123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/ximgproc.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- @class AdaptiveManifoldFilter;
- @class ContourFitting;
- @class DTFilter;
- @class DisparityWLSFilter;
- @class EdgeAwareInterpolator;
- @class EdgeBoxes;
- @class EdgeDrawing;
- @class FastBilateralSolverFilter;
- @class FastGlobalSmootherFilter;
- @class FastLineDetector;
- @class GraphSegmentation;
- @class GuidedFilter;
- @class Int4;
- @class Mat;
- @class Point2i;
- @class RFFeatureGetter;
- @class RICInterpolator;
- @class Rect2i;
- @class ScanSegment;
- @class SelectiveSearchSegmentation;
- @class SelectiveSearchSegmentationStrategy;
- @class SelectiveSearchSegmentationStrategyColor;
- @class SelectiveSearchSegmentationStrategyFill;
- @class SelectiveSearchSegmentationStrategyMultiple;
- @class SelectiveSearchSegmentationStrategySize;
- @class SelectiveSearchSegmentationStrategyTexture;
- @class StereoMatcher;
- @class StructuredEdgeDetection;
- @class SuperpixelLSC;
- @class SuperpixelSEEDS;
- @class SuperpixelSLIC;
- // C++: enum AngleRangeOption (cv.ximgproc.AngleRangeOption)
- typedef NS_ENUM(int, AngleRangeOption) {
- ARO_0_45 = 0,
- ARO_45_90 = 1,
- ARO_90_135 = 2,
- ARO_315_0 = 3,
- ARO_315_45 = 4,
- ARO_45_135 = 5,
- ARO_315_135 = 6,
- ARO_CTR_HOR = 7,
- ARO_CTR_VER = 8
- };
- // C++: enum EdgeAwareFiltersList (cv.ximgproc.EdgeAwareFiltersList)
- typedef NS_ENUM(int, EdgeAwareFiltersList) {
- DTF_NC = 0,
- DTF_IC = 1,
- DTF_RF = 2,
- GUIDED_FILTER = 3,
- AM_FILTER = 4
- };
- // C++: enum HoughDeskewOption (cv.ximgproc.HoughDeskewOption)
- typedef NS_ENUM(int, HoughDeskewOption) {
- HDO_RAW = 0,
- HDO_DESKEW = 1
- };
- // C++: enum HoughOp (cv.ximgproc.HoughOp)
- typedef NS_ENUM(int, HoughOp) {
- FHT_MIN = 0,
- FHT_MAX = 1,
- FHT_ADD = 2,
- FHT_AVE = 3
- };
- // C++: enum LocalBinarizationMethods (cv.ximgproc.LocalBinarizationMethods)
- typedef NS_ENUM(int, LocalBinarizationMethods) {
- BINARIZATION_NIBLACK = 0,
- BINARIZATION_SAUVOLA = 1,
- BINARIZATION_WOLF = 2,
- BINARIZATION_NICK = 3
- };
- // C++: enum SLICType (cv.ximgproc.SLICType)
- typedef NS_ENUM(int, SLICType) {
- SLIC = 100,
- SLICO = 101,
- MSLIC = 102
- };
- // C++: enum ThinningTypes (cv.ximgproc.ThinningTypes)
- typedef NS_ENUM(int, ThinningTypes) {
- THINNING_ZHANGSUEN = 0,
- THINNING_GUOHALL = 1
- };
- // C++: enum WMFWeightType (cv.ximgproc.WMFWeightType)
- typedef NS_ENUM(int, WMFWeightType) {
- WMF_EXP = 1,
- WMF_IV1 = 1 << 1,
- WMF_IV2 = 1 << 2,
- WMF_COS = 1 << 3,
- WMF_JAC = 1 << 4,
- WMF_OFF = 1 << 5
- };
- NS_ASSUME_NONNULL_BEGIN
- // C++: class Ximgproc
- /**
- * The Ximgproc module
- *
- * Member classes: `DisparityFilter`, `DisparityWLSFilter`, `ScanSegment`, `DTFilter`, `GuidedFilter`, `AdaptiveManifoldFilter`, `FastBilateralSolverFilter`, `FastGlobalSmootherFilter`, `SuperpixelSLIC`, `RFFeatureGetter`, `StructuredEdgeDetection`, `SuperpixelLSC`, `EdgeBoxes`, `GraphSegmentation`, `SelectiveSearchSegmentationStrategy`, `SelectiveSearchSegmentationStrategyColor`, `SelectiveSearchSegmentationStrategySize`, `SelectiveSearchSegmentationStrategyTexture`, `SelectiveSearchSegmentationStrategyFill`, `SelectiveSearchSegmentationStrategyMultiple`, `SelectiveSearchSegmentation`, `ContourFitting`, `SparseMatchInterpolator`, `EdgeAwareInterpolator`, `RICInterpolator`, `EdgeDrawing`, `EdgeDrawingParams`, `RidgeDetectionFilter`, `SuperpixelSEEDS`, `FastLineDetector`
- *
- * Member enums: `ThinningTypes`, `LocalBinarizationMethods`, `EdgeAwareFiltersList`, `SLICType`, `WMFWeightType`, `AngleRangeOption`, `HoughOp`, `HoughDeskewOption`, `GradientOperator`
- */
- CV_EXPORTS @interface Ximgproc : NSObject
- #pragma mark - Class Constants
- @property (class, readonly) int RO_IGNORE_BORDERS NS_SWIFT_NAME(RO_IGNORE_BORDERS);
- @property (class, readonly) int RO_STRICT NS_SWIFT_NAME(RO_STRICT);
- #pragma mark - Methods
- //
- // void cv::ximgproc::niBlackThreshold(Mat _src, Mat& _dst, double maxValue, int type, int blockSize, double k, LocalBinarizationMethods binarizationMethod = BINARIZATION_NIBLACK, double r = 128)
- //
- /**
- * Performs thresholding on input images using Niblack's technique or some of the
- * popular variations it inspired.
- *
- * The function transforms a grayscale image to a binary image according to the formulae:
- * - **THRESH_BINARY**
- * `$$\newcommand{\fork}[4]{ \left\{ \begin{array}{l l} #1 & \text{#2}\\\\ #3 & \text{#4}\\\\ \end{array} \right.} dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}$$`
- * - **THRESH_BINARY_INV**
- * `$$\newcommand{\fork}[4]{ \left\{ \begin{array}{l l} #1 & \text{#2}\\\\ #3 & \text{#4}\\\\ \end{array} \right.} dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}$$`
- * where `$$T(x,y)$$` is a threshold calculated individually for each pixel.
- *
- * The threshold value `$$T(x, y)$$` is determined based on the binarization method chosen. For
- * classic Niblack, it is the mean minus `$$ k $$` times standard deviation of
- * `$$\texttt{blockSize} \times\texttt{blockSize}$$` neighborhood of `$$(x, y)$$`.
- *
- * The function can't process the image in-place.
- *
- * @param _src Source 8-bit single-channel image.
- * @param _dst Destination image of the same size and the same type as src.
- * @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied,
- * used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
- * @param type Thresholding type, see cv::ThresholdTypes.
- * @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value
- * for the pixel: 3, 5, 7, and so on.
- * @param k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
- * normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
- * the mean.
- * @param binarizationMethod Binarization method to use. By default, Niblack's technique is used.
- * Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.
- * @param r The user-adjustable parameter used by Sauvola's technique. This is the dynamic range
- * of standard deviation.
- * @see `threshold`, `adaptiveThreshold`
- */
- + (void)niBlackThreshold:(Mat*)_src _dst:(Mat*)_dst maxValue:(double)maxValue type:(int)type blockSize:(int)blockSize k:(double)k binarizationMethod:(LocalBinarizationMethods)binarizationMethod r:(double)r NS_SWIFT_NAME(niBlackThreshold(_src:_dst:maxValue:type:blockSize:k:binarizationMethod:r:));
- /**
- * Performs thresholding on input images using Niblack's technique or some of the
- * popular variations it inspired.
- *
- * The function transforms a grayscale image to a binary image according to the formulae:
- * - **THRESH_BINARY**
- * `$$\newcommand{\fork}[4]{ \left\{ \begin{array}{l l} #1 & \text{#2}\\\\ #3 & \text{#4}\\\\ \end{array} \right.} dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}$$`
- * - **THRESH_BINARY_INV**
- * `$$\newcommand{\fork}[4]{ \left\{ \begin{array}{l l} #1 & \text{#2}\\\\ #3 & \text{#4}\\\\ \end{array} \right.} dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}$$`
- * where `$$T(x,y)$$` is a threshold calculated individually for each pixel.
