0 \\
- 0 & -1 & 0 & 0 & 0 & 0 \\
- 2 & 0 & 0 & 0 & 0 & 0 \\
- 0 & 0 & 0 & 0 & 0 & 0 \\
- 0 & 0 & 0 & 0 & 0 & 0 \\
- 0 & 0 & 0 & 0 & 0 & 0
- \end{matrix} \right)
- \f}
- The minimum cost is found by solving the generalized eigenvalue problem.
- \f{equation*}{
- D^T D A = \lambda \left( C\right) A
- \f}
- The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution
- with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients
- \f{equation*}{
- A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}} \mathbf{u}
- \f}
- The scaling factor guarantees that \f$A^T C A =1\f$.
- @param points Input 2D point set, stored in std::vector\<\> or Mat
- */
- CV_EXPORTS_W RotatedRect fitEllipseDirect( InputArray points );
- /** @brief Fits a line to a 2D or 3D point set.
- The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
- \f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
- of the following:
- - DIST_L2
- \f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f]
- - DIST_L1
- \f[\rho (r) = r\f]
- - DIST_L12
- \f[\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
- - DIST_FAIR
- \f[\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\f]
- - DIST_WELSCH
- \f[\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\f]
- - DIST_HUBER
- \f[\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
- The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
- that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
- weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
- @param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
- @param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
- (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
- (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
- Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
- and (x0, y0, z0) is a point on the line.
- @param distType Distance used by the M-estimator, see #DistanceTypes
- @param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
- is chosen.
- @param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
- @param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
- */
- CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
- double param, double reps, double aeps );
- /** @brief Performs a point-in-contour test.
- The function determines whether the point is inside a contour, outside, or lies on an edge (or
- coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
- value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
- Otherwise, the return value is a signed distance between the point and the nearest contour edge.
- See below a sample output of the function where each image pixel is tested against the contour:
- ![sample output](pics/pointpolygon.png)
- @param contour Input contour.
- @param pt Point tested against the contour.
- @param measureDist If true, the function estimates the signed distance from the point to the
- nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
- */
- CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
- /** @brief Finds out if there is any intersection between two rotated rectangles.
- If there is then the vertices of the intersecting region are returned as well.
- Below are some examples of intersection configurations. The hatched pattern indicates the
- intersecting region and the red vertices are returned by the function.
- ![intersection examples](pics/intersection.png)
- @param rect1 First rectangle
- @param rect2 Second rectangle
- @param intersectingRegion The output array of the vertices of the intersecting region. It returns
- at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
- @returns One of #RectanglesIntersectTypes
- */
- CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion );
- /** @brief Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.
- */
- CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
- /** @brief Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.
- */
- CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
- //! @} imgproc_shape
- //! @addtogroup imgproc_colormap
- //! @{
- //! GNU Octave/MATLAB equivalent colormaps
- enum ColormapTypes
- {
- COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg)
- COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg)
- COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg)
- COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg)
- COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg)
- COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg)
- COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg)
- COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg)
- COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg)
- COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg)
- COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg)
- COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg)
- COLORMAP_PARULA = 12, //!< ![parula](pics/colormaps/colorscale_parula.jpg)
- COLORMAP_MAGMA = 13, //!< ![magma](pics/colormaps/colorscale_magma.jpg)
- COLORMAP_INFERNO = 14, //!< ![inferno](pics/colormaps/colorscale_inferno.jpg)
- COLORMAP_PLASMA = 15, //!< ![plasma](pics/colormaps/colorscale_plasma.jpg)
- COLORMAP_VIRIDIS = 16, //!< ![viridis](pics/colormaps/colorscale_viridis.jpg)
- COLORMAP_CIVIDIS = 17, //!< ![cividis](pics/colormaps/colorscale_cividis.jpg)
- COLORMAP_TWILIGHT = 18, //!< ![twilight](pics/colormaps/colorscale_twilight.jpg)
- COLORMAP_TWILIGHT_SHIFTED = 19, //!< ![twilight shifted](pics/colormaps/colorscale_twilight_shifted.jpg)
- COLORMAP_TURBO = 20, //!< ![turbo](pics/colormaps/colorscale_turbo.jpg)
- COLORMAP_DEEPGREEN = 21 //!< ![deepgreen](pics/colormaps/colorscale_deepgreen.jpg)
- };
- /** @example samples/cpp/falsecolor.cpp
- An example using applyColorMap function
- */
- /** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image.
- @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
- @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
- @param colormap The colormap to apply, see #ColormapTypes
- */
- CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
- /** @brief Applies a user colormap on a given image.
