1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- /*
- This file was part of GSoC Project: Facemark API for OpenCV
- Final report: https://gist.github.com/kurnianggoro/74de9121e122ad0bd825176751d47ecc
- Student: Laksono Kurnianggoro
- Mentor: Delia Passalacqua
- */
- #ifndef __OPENCV_FACELANDMARK_HPP__
- #define __OPENCV_FACELANDMARK_HPP__
- /**
- @defgroup face Face Analysis
- - @ref tutorial_table_of_content_facemark
- - The Facemark API
- */
- #include "opencv2/core.hpp"
- #include <vector>
- namespace cv {
- namespace face {
- /** @brief Abstract base class for all facemark models
- To utilize this API in your program, please take a look at the @ref tutorial_table_of_content_facemark
- ### Description
- Facemark is a base class which provides universal access to any specific facemark algorithm.
- Therefore, the users should declare a desired algorithm before they can use it in their application.
- Here is an example on how to declare a facemark algorithm:
- @code
- // Using Facemark in your code:
- Ptr<Facemark> facemark = createFacemarkLBF();
- @endcode
- The typical pipeline for facemark detection is as follows:
- - Load the trained model using Facemark::loadModel.
- - Perform the fitting on an image via Facemark::fit.
- */
- class CV_EXPORTS_W Facemark : public virtual Algorithm
- {
- public:
- /** @brief A function to load the trained model before the fitting process.
- @param model A string represent the filename of a trained model.
- <B>Example of usage</B>
- @code
- facemark->loadModel("../data/lbf.model");
- @endcode
- */
- CV_WRAP virtual void loadModel( String model ) = 0;
- // virtual void saveModel(String fs)=0;
- /** @brief Detect facial landmarks from an image.
- @param image Input image.
- @param faces Output of the function which represent region of interest of the detected faces.
- Each face is stored in cv::Rect container.
- @param landmarks The detected landmark points for each faces.
- <B>Example of usage</B>
- @code
- Mat image = imread("image.jpg");
- std::vector<Rect> faces;
- std::vector<std::vector<Point2f> > landmarks;
- facemark->fit(image, faces, landmarks);
- @endcode
- */
- CV_WRAP virtual bool fit( InputArray image,
- InputArray faces,
- OutputArrayOfArrays landmarks) = 0;
- }; /* Facemark*/
- //! construct an AAM facemark detector
- CV_EXPORTS_W Ptr<Facemark> createFacemarkAAM();
- //! construct an LBF facemark detector
- CV_EXPORTS_W Ptr<Facemark> createFacemarkLBF();
- //! construct a Kazemi facemark detector
- CV_EXPORTS_W Ptr<Facemark> createFacemarkKazemi();
- } // face
- } // cv
- #endif //__OPENCV_FACELANDMARK_HPP__
|