- *
- * The threshold value `$$T(x, y)$$` is determined based on the binarization method chosen. For
- * classic Niblack, it is the mean minus `$$ k $$` times standard deviation of
- * `$$\texttt{blockSize} \times\texttt{blockSize}$$` neighborhood of `$$(x, y)$$`.
- *
- * The function can't process the image in-place.
- *
- * @param _src Source 8-bit single-channel image.
- * @param _dst Destination image of the same size and the same type as src.
- * @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied,
- * used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
- * @param type Thresholding type, see cv::ThresholdTypes.
- * @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value
- * for the pixel: 3, 5, 7, and so on.
- * @param k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
- * normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
- * the mean.
- * @param binarizationMethod Binarization method to use. By default, Niblack's technique is used.
- * Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.
- * of standard deviation.
- * @see `threshold`, `adaptiveThreshold`
- */
- + (void)niBlackThreshold:(Mat*)_src _dst:(Mat*)_dst maxValue:(double)maxValue type:(int)type blockSize:(int)blockSize k:(double)k binarizationMethod:(LocalBinarizationMethods)binarizationMethod NS_SWIFT_NAME(niBlackThreshold(_src:_dst:maxValue:type:blockSize:k:binarizationMethod:));
- /**
- * Performs thresholding on input images using Niblack's technique or some of the
- * popular variations it inspired.
- *
- * The function transforms a grayscale image to a binary image according to the formulae:
- * - **THRESH_BINARY**
- * `$$\newcommand{\fork}[4]{ \left\{ \begin{array}{l l} #1 & \text{#2}\\\\ #3 & \text{#4}\\\\ \end{array} \right.} dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}$$`
- * - **THRESH_BINARY_INV**
- * `$$\newcommand{\fork}[4]{ \left\{ \begin{array}{l l} #1 & \text{#2}\\\\ #3 & \text{#4}\\\\ \end{array} \right.} dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}$$`
- * where `$$T(x,y)$$` is a threshold calculated individually for each pixel.
- *
- * The threshold value `$$T(x, y)$$` is determined based on the binarization method chosen. For
- * classic Niblack, it is the mean minus `$$ k $$` times standard deviation of
- * `$$\texttt{blockSize} \times\texttt{blockSize}$$` neighborhood of `$$(x, y)$$`.
- *
- * The function can't process the image in-place.
- *
- * @param _src Source 8-bit single-channel image.
- * @param _dst Destination image of the same size and the same type as src.
- * @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied,
- * used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
- * @param type Thresholding type, see cv::ThresholdTypes.
- * @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value
- * for the pixel: 3, 5, 7, and so on.
- * @param k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
- * normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
- * the mean.
- * Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.
- * of standard deviation.
- * @see `threshold`, `adaptiveThreshold`
- */
- + (void)niBlackThreshold:(Mat*)_src _dst:(Mat*)_dst maxValue:(double)maxValue type:(int)type blockSize:(int)blockSize k:(double)k NS_SWIFT_NAME(niBlackThreshold(_src:_dst:maxValue:type:blockSize:k:));
- //
- // void cv::ximgproc::thinning(Mat src, Mat& dst, ThinningTypes thinningType = THINNING_ZHANGSUEN)
- //
- /**
- * Applies a binary blob thinning operation, to achieve a skeletization of the input image.
- *
- * The function transforms a binary blob image into a skeletized form using the technique of Zhang-Suen.
- *
- * @param src Source 8-bit single-channel image, containing binary blobs, with blobs having 255 pixel values.
- * @param dst Destination image of the same size and the same type as src. The function can work in-place.
- * @param thinningType Value that defines which thinning algorithm should be used. See cv::ximgproc::ThinningTypes
- */
- + (void)thinning:(Mat*)src dst:(Mat*)dst thinningType:(ThinningTypes)thinningType NS_SWIFT_NAME(thinning(src:dst:thinningType:));
- /**
- * Applies a binary blob thinning operation, to achieve a skeletization of the input image.
- *
- * The function transforms a binary blob image into a skeletized form using the technique of Zhang-Suen.
- *
- * @param src Source 8-bit single-channel image, containing binary blobs, with blobs having 255 pixel values.
- * @param dst Destination image of the same size and the same type as src. The function can work in-place.
- */
- + (void)thinning:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(thinning(src:dst:));
- //
- // void cv::ximgproc::anisotropicDiffusion(Mat src, Mat& dst, float alpha, float K, int niters)
- //
- /**
- * Performs anisotropic diffusion on an image.
- *
- * The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation:
- *
- * `$${\frac {\partial I}{\partial t}}={\mathrm {div}}\left(c(x,y,t)\nabla I\right)=\nabla c\cdot \nabla I+c(x,y,t)\Delta I$$`
- *
- * Suggested functions for c(x,y,t) are:
- *
- * `$$c\left(\|\nabla I\|\right)=e^{{-\left(\|\nabla I\|/K\right)^{2}}}$$`
- *
- * or
- *
- * `$$ c\left(\|\nabla I\|\right)={\frac {1}{1+\left({\frac {\|\nabla I\|}{K}}\right)^{2}}} $$`
- *
- * @param src Source image with 3 channels.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param alpha The amount of time to step forward by on each iteration (normally, it's between 0 and 1).
- * @param K sensitivity to the edges
- * @param niters The number of iterations
- */
- + (void)anisotropicDiffusion:(Mat*)src dst:(Mat*)dst alpha:(float)alpha K:(float)K niters:(int)niters NS_SWIFT_NAME(anisotropicDiffusion(src:dst:alpha:K:niters:));
- //
- // void cv::ximgproc::GradientDericheY(Mat op, Mat& dst, double alpha, double omega)
- //
- /**
- * Applies Y Deriche filter to an image.
- *
- * For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
- *
- *
- */
- + (void)GradientDericheY:(Mat*)op dst:(Mat*)dst alpha:(double)alpha omega:(double)omega NS_SWIFT_NAME(GradientDericheY(op:dst:alpha:omega:));
- //
- // void cv::ximgproc::GradientDericheX(Mat op, Mat& dst, double alpha, double omega)
- //
- /**
- * Applies X Deriche filter to an image.
- *
- * For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
- *
- *
- */
- + (void)GradientDericheX:(Mat*)op dst:(Mat*)dst alpha:(double)alpha omega:(double)omega NS_SWIFT_NAME(GradientDericheX(op:dst:alpha:omega:));
- //
- // Ptr_DisparityWLSFilter cv::ximgproc::createDisparityWLSFilter(Ptr_StereoMatcher matcher_left)
- //
- /**
- * Convenience factory method that creates an instance of DisparityWLSFilter and sets up all the relevant
- * filter parameters automatically based on the matcher instance. Currently supports only StereoBM and StereoSGBM.
- *
- * @param matcher_left stereo matcher instance that will be used with the filter
- */
- + (DisparityWLSFilter*)createDisparityWLSFilter:(StereoMatcher*)matcher_left NS_SWIFT_NAME(createDisparityWLSFilter(matcher_left:));
- //
- // Ptr_StereoMatcher cv::ximgproc::createRightMatcher(Ptr_StereoMatcher matcher_left)
- //
- /**
- * Convenience method to set up the matcher for computing the right-view disparity map
- * that is required in case of filtering with confidence.
- *
- * @param matcher_left main stereo matcher instance that will be used with the filter
- */
- + (StereoMatcher*)createRightMatcher:(StereoMatcher*)matcher_left NS_SWIFT_NAME(createRightMatcher(matcher_left:));
- //
- // Ptr_DisparityWLSFilter cv::ximgproc::createDisparityWLSFilterGeneric(bool use_confidence)
- //
- /**
- * More generic factory method, create instance of DisparityWLSFilter and execute basic
- * initialization routines. When using this method you will need to set-up the ROI, matchers and
- * other parameters by yourself.
- *
- * @param use_confidence filtering with confidence requires two disparity maps (for the left and right views) and is
- * approximately two times slower. However, quality is typically significantly better.
- */
- + (DisparityWLSFilter*)createDisparityWLSFilterGeneric:(BOOL)use_confidence NS_SWIFT_NAME(createDisparityWLSFilterGeneric(use_confidence:));
- //
- // int cv::ximgproc::readGT(String src_path, Mat& dst)
- //
- /**
- * Function for reading ground truth disparity maps. Supports basic Middlebury
- * and MPI-Sintel formats. Note that the resulting disparity map is scaled by 16.