- @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
- @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
- @param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256
- */
- CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, InputArray userColor);
- //! @} imgproc_colormap
- //! @addtogroup imgproc_draw
- //! @{
- /** OpenCV color channel order is BGR[A] */
- #define CV_RGB(r, g, b) cv::Scalar((b), (g), (r), 0)
- /** @brief Draws a line segment connecting two points.
- The function line draws the line segment between pt1 and pt2 points in the image. The line is
- clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
- or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
- lines are drawn using Gaussian filtering.
- @param img Image.
- @param pt1 First point of the line segment.
- @param pt2 Second point of the line segment.
- @param color Line color.
- @param thickness Line thickness.
- @param lineType Type of the line. See #LineTypes.
- @param shift Number of fractional bits in the point coordinates.
- */
- CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
- int thickness = 1, int lineType = LINE_8, int shift = 0);
- /** @brief Draws an arrow segment pointing from the first point to the second one.
- The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
- @param img Image.
- @param pt1 The point the arrow starts from.
- @param pt2 The point the arrow points to.
- @param color Line color.
- @param thickness Line thickness.
- @param line_type Type of the line. See #LineTypes
- @param shift Number of fractional bits in the point coordinates.
- @param tipLength The length of the arrow tip in relation to the arrow length
- */
- CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
- int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
- /** @brief Draws a simple, thick, or filled up-right rectangle.
- The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
- are pt1 and pt2.
- @param img Image.
- @param pt1 Vertex of the rectangle.
- @param pt2 Vertex of the rectangle opposite to pt1 .
- @param color Rectangle color or brightness (grayscale image).
- @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
- mean that the function has to draw a filled rectangle.
- @param lineType Type of the line. See #LineTypes
- @param shift Number of fractional bits in the point coordinates.
- */
- CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
- const Scalar& color, int thickness = 1,
- int lineType = LINE_8, int shift = 0);
- /** @overload
- use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
- r.br()-Point(1,1)` are opposite corners
- */
- CV_EXPORTS_W void rectangle(InputOutputArray img, Rect rec,
- const Scalar& color, int thickness = 1,
- int lineType = LINE_8, int shift = 0);
- /** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_2.cpp
- An example using drawing functions
- */
- /** @brief Draws a circle.
- The function cv::circle draws a simple or filled circle with a given center and radius.
- @param img Image where the circle is drawn.
- @param center Center of the circle.
- @param radius Radius of the circle.
- @param color Circle color.
- @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
- mean that a filled circle is to be drawn.
- @param lineType Type of the circle boundary. See #LineTypes
- @param shift Number of fractional bits in the coordinates of the center and in the radius value.
- */
- CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
- const Scalar& color, int thickness = 1,
- int lineType = LINE_8, int shift = 0);
- /** @brief Draws a simple or thick elliptic arc or fills an ellipse sector.
- The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
- arc, or a filled ellipse sector. The drawing code uses general parametric form.
- A piecewise-linear curve is used to approximate the elliptic arc
- boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
- #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
- variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
- `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
- the meaning of the parameters to draw the blue arc.
- ![Parameters of Elliptic Arc](pics/ellipse.svg)
- @param img Image.
- @param center Center of the ellipse.
- @param axes Half of the size of the ellipse main axes.
- @param angle Ellipse rotation angle in degrees.
- @param startAngle Starting angle of the elliptic arc in degrees.
- @param endAngle Ending angle of the elliptic arc in degrees.
- @param color Ellipse color.
- @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
- a filled ellipse sector is to be drawn.
- @param lineType Type of the ellipse boundary. See #LineTypes
- @param shift Number of fractional bits in the coordinates of the center and values of axes.
- */
- CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
- double angle, double startAngle, double endAngle,
- const Scalar& color, int thickness = 1,
- int lineType = LINE_8, int shift = 0);
- /** @overload
- @param img Image.
- @param box Alternative ellipse representation via RotatedRect. This means that the function draws
- an ellipse inscribed in the rotated rectangle.
- @param color Ellipse color.
- @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
- a filled ellipse sector is to be drawn.
- @param lineType Type of the ellipse boundary. See #LineTypes
- */
- CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
- int thickness = 1, int lineType = LINE_8);
- /* ----------------------------------------------------------------------------------------- */
- /* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */
- /* ----------------------------------------------------------------------------------------- */
- /** @brief Draws a marker on a predefined position in an image.
- The function cv::drawMarker draws a marker on a given position in the image. For the moment several
- marker types are supported, see #MarkerTypes for more information.
- @param img Image.
- @param position The point where the crosshair is positioned.
- @param color Line color.
- @param markerType The specific type of marker you want to use, see #MarkerTypes
- @param thickness Line thickness.
- @param line_type Type of the line, See #LineTypes
- @param markerSize The length of the marker axis [default = 20 pixels]
- */
- CV_EXPORTS_W void drawMarker(InputOutputArray img, Point position, const Scalar& color,
- int markerType = MARKER_CROSS, int markerSize=20, int thickness=1,
- int line_type=8);
- /* ----------------------------------------------------------------------------------------- */
- /* END OF MARKER SECTION */
- /* ----------------------------------------------------------------------------------------- */
- /** @brief Fills a convex polygon.
- The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
- function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
- self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
- twice at the most (though, its top-most and/or the bottom edge could be horizontal).
- @param img Image.
- @param points Polygon vertices.
- @param color Polygon color.
- @param lineType Type of the polygon boundaries. See #LineTypes
- @param shift Number of fractional bits in the vertex coordinates.
- */
- CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
- const Scalar& color, int lineType = LINE_8,
- int shift = 0);
- /** @overload */
- CV_EXPORTS void fillConvexPoly(InputOutputArray img, const Point* pts, int npts,
- const Scalar& color, int lineType = LINE_8,
- int shift = 0);
- /** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_1.cpp
- An example using drawing functions
- Check @ref tutorial_random_generator_and_text "the corresponding tutorial" for more details
- */
- /** @brief Fills the area bounded by one or more polygons.
- The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
- complex areas, for example, areas with holes, contours with self-intersections (some of their
- parts), and so forth.
- @param img Image.
- @param pts Array of polygons where each polygon is represented as an array of points.
- @param color Polygon color.
- @param lineType Type of the polygon boundaries. See #LineTypes
- @param shift Number of fractional bits in the vertex coordinates.
- @param offset Optional offset of all points of the contours.
- */
- CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
- const Scalar& color, int lineType = LINE_8, int shift = 0,
- Point offset = Point() );
- /** @overload */
- CV_EXPORTS void fillPoly(InputOutputArray img, const Point** pts,
- const int* npts, int ncontours,
- const Scalar& color, int lineType = LINE_8, int shift = 0,
- Point offset = Point() );
- /** @brief Draws several polygonal curves.
- @param img Image.
- @param pts Array of polygonal curves.
- @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
- the function draws a line from the last vertex of each curve to its first vertex.
- @param color Polyline color.
- @param thickness Thickness of the polyline edges.
- @param lineType Type of the line segments. See #LineTypes
- @param shift Number of fractional bits in the vertex coordinates.
- The function cv::polylines draws one or more polygonal curves.
- */
- CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
- bool isClosed, const Scalar& color,
- int thickness = 1, int lineType = LINE_8, int shift = 0 );
- /** @overload */
- CV_EXPORTS void polylines(InputOutputArray img, const Point* const* pts, const int* npts,
- int ncontours, bool isClosed, const Scalar& color,
- int thickness = 1, int lineType = LINE_8, int shift = 0 );
- /** @example samples/cpp/contours2.cpp
- An example program illustrates the use of cv::findContours and cv::drawContours
- \image html WindowsQtContoursOutput.png "Screenshot of the program"
- */
- /** @example samples/cpp/segment_objects.cpp
- An example using drawContours to clean up a background segmentation result
- */
- /** @brief Draws contours outlines or filled contours.
- The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
- bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve
- connected components from the binary image and label them: :
- @include snippets/imgproc_drawContours.cpp
- @param image Destination image.
- @param contours All the input contours. Each contour is stored as a point vector.
- @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
- @param color Color of the contours.
- @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
- thickness=#FILLED ), the contour interiors are drawn.
- @param lineType Line connectivity. See #LineTypes
- @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
- some of the contours (see maxLevel ).
- @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
- If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
- draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
- parameter is only taken into account when there is hierarchy available.
- @param offset Optional contour shift parameter. Shift all the drawn contours by the specified
- \f$\texttt{offset}=(dx,dy)\f$ .
- @note When thickness=#FILLED, the function is designed to handle connected components with holes correctly
- even when no hierarchy data is provided. This is done by analyzing all the outlines together
- using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
- contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
- of contours, or iterate over the collection using contourIdx parameter.
- */
- CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
- int contourIdx, const Scalar& color,
- int thickness = 1, int lineType = LINE_8,
- InputArray hierarchy = noArray(),
- int maxLevel = INT_MAX, Point offset = Point() );
- /** @brief Clips the line against the image rectangle.
- The function cv::clipLine calculates a part of the line segment that is entirely within the specified
- rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise,
- it returns true .
- @param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
- @param pt1 First line point.
- @param pt2 Second line point.