- *
- * @param src_path path to the image, containing ground-truth disparity map
- *
- * @param dst output disparity map, CV_16S depth
- *
- * @result returns zero if successfully read the ground truth
- */
- + (int)readGT:(NSString*)src_path dst:(Mat*)dst NS_SWIFT_NAME(readGT(src_path:dst:));
- //
- // double cv::ximgproc::computeMSE(Mat GT, Mat src, Rect ROI)
- //
- /**
- * Function for computing mean square error for disparity maps
- *
- * @param GT ground truth disparity map
- *
- * @param src disparity map to evaluate
- *
- * @param ROI region of interest
- *
- * @result returns mean square error between GT and src
- */
- + (double)computeMSE:(Mat*)GT src:(Mat*)src ROI:(Rect2i*)ROI NS_SWIFT_NAME(computeMSE(GT:src:ROI:));
- //
- // double cv::ximgproc::computeBadPixelPercent(Mat GT, Mat src, Rect ROI, int thresh = 24)
- //
- /**
- * Function for computing the percent of "bad" pixels in the disparity map
- * (pixels where error is higher than a specified threshold)
- *
- * @param GT ground truth disparity map
- *
- * @param src disparity map to evaluate
- *
- * @param ROI region of interest
- *
- * @param thresh threshold used to determine "bad" pixels
- *
- * @result returns mean square error between GT and src
- */
- + (double)computeBadPixelPercent:(Mat*)GT src:(Mat*)src ROI:(Rect2i*)ROI thresh:(int)thresh NS_SWIFT_NAME(computeBadPixelPercent(GT:src:ROI:thresh:));
- /**
- * Function for computing the percent of "bad" pixels in the disparity map
- * (pixels where error is higher than a specified threshold)
- *
- * @param GT ground truth disparity map
- *
- * @param src disparity map to evaluate
- *
- * @param ROI region of interest
- *
- *
- * @result returns mean square error between GT and src
- */
- + (double)computeBadPixelPercent:(Mat*)GT src:(Mat*)src ROI:(Rect2i*)ROI NS_SWIFT_NAME(computeBadPixelPercent(GT:src:ROI:));
- //
- // void cv::ximgproc::getDisparityVis(Mat src, Mat& dst, double scale = 1.0)
- //
- /**
- * Function for creating a disparity map visualization (clamped CV_8U image)
- *
- * @param src input disparity map (CV_16S depth)
- *
- * @param dst output visualization
- *
- * @param scale disparity map will be multiplied by this value for visualization
- */
- + (void)getDisparityVis:(Mat*)src dst:(Mat*)dst scale:(double)scale NS_SWIFT_NAME(getDisparityVis(src:dst:scale:));
- /**
- * Function for creating a disparity map visualization (clamped CV_8U image)
- *
- * @param src input disparity map (CV_16S depth)
- *
- * @param dst output visualization
- *
- */
- + (void)getDisparityVis:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(getDisparityVis(src:dst:));
- //
- // void cv::ximgproc::edgePreservingFilter(Mat src, Mat& dst, int d, double threshold)
- //
- /**
- * Smoothes an image using the Edge-Preserving filter.
- *
- * The function smoothes Gaussian noise as well as salt & pepper noise.
- * For more details about this implementation, please see
- * [ReiWoe18] Reich, S. and Wörgötter, F. and Dellen, B. (2018). A Real-Time Edge-Preserving Denoising Filter. Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP): Visapp, 85-94, 4. DOI: 10.5220/0006509000850094.
- *
- * @param src Source 8-bit 3-channel image.
- * @param dst Destination image of the same size and type as src.
- * @param d Diameter of each pixel neighborhood that is used during filtering. Must be greater or equal 3.
- * @param threshold Threshold, which distinguishes between noise, outliers, and data.
- */
- + (void)edgePreservingFilter:(Mat*)src dst:(Mat*)dst d:(int)d threshold:(double)threshold NS_SWIFT_NAME(edgePreservingFilter(src:dst:d:threshold:));
- //
- // Ptr_ScanSegment cv::ximgproc::createScanSegment(int image_width, int image_height, int num_superpixels, int slices = 8, bool merge_small = true)
- //
- /**
- * Initializes a ScanSegment object.
- *
- * The function initializes a ScanSegment object for the input image. It stores the parameters of
- * the image: image_width and image_height. It also sets the parameters of the F-DBSCAN superpixel
- * algorithm, which are: num_superpixels, threads, and merge_small.
- *
- * @param image_width Image width.
- * @param image_height Image height.
- * @param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size). Use getNumberOfSuperpixels() to
- * get the actual number.
- * @param slices Number of processing threads for parallelisation. Setting -1 uses the maximum number
- * of threads. In practice, four threads is enough for smaller images and eight threads for larger ones.
- * @param merge_small merge small segments to give the desired number of superpixels. Processing is
- * much faster without merging, but many small segments will be left in the image.
- */
- + (ScanSegment*)createScanSegment:(int)image_width image_height:(int)image_height num_superpixels:(int)num_superpixels slices:(int)slices merge_small:(BOOL)merge_small NS_SWIFT_NAME(createScanSegment(image_width:image_height:num_superpixels:slices:merge_small:));
- /**
- * Initializes a ScanSegment object.
- *
- * The function initializes a ScanSegment object for the input image. It stores the parameters of
- * the image: image_width and image_height. It also sets the parameters of the F-DBSCAN superpixel
- * algorithm, which are: num_superpixels, threads, and merge_small.
- *
- * @param image_width Image width.
- * @param image_height Image height.
- * @param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size). Use getNumberOfSuperpixels() to
- * get the actual number.
- * @param slices Number of processing threads for parallelisation. Setting -1 uses the maximum number
- * of threads. In practice, four threads is enough for smaller images and eight threads for larger ones.
- * much faster without merging, but many small segments will be left in the image.
- */
- + (ScanSegment*)createScanSegment:(int)image_width image_height:(int)image_height num_superpixels:(int)num_superpixels slices:(int)slices NS_SWIFT_NAME(createScanSegment(image_width:image_height:num_superpixels:slices:));
- /**
- * Initializes a ScanSegment object.
- *
- * The function initializes a ScanSegment object for the input image. It stores the parameters of
- * the image: image_width and image_height. It also sets the parameters of the F-DBSCAN superpixel
- * algorithm, which are: num_superpixels, threads, and merge_small.
- *
- * @param image_width Image width.
- * @param image_height Image height.
- * @param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size). Use getNumberOfSuperpixels() to
- * get the actual number.
- * of threads. In practice, four threads is enough for smaller images and eight threads for larger ones.
- * much faster without merging, but many small segments will be left in the image.
- */
- + (ScanSegment*)createScanSegment:(int)image_width image_height:(int)image_height num_superpixels:(int)num_superpixels NS_SWIFT_NAME(createScanSegment(image_width:image_height:num_superpixels:));
- //
- // Ptr_DTFilter cv::ximgproc::createDTFilter(Mat guide, double sigmaSpatial, double sigmaColor, EdgeAwareFiltersList mode = DTF_NC, int numIters = 3)
- //
- /**
- * Factory method, create instance of DTFilter and produce initialization routines.
- *
- * @param guide guided image (used to build transformed distance, which describes edge structure of
- * guided image).
- *
- * @param sigmaSpatial `$${\sigma}_H$$` parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- *
- * @param sigmaColor `$${\sigma}_r$$` parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- *
- * @param mode one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
- * filtering 2D signals in the article.
- *
- * @param numIters optional number of iterations used for filtering, 3 is quite enough.
- *
- * For more details about Domain Transform filter parameters, see the original article CITE: Gastal11 and
- * [Domain Transform filter homepage](http://www.inf.ufrgs.br/~eslgastal/DomainTransform/).
- */
- + (DTFilter*)createDTFilter:(Mat*)guide sigmaSpatial:(double)sigmaSpatial sigmaColor:(double)sigmaColor mode:(EdgeAwareFiltersList)mode numIters:(int)numIters NS_SWIFT_NAME(createDTFilter(guide:sigmaSpatial:sigmaColor:mode:numIters:));
- /**
- * Factory method, create instance of DTFilter and produce initialization routines.
- *
- * @param guide guided image (used to build transformed distance, which describes edge structure of
- * guided image).
- *
- * @param sigmaSpatial `$${\sigma}_H$$` parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- *
- * @param sigmaColor `$${\sigma}_r$$` parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- *
- * @param mode one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
- * filtering 2D signals in the article.
- *
- *
- * For more details about Domain Transform filter parameters, see the original article CITE: Gastal11 and
- * [Domain Transform filter homepage](http://www.inf.ufrgs.br/~eslgastal/DomainTransform/).
- */
- + (DTFilter*)createDTFilter:(Mat*)guide sigmaSpatial:(double)sigmaSpatial sigmaColor:(double)sigmaColor mode:(EdgeAwareFiltersList)mode NS_SWIFT_NAME(createDTFilter(guide:sigmaSpatial:sigmaColor:mode:));
- /**
- * Factory method, create instance of DTFilter and produce initialization routines.
- *
- * @param guide guided image (used to build transformed distance, which describes edge structure of
- * guided image).
- *
- * @param sigmaSpatial `$${\sigma}_H$$` parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- *
- * @param sigmaColor `$${\sigma}_r$$` parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- *
- * filtering 2D signals in the article.
- *
- *
- * For more details about Domain Transform filter parameters, see the original article CITE: Gastal11 and
- * [Domain Transform filter homepage](http://www.inf.ufrgs.br/~eslgastal/DomainTransform/).
- */
- + (DTFilter*)createDTFilter:(Mat*)guide sigmaSpatial:(double)sigmaSpatial sigmaColor:(double)sigmaColor NS_SWIFT_NAME(createDTFilter(guide:sigmaSpatial:sigmaColor:));
- //
- // void cv::ximgproc::dtFilter(Mat guide, Mat src, Mat& dst, double sigmaSpatial, double sigmaColor, EdgeAwareFiltersList mode = DTF_NC, int numIters = 3)
- //
- /**
- * Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
- * guided image then use DTFilter interface to avoid extra computations on initialization stage.
- *
- * @param guide guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
- * depth and up to 4 channels.
- * @param src filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
- * @param dst destination image
- * @param sigmaSpatial `$${\sigma}_H$$` parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- * @param sigmaColor `$${\sigma}_r$$` parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- * @param mode one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
- * filtering 2D signals in the article.
- * @param numIters optional number of iterations used for filtering, 3 is quite enough.
- * @see `bilateralFilter`, `+guidedFilter:src:dst:radius:eps:dDepth:`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)dtFilter:(Mat*)guide src:(Mat*)src dst:(Mat*)dst sigmaSpatial:(double)sigmaSpatial sigmaColor:(double)sigmaColor mode:(EdgeAwareFiltersList)mode numIters:(int)numIters NS_SWIFT_NAME(dtFilter(guide:src:dst:sigmaSpatial:sigmaColor:mode:numIters:));
- /**
- * Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
- * guided image then use DTFilter interface to avoid extra computations on initialization stage.
- *
- * @param guide guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
- * depth and up to 4 channels.
- * @param src filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
- * @param dst destination image
- * @param sigmaSpatial `$${\sigma}_H$$` parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- * @param sigmaColor `$${\sigma}_r$$` parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- * @param mode one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
- * filtering 2D signals in the article.
- * @see `bilateralFilter`, `+guidedFilter:src:dst:radius:eps:dDepth:`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)dtFilter:(Mat*)guide src:(Mat*)src dst:(Mat*)dst sigmaSpatial:(double)sigmaSpatial sigmaColor:(double)sigmaColor mode:(EdgeAwareFiltersList)mode NS_SWIFT_NAME(dtFilter(guide:src:dst:sigmaSpatial:sigmaColor:mode:));
- /**
- * Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
- * guided image then use DTFilter interface to avoid extra computations on initialization stage.
- *
- * @param guide guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
- * depth and up to 4 channels.
- * @param src filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
- * @param dst destination image
- * @param sigmaSpatial `$${\sigma}_H$$` parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- * @param sigmaColor `$${\sigma}_r$$` parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- * filtering 2D signals in the article.
- * @see `bilateralFilter`, `+guidedFilter:src:dst:radius:eps:dDepth:`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)dtFilter:(Mat*)guide src:(Mat*)src dst:(Mat*)dst sigmaSpatial:(double)sigmaSpatial sigmaColor:(double)sigmaColor NS_SWIFT_NAME(dtFilter(guide:src:dst:sigmaSpatial:sigmaColor:));
- //
- // Ptr_GuidedFilter cv::ximgproc::createGuidedFilter(Mat guide, int radius, double eps)
- //
- /**
- * Factory method, create instance of GuidedFilter and produce initialization routines.
- *
- * @param guide guided image (or array of images) with up to 3 channels, if it have more then 3
- * channels then only first 3 channels will be used.
- *
- * @param radius radius of Guided Filter.
- *
- * @param eps regularization term of Guided Filter. `$${eps}^2$$` is similar to the sigma in the color
- * space into bilateralFilter.
- *
- * For more details about Guided Filter parameters, see the original article CITE: Kaiming10 .
- */
- + (GuidedFilter*)createGuidedFilter:(Mat*)guide radius:(int)radius eps:(double)eps NS_SWIFT_NAME(createGuidedFilter(guide:radius:eps:));
- //
- // void cv::ximgproc::guidedFilter(Mat guide, Mat src, Mat& dst, int radius, double eps, int dDepth = -1)
- //
- /**
- * Simple one-line Guided Filter call.
- *
- * If you have multiple images to filter with the same guided image then use GuidedFilter interface to
- * avoid extra computations on initialization stage.
- *
- * @param guide guided image (or array of images) with up to 3 channels, if it have more then 3
- * channels then only first 3 channels will be used.
- *
- * @param src filtering image with any numbers of channels.
- *
- * @param dst output image.
- *
- * @param radius radius of Guided Filter.
- *
- * @param eps regularization term of Guided Filter. `$${eps}^2$$` is similar to the sigma in the color
- * space into bilateralFilter.
- *
- * @param dDepth optional depth of the output image.
- *
- * @see `bilateralFilter`, `+dtFilter:src:dst:sigmaSpatial:sigmaColor:mode:numIters:`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)guidedFilter:(Mat*)guide src:(Mat*)src dst:(Mat*)dst radius:(int)radius eps:(double)eps dDepth:(int)dDepth NS_SWIFT_NAME(guidedFilter(guide:src:dst:radius:eps:dDepth:));
- /**
- * Simple one-line Guided Filter call.
- *
- * If you have multiple images to filter with the same guided image then use GuidedFilter interface to
- * avoid extra computations on initialization stage.
- *
- * @param guide guided image (or array of images) with up to 3 channels, if it have more then 3
- * channels then only first 3 channels will be used.
- *
- * @param src filtering image with any numbers of channels.
- *
- * @param dst output image.
- *
- * @param radius radius of Guided Filter.
- *
- * @param eps regularization term of Guided Filter. `$${eps}^2$$` is similar to the sigma in the color
- * space into bilateralFilter.
- *
- *
- * @see `bilateralFilter`, `+dtFilter:src:dst:sigmaSpatial:sigmaColor:mode:numIters:`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)guidedFilter:(Mat*)guide src:(Mat*)src dst:(Mat*)dst radius:(int)radius eps:(double)eps NS_SWIFT_NAME(guidedFilter(guide:src:dst:radius:eps:));
- //
- // Ptr_AdaptiveManifoldFilter cv::ximgproc::createAMFilter(double sigma_s, double sigma_r, bool adjust_outliers = false)
- //
- /**
- * Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.
- *
- * @param sigma_s spatial standard deviation.
- *
- * @param sigma_r color space standard deviation, it is similar to the sigma in the color space into
- * bilateralFilter.
- *
- * @param adjust_outliers optional, specify perform outliers adjust operation or not, (Eq. 9) in the
- * original paper.
- *
- * For more details about Adaptive Manifold Filter parameters, see the original article CITE: Gastal12 .
- *
- * NOTE: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
- * color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
- * sigmas in bilateralFilter and dtFilter functions.
- */
- + (AdaptiveManifoldFilter*)createAMFilter:(double)sigma_s sigma_r:(double)sigma_r adjust_outliers:(BOOL)adjust_outliers NS_SWIFT_NAME(createAMFilter(sigma_s:sigma_r:adjust_outliers:));
- /**
- * Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.
- *
- * @param sigma_s spatial standard deviation.
- *
- * @param sigma_r color space standard deviation, it is similar to the sigma in the color space into
- * bilateralFilter.
- *
- * original paper.
- *
- * For more details about Adaptive Manifold Filter parameters, see the original article CITE: Gastal12 .
- *
- * NOTE: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
- * color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
- * sigmas in bilateralFilter and dtFilter functions.
- */
- + (AdaptiveManifoldFilter*)createAMFilter:(double)sigma_s sigma_r:(double)sigma_r NS_SWIFT_NAME(createAMFilter(sigma_s:sigma_r:));
- //
- // void cv::ximgproc::amFilter(Mat joint, Mat src, Mat& dst, double sigma_s, double sigma_r, bool adjust_outliers = false)
- //
- /**
- * Simple one-line Adaptive Manifold Filter call.