- */
- CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
- /** @overload
- @param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
- @param pt1 First line point.
- @param pt2 Second line point.
- */
- CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2);
- /** @overload
- @param imgRect Image rectangle.
- @param pt1 First line point.
- @param pt2 Second line point.
- */
- CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
- /** @brief Approximates an elliptic arc with a polyline.
- The function ellipse2Poly computes the vertices of a polyline that approximates the specified
- elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped.
- @param center Center of the arc.
- @param axes Half of the size of the ellipse main axes. See #ellipse for details.
- @param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
- @param arcStart Starting angle of the elliptic arc in degrees.
- @param arcEnd Ending angle of the elliptic arc in degrees.
- @param delta Angle between the subsequent polyline vertices. It defines the approximation
- accuracy.
- @param pts Output vector of polyline vertices.
- */
- CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
- int arcStart, int arcEnd, int delta,
- CV_OUT std::vector<Point>& pts );
- /** @overload
- @param center Center of the arc.
- @param axes Half of the size of the ellipse main axes. See #ellipse for details.
- @param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
- @param arcStart Starting angle of the elliptic arc in degrees.
- @param arcEnd Ending angle of the elliptic arc in degrees.
- @param delta Angle between the subsequent polyline vertices. It defines the approximation accuracy.
- @param pts Output vector of polyline vertices.
- */
- CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle,
- int arcStart, int arcEnd, int delta,
- CV_OUT std::vector<Point2d>& pts);
- /** @brief Draws a text string.
- The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
- using the specified font are replaced by question marks. See #getTextSize for a text rendering code
- example.
- @param img Image.
- @param text Text string to be drawn.
- @param org Bottom-left corner of the text string in the image.
- @param fontFace Font type, see #HersheyFonts.
- @param fontScale Font scale factor that is multiplied by the font-specific base size.
- @param color Text color.
- @param thickness Thickness of the lines used to draw a text.
- @param lineType Line type. See #LineTypes
- @param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
- it is at the top-left corner.
- */
- CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
- int fontFace, double fontScale, Scalar color,
- int thickness = 1, int lineType = LINE_8,
- bool bottomLeftOrigin = false );
- /** @brief Calculates the width and height of a text string.
- The function cv::getTextSize calculates and returns the size of a box that contains the specified text.
- That is, the following code renders some text, the tight box surrounding it, and the baseline: :
- @code
- String text = "Funny text inside the box";
- int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
- double fontScale = 2;
- int thickness = 3;
- Mat img(600, 800, CV_8UC3, Scalar::all(0));
- int baseline=0;
- Size textSize = getTextSize(text, fontFace,
- fontScale, thickness, &baseline);
- baseline += thickness;
- // center the text
- Point textOrg((img.cols - textSize.width)/2,
- (img.rows + textSize.height)/2);
- // draw the box
- rectangle(img, textOrg + Point(0, baseline),
- textOrg + Point(textSize.width, -textSize.height),
- Scalar(0,0,255));
- // ... and the baseline first
- line(img, textOrg + Point(0, thickness),
- textOrg + Point(textSize.width, thickness),
- Scalar(0, 0, 255));
- // then put the text itself
- putText(img, text, textOrg, fontFace, fontScale,
- Scalar::all(255), thickness, 8);
- @endcode
- @param text Input text string.
- @param fontFace Font to use, see #HersheyFonts.
- @param fontScale Font scale factor that is multiplied by the font-specific base size.
- @param thickness Thickness of lines used to render the text. See #putText for details.
- @param[out] baseLine y-coordinate of the baseline relative to the bottom-most text
- point.
- @return The size of a box that contains the specified text.
- @see putText
- */
- CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
- double fontScale, int thickness,
- CV_OUT int* baseLine);
- /** @brief Calculates the font-specific size to use to achieve a given height in pixels.
- @param fontFace Font to use, see cv::HersheyFonts.
- @param pixelHeight Pixel height to compute the fontScale for
- @param thickness Thickness of lines used to render the text.See putText for details.
- @return The fontSize to use for cv::putText
- @see cv::putText
- */
- CV_EXPORTS_W double getFontScaleFromHeight(const int fontFace,
- const int pixelHeight,
- const int thickness = 1);
- /** @brief Class for iterating over all pixels on a raster line segment.
- The class LineIterator is used to get each pixel of a raster line connecting
- two specified points.
- It can be treated as a versatile implementation of the Bresenham algorithm
- where you can stop at each pixel and do some extra processing, for
- example, grab pixel values along the line or draw a line with an effect
- (for example, with XOR operation).
- The number of pixels along the line is stored in LineIterator::count.