- *
- * @param joint joint (also called as guided) image or array of images with any numbers of channels.
- *
- * @param src filtering image with any numbers of channels.
- *
- * @param dst output image.
- *
- * @param sigma_s spatial standard deviation.
- *
- * @param sigma_r color space standard deviation, it is similar to the sigma in the color space into
- * bilateralFilter.
- *
- * @param adjust_outliers optional, specify perform outliers adjust operation or not, (Eq. 9) in the
- * original paper.
- *
- * NOTE: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
- * color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
- * sigmas in bilateralFilter and dtFilter functions. @see `bilateralFilter`, `+dtFilter:src:dst:sigmaSpatial:sigmaColor:mode:numIters:`, `+guidedFilter:src:dst:radius:eps:dDepth:`
- */
- + (void)amFilter:(Mat*)joint src:(Mat*)src dst:(Mat*)dst sigma_s:(double)sigma_s sigma_r:(double)sigma_r adjust_outliers:(BOOL)adjust_outliers NS_SWIFT_NAME(amFilter(joint:src:dst:sigma_s:sigma_r:adjust_outliers:));
- /**
- * Simple one-line Adaptive Manifold Filter call.
- *
- * @param joint joint (also called as guided) image or array of images with any numbers of channels.
- *
- * @param src filtering image with any numbers of channels.
- *
- * @param dst output image.
- *
- * @param sigma_s spatial standard deviation.
- *
- * @param sigma_r color space standard deviation, it is similar to the sigma in the color space into
- * bilateralFilter.
- *
- * original paper.
- *
- * NOTE: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
- * color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
- * sigmas in bilateralFilter and dtFilter functions. @see `bilateralFilter`, `+dtFilter:src:dst:sigmaSpatial:sigmaColor:mode:numIters:`, `+guidedFilter:src:dst:radius:eps:dDepth:`
- */
- + (void)amFilter:(Mat*)joint src:(Mat*)src dst:(Mat*)dst sigma_s:(double)sigma_s sigma_r:(double)sigma_r NS_SWIFT_NAME(amFilter(joint:src:dst:sigma_s:sigma_r:));
- //
- // void cv::ximgproc::jointBilateralFilter(Mat joint, Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT)
- //
- /**
- * Applies the joint bilateral filter to an image.
- *
- * @param joint Joint 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image with the same depth as joint
- * image.
- *
- * @param dst Destination image of the same size and type as src .
- *
- * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- * @param borderType
- *
- * NOTE: bilateralFilter and jointBilateralFilter use L1 norm to compute difference between colors.
- *
- * @see `bilateralFilter`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)jointBilateralFilter:(Mat*)joint src:(Mat*)src dst:(Mat*)dst d:(int)d sigmaColor:(double)sigmaColor sigmaSpace:(double)sigmaSpace borderType:(int)borderType NS_SWIFT_NAME(jointBilateralFilter(joint:src:dst:d:sigmaColor:sigmaSpace:borderType:));
- /**
- * Applies the joint bilateral filter to an image.
- *
- * @param joint Joint 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image with the same depth as joint
- * image.
- *
- * @param dst Destination image of the same size and type as src .
- *
- * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- * NOTE: bilateralFilter and jointBilateralFilter use L1 norm to compute difference between colors.
- *
- * @see `bilateralFilter`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)jointBilateralFilter:(Mat*)joint src:(Mat*)src dst:(Mat*)dst d:(int)d sigmaColor:(double)sigmaColor sigmaSpace:(double)sigmaSpace NS_SWIFT_NAME(jointBilateralFilter(joint:src:dst:d:sigmaColor:sigmaSpace:));
- //
- // void cv::ximgproc::bilateralTextureFilter(Mat src, Mat& dst, int fr = 3, int numIter = 1, double sigmaAlpha = -1., double sigmaAvg = -1.)
- //
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * @param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * @param dst Destination image of the same size and type as src.
- *
- * @param fr Radius of kernel to be used for filtering. It should be positive integer
- *
- * @param numIter Number of iterations of algorithm, It should be positive integer
- *
- * @param sigmaAlpha Controls the sharpness of the weight transition from edges to smooth/texture regions, where
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * @param sigmaAvg Range blur parameter for texture blurring. Larger value makes result to be more blurred. When the
- * value is negative, it is automatically calculated as described in the paper.
- *
- * @see `+rollingGuidanceFilter:dst:d:sigmaColor:sigmaSpace:numOfIter:borderType:`, `bilateralFilter`
- */
- + (void)bilateralTextureFilter:(Mat*)src dst:(Mat*)dst fr:(int)fr numIter:(int)numIter sigmaAlpha:(double)sigmaAlpha sigmaAvg:(double)sigmaAvg NS_SWIFT_NAME(bilateralTextureFilter(src:dst:fr:numIter:sigmaAlpha:sigmaAvg:));
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * @param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * @param dst Destination image of the same size and type as src.
- *
- * @param fr Radius of kernel to be used for filtering. It should be positive integer
- *
- * @param numIter Number of iterations of algorithm, It should be positive integer
- *
- * @param sigmaAlpha Controls the sharpness of the weight transition from edges to smooth/texture regions, where
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * value is negative, it is automatically calculated as described in the paper.
- *
- * @see `+rollingGuidanceFilter:dst:d:sigmaColor:sigmaSpace:numOfIter:borderType:`, `bilateralFilter`
- */
- + (void)bilateralTextureFilter:(Mat*)src dst:(Mat*)dst fr:(int)fr numIter:(int)numIter sigmaAlpha:(double)sigmaAlpha NS_SWIFT_NAME(bilateralTextureFilter(src:dst:fr:numIter:sigmaAlpha:));
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * @param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * @param dst Destination image of the same size and type as src.
- *
- * @param fr Radius of kernel to be used for filtering. It should be positive integer
- *
- * @param numIter Number of iterations of algorithm, It should be positive integer
- *
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * value is negative, it is automatically calculated as described in the paper.
- *
- * @see `+rollingGuidanceFilter:dst:d:sigmaColor:sigmaSpace:numOfIter:borderType:`, `bilateralFilter`
- */
- + (void)bilateralTextureFilter:(Mat*)src dst:(Mat*)dst fr:(int)fr numIter:(int)numIter NS_SWIFT_NAME(bilateralTextureFilter(src:dst:fr:numIter:));
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * @param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * @param dst Destination image of the same size and type as src.
- *
- * @param fr Radius of kernel to be used for filtering. It should be positive integer
- *
- *
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * value is negative, it is automatically calculated as described in the paper.
- *
- * @see `+rollingGuidanceFilter:dst:d:sigmaColor:sigmaSpace:numOfIter:borderType:`, `bilateralFilter`
- */
- + (void)bilateralTextureFilter:(Mat*)src dst:(Mat*)dst fr:(int)fr NS_SWIFT_NAME(bilateralTextureFilter(src:dst:fr:));
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * @param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * @param dst Destination image of the same size and type as src.
- *
- *
- *
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * value is negative, it is automatically calculated as described in the paper.
- *
- * @see `+rollingGuidanceFilter:dst:d:sigmaColor:sigmaSpace:numOfIter:borderType:`, `bilateralFilter`
- */
- + (void)bilateralTextureFilter:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(bilateralTextureFilter(src:dst:));
- //
- // void cv::ximgproc::rollingGuidanceFilter(Mat src, Mat& dst, int d = -1, double sigmaColor = 25, double sigmaSpace = 3, int numOfIter = 4, int borderType = BORDER_DEFAULT)
- //
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * @param dst Destination image of the same size and type as src.
- *
- * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- * @param numOfIter Number of iterations of joint edge-preserving filtering applied on the source image.
- *
- * @param borderType
- *
- * NOTE: rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * @see `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`, `bilateralFilter`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)rollingGuidanceFilter:(Mat*)src dst:(Mat*)dst d:(int)d sigmaColor:(double)sigmaColor sigmaSpace:(double)sigmaSpace numOfIter:(int)numOfIter borderType:(int)borderType NS_SWIFT_NAME(rollingGuidanceFilter(src:dst:d:sigmaColor:sigmaSpace:numOfIter:borderType:));
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * @param dst Destination image of the same size and type as src.
- *
- * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- * @param numOfIter Number of iterations of joint edge-preserving filtering applied on the source image.
- *
- *
- * NOTE: rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * @see `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`, `bilateralFilter`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)rollingGuidanceFilter:(Mat*)src dst:(Mat*)dst d:(int)d sigmaColor:(double)sigmaColor sigmaSpace:(double)sigmaSpace numOfIter:(int)numOfIter NS_SWIFT_NAME(rollingGuidanceFilter(src:dst:d:sigmaColor:sigmaSpace:numOfIter:));
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * @param dst Destination image of the same size and type as src.
- *
- * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- *
- * NOTE: rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * @see `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`, `bilateralFilter`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)rollingGuidanceFilter:(Mat*)src dst:(Mat*)dst d:(int)d sigmaColor:(double)sigmaColor sigmaSpace:(double)sigmaSpace NS_SWIFT_NAME(rollingGuidanceFilter(src:dst:d:sigmaColor:sigmaSpace:));
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * @param dst Destination image of the same size and type as src.
- *
- * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- *
- * NOTE: rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * @see `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`, `bilateralFilter`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)rollingGuidanceFilter:(Mat*)src dst:(Mat*)dst d:(int)d sigmaColor:(double)sigmaColor NS_SWIFT_NAME(rollingGuidanceFilter(src:dst:d:sigmaColor:));
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * @param dst Destination image of the same size and type as src.
- *
- * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- *
- * NOTE: rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * @see `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`, `bilateralFilter`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)rollingGuidanceFilter:(Mat*)src dst:(Mat*)dst d:(int)d NS_SWIFT_NAME(rollingGuidanceFilter(src:dst:d:));
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * @param dst Destination image of the same size and type as src.
- *
- * it is computed from sigmaSpace .
- *
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d\>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- *
- * NOTE: rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * @see `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`, `bilateralFilter`, `+amFilter:src:dst:sigma_s:sigma_r:adjust_outliers:`
- */
- + (void)rollingGuidanceFilter:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(rollingGuidanceFilter(src:dst:));
- //
- // Ptr_FastBilateralSolverFilter cv::ximgproc::createFastBilateralSolverFilter(Mat guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda = 128.0, int num_iter = 25, double max_tol = 1e-5)
- //
- /**
- * Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * @param lambda smoothness strength parameter for solver.
- *
- * @param num_iter number of iterations used for solver, 25 is usually enough.
- *
- * @param max_tol convergence tolerance used for solver.
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- */
- + (FastBilateralSolverFilter*)createFastBilateralSolverFilter:(Mat*)guide sigma_spatial:(double)sigma_spatial sigma_luma:(double)sigma_luma sigma_chroma:(double)sigma_chroma lambda:(double)lambda num_iter:(int)num_iter max_tol:(double)max_tol NS_SWIFT_NAME(createFastBilateralSolverFilter(guide:sigma_spatial:sigma_luma:sigma_chroma:lambda:num_iter:max_tol:));
- /**
- * Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * @param lambda smoothness strength parameter for solver.
- *
- * @param num_iter number of iterations used for solver, 25 is usually enough.
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- */
- + (FastBilateralSolverFilter*)createFastBilateralSolverFilter:(Mat*)guide sigma_spatial:(double)sigma_spatial sigma_luma:(double)sigma_luma sigma_chroma:(double)sigma_chroma lambda:(double)lambda num_iter:(int)num_iter NS_SWIFT_NAME(createFastBilateralSolverFilter(guide:sigma_spatial:sigma_luma:sigma_chroma:lambda:num_iter:));
- /**
- * Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * @param lambda smoothness strength parameter for solver.
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- */
- + (FastBilateralSolverFilter*)createFastBilateralSolverFilter:(Mat*)guide sigma_spatial:(double)sigma_spatial sigma_luma:(double)sigma_luma sigma_chroma:(double)sigma_chroma lambda:(double)lambda NS_SWIFT_NAME(createFastBilateralSolverFilter(guide:sigma_spatial:sigma_luma:sigma_chroma:lambda:));
- /**
- * Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- */
- + (FastBilateralSolverFilter*)createFastBilateralSolverFilter:(Mat*)guide sigma_spatial:(double)sigma_spatial sigma_luma:(double)sigma_luma sigma_chroma:(double)sigma_chroma NS_SWIFT_NAME(createFastBilateralSolverFilter(guide:sigma_spatial:sigma_luma:sigma_chroma:));
- //
- // void cv::ximgproc::fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat& dst, double sigma_spatial = 8, double sigma_luma = 8, double sigma_chroma = 8, double lambda = 128.0, int num_iter = 25, double max_tol = 1e-5)
- //
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * @param dst destination image.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * @param lambda smoothness strength parameter for solver.
- *
- * @param num_iter number of iterations used for solver, 25 is usually enough.
- *
- * @param max_tol convergence tolerance used for solver.
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * NOTE: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- + (void)fastBilateralSolverFilter:(Mat*)guide src:(Mat*)src confidence:(Mat*)confidence dst:(Mat*)dst sigma_spatial:(double)sigma_spatial sigma_luma:(double)sigma_luma sigma_chroma:(double)sigma_chroma lambda:(double)lambda num_iter:(int)num_iter max_tol:(double)max_tol NS_SWIFT_NAME(fastBilateralSolverFilter(guide:src:confidence:dst:sigma_spatial:sigma_luma:sigma_chroma:lambda:num_iter:max_tol:));
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * @param dst destination image.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * @param lambda smoothness strength parameter for solver.
- *
- * @param num_iter number of iterations used for solver, 25 is usually enough.
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * NOTE: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- + (void)fastBilateralSolverFilter:(Mat*)guide src:(Mat*)src confidence:(Mat*)confidence dst:(Mat*)dst sigma_spatial:(double)sigma_spatial sigma_luma:(double)sigma_luma sigma_chroma:(double)sigma_chroma lambda:(double)lambda num_iter:(int)num_iter NS_SWIFT_NAME(fastBilateralSolverFilter(guide:src:confidence:dst:sigma_spatial:sigma_luma:sigma_chroma:lambda:num_iter:));
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * @param dst destination image.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * @param lambda smoothness strength parameter for solver.
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * NOTE: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- + (void)fastBilateralSolverFilter:(Mat*)guide src:(Mat*)src confidence:(Mat*)confidence dst:(Mat*)dst sigma_spatial:(double)sigma_spatial sigma_luma:(double)sigma_luma sigma_chroma:(double)sigma_chroma lambda:(double)lambda NS_SWIFT_NAME(fastBilateralSolverFilter(guide:src:confidence:dst:sigma_spatial:sigma_luma:sigma_chroma:lambda:));
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * @param dst destination image.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * NOTE: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- + (void)fastBilateralSolverFilter:(Mat*)guide src:(Mat*)src confidence:(Mat*)confidence dst:(Mat*)dst sigma_spatial:(double)sigma_spatial sigma_luma:(double)sigma_luma sigma_chroma:(double)sigma_chroma NS_SWIFT_NAME(fastBilateralSolverFilter(guide:src:confidence:dst:sigma_spatial:sigma_luma:sigma_chroma:));
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * @param dst destination image.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * @param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * NOTE: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- + (void)fastBilateralSolverFilter:(Mat*)guide src:(Mat*)src confidence:(Mat*)confidence dst:(Mat*)dst sigma_spatial:(double)sigma_spatial sigma_luma:(double)sigma_luma NS_SWIFT_NAME(fastBilateralSolverFilter(guide:src:confidence:dst:sigma_spatial:sigma_luma:));
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * @param dst destination image.
- *
- * @param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- *
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * NOTE: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- + (void)fastBilateralSolverFilter:(Mat*)guide src:(Mat*)src confidence:(Mat*)confidence dst:(Mat*)dst sigma_spatial:(double)sigma_spatial NS_SWIFT_NAME(fastBilateralSolverFilter(guide:src:confidence:dst:sigma_spatial:));
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * @param dst destination image.
- *
- *
- *
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * NOTE: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- + (void)fastBilateralSolverFilter:(Mat*)guide src:(Mat*)src confidence:(Mat*)confidence dst:(Mat*)dst NS_SWIFT_NAME(fastBilateralSolverFilter(guide:src:confidence:dst:));
- //
- // Ptr_FastGlobalSmootherFilter cv::ximgproc::createFastGlobalSmootherFilter(Mat guide, double lambda, double sigma_color, double lambda_attenuation = 0.25, int num_iter = 3)
- //
- /**
- * Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param lambda parameter defining the amount of regularization
- *
- * @param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * @param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- * @param num_iter number of iterations used for filtering, 3 is usually enough.