- The method LineIterator::pos returns the current position in the image:
- @code{.cpp}
- // grabs pixels along the line (pt1, pt2)
- // from 8-bit 3-channel image to the buffer
- LineIterator it(img, pt1, pt2, 8);
- LineIterator it2 = it;
- vector<Vec3b> buf(it.count);
- for(int i = 0; i < it.count; i++, ++it)
- buf[i] = *(const Vec3b*)*it;
- // alternative way of iterating through the line
- for(int i = 0; i < it2.count; i++, ++it2)
- {
- Vec3b val = img.at<Vec3b>(it2.pos());
- CV_Assert(buf[i] == val);
- }
- @endcode
- */
- class CV_EXPORTS LineIterator
- {
- public:
- /** @brief Initializes iterator object for the given line and image.
- The returned iterator can be used to traverse all pixels on a line that
- connects the given two points.
- The line will be clipped on the image boundaries.
- @param img Underlying image.
- @param pt1 First endpoint of the line.
- @param pt2 The other endpoint of the line.
- @param connectivity Pixel connectivity of the iterator. Valid values are 4 (iterator can move
- up, down, left and right) and 8 (iterator can also move diagonally).
- @param leftToRight If true, the line is traversed from the leftmost endpoint to the rightmost
- endpoint. Otherwise, the line is traversed from \p pt1 to \p pt2.
- */
- LineIterator( const Mat& img, Point pt1, Point pt2,
- int connectivity = 8, bool leftToRight = false )
- {
- init(&img, Rect(0, 0, img.cols, img.rows), pt1, pt2, connectivity, leftToRight);
- ptmode = false;
- }
- LineIterator( Point pt1, Point pt2,
- int connectivity = 8, bool leftToRight = false )
- {
- init(0, Rect(std::min(pt1.x, pt2.x),
- std::min(pt1.y, pt2.y),
- std::max(pt1.x, pt2.x) - std::min(pt1.x, pt2.x) + 1,
- std::max(pt1.y, pt2.y) - std::min(pt1.y, pt2.y) + 1),
- pt1, pt2, connectivity, leftToRight);
- ptmode = true;
- }
- LineIterator( Size boundingAreaSize, Point pt1, Point pt2,
- int connectivity = 8, bool leftToRight = false )
- {
- init(0, Rect(0, 0, boundingAreaSize.width, boundingAreaSize.height),
- pt1, pt2, connectivity, leftToRight);
- ptmode = true;
- }
- LineIterator( Rect boundingAreaRect, Point pt1, Point pt2,
- int connectivity = 8, bool leftToRight = false )
- {
- init(0, boundingAreaRect, pt1, pt2, connectivity, leftToRight);
- ptmode = true;
- }
- void init(const Mat* img, Rect boundingAreaRect, Point pt1, Point pt2, int connectivity, bool leftToRight);
- /** @brief Returns pointer to the current pixel.
- */
- uchar* operator *();
- /** @brief Moves iterator to the next pixel on the line.
- This is the prefix version (++it).
- */
- LineIterator& operator ++();
- /** @brief Moves iterator to the next pixel on the line.
- This is the postfix version (it++).
- */
- LineIterator operator ++(int);
- /** @brief Returns coordinates of the current pixel.
- */
- Point pos() const;
- uchar* ptr;
- const uchar* ptr0;
- int step, elemSize;
- int err, count;
- int minusDelta, plusDelta;
- int minusStep, plusStep;
- int minusShift, plusShift;
- Point p;
- bool ptmode;
- };
- //! @cond IGNORED
- // === LineIterator implementation ===
- inline
- uchar* LineIterator::operator *()
- {
- return ptmode ? 0 : ptr;
- }
- inline
- LineIterator& LineIterator::operator ++()
- {
- int mask = err < 0 ? -1 : 0;
- err += minusDelta + (plusDelta & mask);
- if(!ptmode)
- {
- ptr += minusStep + (plusStep & mask);
- }
- else
- {
- p.x += minusShift + (plusShift & mask);
- p.y += minusStep + (plusStep & mask);
- }
- return *this;
- }
- inline
- LineIterator LineIterator::operator ++(int)
- {
- LineIterator it = *this;
- ++(*this);
- return it;
- }
- inline
- Point LineIterator::pos() const
- {
- if(!ptmode)
- {
- size_t offset = (size_t)(ptr - ptr0);
- int y = (int)(offset/step);
- int x = (int)((offset - (size_t)y*step)/elemSize);
- return Point(x, y);
- }
- return p;
- }
- //! @endcond
- //! @} imgproc_draw
- //! @} imgproc
- } // cv
- #include "./imgproc/segmentation.hpp"
- #endif
|