- *
- * For more details about Fast Global Smoother parameters, see the original paper CITE: Min2014. However, please note that
- * there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
- * expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
- * achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
- * propose to dynamically update the guide image after each iteration. To maximize the performance this feature
- * was not implemented here.
- */
- + (FastGlobalSmootherFilter*)createFastGlobalSmootherFilter:(Mat*)guide lambda:(double)lambda sigma_color:(double)sigma_color lambda_attenuation:(double)lambda_attenuation num_iter:(int)num_iter NS_SWIFT_NAME(createFastGlobalSmootherFilter(guide:lambda:sigma_color:lambda_attenuation:num_iter:));
- /**
- * Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param lambda parameter defining the amount of regularization
- *
- * @param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * @param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- *
- * For more details about Fast Global Smoother parameters, see the original paper CITE: Min2014. However, please note that
- * there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
- * expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
- * achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
- * propose to dynamically update the guide image after each iteration. To maximize the performance this feature
- * was not implemented here.
- */
- + (FastGlobalSmootherFilter*)createFastGlobalSmootherFilter:(Mat*)guide lambda:(double)lambda sigma_color:(double)sigma_color lambda_attenuation:(double)lambda_attenuation NS_SWIFT_NAME(createFastGlobalSmootherFilter(guide:lambda:sigma_color:lambda_attenuation:));
- /**
- * Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param lambda parameter defining the amount of regularization
- *
- * @param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- *
- * For more details about Fast Global Smoother parameters, see the original paper CITE: Min2014. However, please note that
- * there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
- * expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
- * achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
- * propose to dynamically update the guide image after each iteration. To maximize the performance this feature
- * was not implemented here.
- */
- + (FastGlobalSmootherFilter*)createFastGlobalSmootherFilter:(Mat*)guide lambda:(double)lambda sigma_color:(double)sigma_color NS_SWIFT_NAME(createFastGlobalSmootherFilter(guide:lambda:sigma_color:));
- //
- // void cv::ximgproc::fastGlobalSmootherFilter(Mat guide, Mat src, Mat& dst, double lambda, double sigma_color, double lambda_attenuation = 0.25, int num_iter = 3)
- //
- /**
- * Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
- * guide then use FastGlobalSmootherFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param dst destination image.
- *
- * @param lambda parameter defining the amount of regularization
- *
- * @param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * @param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- * @param num_iter number of iterations used for filtering, 3 is usually enough.
- */
- + (void)fastGlobalSmootherFilter:(Mat*)guide src:(Mat*)src dst:(Mat*)dst lambda:(double)lambda sigma_color:(double)sigma_color lambda_attenuation:(double)lambda_attenuation num_iter:(int)num_iter NS_SWIFT_NAME(fastGlobalSmootherFilter(guide:src:dst:lambda:sigma_color:lambda_attenuation:num_iter:));
- /**
- * Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
- * guide then use FastGlobalSmootherFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param dst destination image.
- *
- * @param lambda parameter defining the amount of regularization
- *
- * @param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * @param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- */
- + (void)fastGlobalSmootherFilter:(Mat*)guide src:(Mat*)src dst:(Mat*)dst lambda:(double)lambda sigma_color:(double)sigma_color lambda_attenuation:(double)lambda_attenuation NS_SWIFT_NAME(fastGlobalSmootherFilter(guide:src:dst:lambda:sigma_color:lambda_attenuation:));
- /**
- * Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
- * guide then use FastGlobalSmootherFilter interface to avoid extra computations.
- *
- * @param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * @param dst destination image.
- *
- * @param lambda parameter defining the amount of regularization
- *
- * @param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- */
- + (void)fastGlobalSmootherFilter:(Mat*)guide src:(Mat*)src dst:(Mat*)dst lambda:(double)lambda sigma_color:(double)sigma_color NS_SWIFT_NAME(fastGlobalSmootherFilter(guide:src:dst:lambda:sigma_color:));
- //
- // void cv::ximgproc::l0Smooth(Mat src, Mat& dst, double lambda = 0.02, double kappa = 2.0)
- //
- /**
- * Global image smoothing via L0 gradient minimization.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
- *
- * @param dst destination image.
- *
- * @param lambda parameter defining the smooth term weight.
- *
- * @param kappa parameter defining the increasing factor of the weight of the gradient data term.
- *
- * For more details about L0 Smoother, see the original paper CITE: xu2011image.
- */
- + (void)l0Smooth:(Mat*)src dst:(Mat*)dst lambda:(double)lambda kappa:(double)kappa NS_SWIFT_NAME(l0Smooth(src:dst:lambda:kappa:));
- /**
- * Global image smoothing via L0 gradient minimization.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
- *
- * @param dst destination image.
- *
- * @param lambda parameter defining the smooth term weight.
- *
- *
- * For more details about L0 Smoother, see the original paper CITE: xu2011image.
- */
- + (void)l0Smooth:(Mat*)src dst:(Mat*)dst lambda:(double)lambda NS_SWIFT_NAME(l0Smooth(src:dst:lambda:));
- /**
- * Global image smoothing via L0 gradient minimization.
- *
- * @param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
- *
- * @param dst destination image.
- *
- *
- *
- * For more details about L0 Smoother, see the original paper CITE: xu2011image.
- */
- + (void)l0Smooth:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(l0Smooth(src:dst:));
- //
- // Ptr_SuperpixelSLIC cv::ximgproc::createSuperpixelSLIC(Mat image, SLICType algorithm = SLICO, int region_size = 10, float ruler = 10.0f)
- //
- /**
- * Initialize a SuperpixelSLIC object
- *
- * @param image Image to segment
- * @param algorithm Chooses the algorithm variant to use:
- * SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
- * while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.
- * @param region_size Chooses an average superpixel size measured in pixels
- * @param ruler Chooses the enforcement of superpixel smoothness factor of superpixel
- *
- * The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. For enanched results it is recommended for color images to
- * preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
- * CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
- *
- * ![image](pics/superpixels_slic.png)
- */
- + (SuperpixelSLIC*)createSuperpixelSLIC:(Mat*)image algorithm:(SLICType)algorithm region_size:(int)region_size ruler:(float)ruler NS_SWIFT_NAME(createSuperpixelSLIC(image:algorithm:region_size:ruler:));
- /**
- * Initialize a SuperpixelSLIC object
- *
- * @param image Image to segment
- * @param algorithm Chooses the algorithm variant to use:
- * SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
- * while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.
- * @param region_size Chooses an average superpixel size measured in pixels
- *
- * The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. For enanched results it is recommended for color images to
- * preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
- * CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
- *
- * ![image](pics/superpixels_slic.png)
- */
- + (SuperpixelSLIC*)createSuperpixelSLIC:(Mat*)image algorithm:(SLICType)algorithm region_size:(int)region_size NS_SWIFT_NAME(createSuperpixelSLIC(image:algorithm:region_size:));
- /**
- * Initialize a SuperpixelSLIC object
- *
- * @param image Image to segment
- * @param algorithm Chooses the algorithm variant to use:
- * SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
- * while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.
- *
- * The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. For enanched results it is recommended for color images to
- * preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
- * CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
- *
- * ![image](pics/superpixels_slic.png)
- */
- + (SuperpixelSLIC*)createSuperpixelSLIC:(Mat*)image algorithm:(SLICType)algorithm NS_SWIFT_NAME(createSuperpixelSLIC(image:algorithm:));
- /**
- * Initialize a SuperpixelSLIC object
- *
- * @param image Image to segment
- * SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
- * while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.
- *
- * The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. For enanched results it is recommended for color images to
- * preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
- * CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
- *
- * ![image](pics/superpixels_slic.png)
- */
- + (SuperpixelSLIC*)createSuperpixelSLIC:(Mat*)image NS_SWIFT_NAME(createSuperpixelSLIC(image:));
- //
- // void cv::ximgproc::createQuaternionImage(Mat img, Mat& qimg)
- //
- /**
- * creates a quaternion image.
- *
- */
- + (void)createQuaternionImage:(Mat*)img qimg:(Mat*)qimg NS_SWIFT_NAME(createQuaternionImage(img:qimg:));
- //
- // void cv::ximgproc::qconj(Mat qimg, Mat& qcimg)
- //
- /**
- * calculates conjugate of a quaternion image.
- *
- */
- + (void)qconj:(Mat*)qimg qcimg:(Mat*)qcimg NS_SWIFT_NAME(qconj(qimg:qcimg:));
- //
- // void cv::ximgproc::qunitary(Mat qimg, Mat& qnimg)
- //
- /**
- * divides each element by its modulus.
- *
- */
- + (void)qunitary:(Mat*)qimg qnimg:(Mat*)qnimg NS_SWIFT_NAME(qunitary(qimg:qnimg:));
- //
- // void cv::ximgproc::qmultiply(Mat src1, Mat src2, Mat& dst)
- //
- /**
- * Calculates the per-element quaternion product of two arrays
- *
- */
- + (void)qmultiply:(Mat*)src1 src2:(Mat*)src2 dst:(Mat*)dst NS_SWIFT_NAME(qmultiply(src1:src2:dst:));
- //
- // void cv::ximgproc::qdft(Mat img, Mat& qimg, int flags, bool sideLeft)
- //
- /**
- * Performs a forward or inverse Discrete quaternion Fourier transform of a 2D quaternion array.
- *
- */
- + (void)qdft:(Mat*)img qimg:(Mat*)qimg flags:(int)flags sideLeft:(BOOL)sideLeft NS_SWIFT_NAME(qdft(img:qimg:flags:sideLeft:));
- //
- // void cv::ximgproc::colorMatchTemplate(Mat img, Mat templ, Mat& result)
- //
- /**
- * Compares a color template against overlapped color image regions.
- *
- */
- + (void)colorMatchTemplate:(Mat*)img templ:(Mat*)templ result:(Mat*)result NS_SWIFT_NAME(colorMatchTemplate(img:templ:result:));
- //
- // Ptr_RFFeatureGetter cv::ximgproc::createRFFeatureGetter()
- //
- + (RFFeatureGetter*)createRFFeatureGetter NS_SWIFT_NAME(createRFFeatureGetter());
- //
- // Ptr_StructuredEdgeDetection cv::ximgproc::createStructuredEdgeDetection(String model, Ptr_RFFeatureGetter howToGetFeatures = Ptr<RFFeatureGetter>())
- //
- + (StructuredEdgeDetection*)createStructuredEdgeDetection:(NSString*)model howToGetFeatures:(RFFeatureGetter*)howToGetFeatures NS_SWIFT_NAME(createStructuredEdgeDetection(model:howToGetFeatures:));
- + (StructuredEdgeDetection*)createStructuredEdgeDetection:(NSString*)model NS_SWIFT_NAME(createStructuredEdgeDetection(model:));
- //
- // void cv::ximgproc::findEllipses(Mat image, Mat& ellipses, float scoreThreshold = 0.7f, float reliabilityThreshold = 0.5f, float centerDistanceThreshold = 0.05f)
- //
- /**
- * Finds ellipses fastly in an image using projective invariant pruning.
- *
- * The function detects ellipses in images using projective invariant pruning.
- * For more details about this implementation, please see CITE: jia2017fast
- * Jia, Qi et al, (2017).
- * A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
- *
- * @param image input image, could be gray or color.
- * @param ellipses output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.
- * @param scoreThreshold float, the threshold of ellipse score.
- * @param reliabilityThreshold float, the threshold of reliability.
- * @param centerDistanceThreshold float, the threshold of center distance.
- */
- + (void)findEllipses:(Mat*)image ellipses:(Mat*)ellipses scoreThreshold:(float)scoreThreshold reliabilityThreshold:(float)reliabilityThreshold centerDistanceThreshold:(float)centerDistanceThreshold NS_SWIFT_NAME(findEllipses(image:ellipses:scoreThreshold:reliabilityThreshold:centerDistanceThreshold:));
- /**
- * Finds ellipses fastly in an image using projective invariant pruning.
- *
- * The function detects ellipses in images using projective invariant pruning.
- * For more details about this implementation, please see CITE: jia2017fast
- * Jia, Qi et al, (2017).
- * A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
- *
- * @param image input image, could be gray or color.
- * @param ellipses output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.
- * @param scoreThreshold float, the threshold of ellipse score.
- * @param reliabilityThreshold float, the threshold of reliability.
- */
- + (void)findEllipses:(Mat*)image ellipses:(Mat*)ellipses scoreThreshold:(float)scoreThreshold reliabilityThreshold:(float)reliabilityThreshold NS_SWIFT_NAME(findEllipses(image:ellipses:scoreThreshold:reliabilityThreshold:));
- /**
- * Finds ellipses fastly in an image using projective invariant pruning.
- *
- * The function detects ellipses in images using projective invariant pruning.
- * For more details about this implementation, please see CITE: jia2017fast
- * Jia, Qi et al, (2017).
- * A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
- *
- * @param image input image, could be gray or color.
- * @param ellipses output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.
- * @param scoreThreshold float, the threshold of ellipse score.
- */
- + (void)findEllipses:(Mat*)image ellipses:(Mat*)ellipses scoreThreshold:(float)scoreThreshold NS_SWIFT_NAME(findEllipses(image:ellipses:scoreThreshold:));
- /**
- * Finds ellipses fastly in an image using projective invariant pruning.
- *
- * The function detects ellipses in images using projective invariant pruning.
- * For more details about this implementation, please see CITE: jia2017fast
- * Jia, Qi et al, (2017).
- * A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
- *
- * @param image input image, could be gray or color.
- * @param ellipses output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.
- */
- + (void)findEllipses:(Mat*)image ellipses:(Mat*)ellipses NS_SWIFT_NAME(findEllipses(image:ellipses:));
- //
- // Ptr_SuperpixelLSC cv::ximgproc::createSuperpixelLSC(Mat image, int region_size = 10, float ratio = 0.075f)
- //
- /**
- * Class implementing the LSC (Linear Spectral Clustering) superpixels
- *
- * @param image Image to segment
- * @param region_size Chooses an average superpixel size measured in pixels
- * @param ratio Chooses the enforcement of superpixel compactness factor of superpixel
- *
- * The function initializes a SuperpixelLSC object for the input image. It sets the parameters of
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. An example of LSC is ilustrated in the following picture.
- * For enanched results it is recommended for color images to preprocess image with little gaussian blur
- * with a small 3 x 3 kernel and additional conversion into CieLAB color space.
- *
- * ![image](pics/superpixels_lsc.png)
- */
- + (SuperpixelLSC*)createSuperpixelLSC:(Mat*)image region_size:(int)region_size ratio:(float)ratio NS_SWIFT_NAME(createSuperpixelLSC(image:region_size:ratio:));
- /**
- * Class implementing the LSC (Linear Spectral Clustering) superpixels
- *
- * @param image Image to segment
- * @param region_size Chooses an average superpixel size measured in pixels
- *
- * The function initializes a SuperpixelLSC object for the input image. It sets the parameters of
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. An example of LSC is ilustrated in the following picture.
- * For enanched results it is recommended for color images to preprocess image with little gaussian blur
- * with a small 3 x 3 kernel and additional conversion into CieLAB color space.
- *
- * ![image](pics/superpixels_lsc.png)
- */
- + (SuperpixelLSC*)createSuperpixelLSC:(Mat*)image region_size:(int)region_size NS_SWIFT_NAME(createSuperpixelLSC(image:region_size:));
- /**
- * Class implementing the LSC (Linear Spectral Clustering) superpixels
- *
- * @param image Image to segment
- *
- * The function initializes a SuperpixelLSC object for the input image. It sets the parameters of
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. An example of LSC is ilustrated in the following picture.
- * For enanched results it is recommended for color images to preprocess image with little gaussian blur
- * with a small 3 x 3 kernel and additional conversion into CieLAB color space.
- *
- * ![image](pics/superpixels_lsc.png)
- */
- + (SuperpixelLSC*)createSuperpixelLSC:(Mat*)image NS_SWIFT_NAME(createSuperpixelLSC(image:));
- //
- // Ptr_EdgeBoxes cv::ximgproc::createEdgeBoxes(float alpha = 0.65f, float beta = 0.75f, float eta = 1, float minScore = 0.01f, int maxBoxes = 10000, float edgeMinMag = 0.1f, float edgeMergeThr = 0.5f, float clusterMinMag = 0.5f, float maxAspectRatio = 3, float minBoxArea = 1000, float gamma = 2, float kappa = 1.5f)
- //
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- * @param minScore min score of boxes to detect.
- * @param maxBoxes max number of boxes to detect.
- * @param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * @param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * @param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- * @param maxAspectRatio max aspect ratio of boxes.
- * @param minBoxArea minimum area of boxes.
- * @param gamma affinity sensitivity.
- * @param kappa scale sensitivity.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta minScore:(float)minScore maxBoxes:(int)maxBoxes edgeMinMag:(float)edgeMinMag edgeMergeThr:(float)edgeMergeThr clusterMinMag:(float)clusterMinMag maxAspectRatio:(float)maxAspectRatio minBoxArea:(float)minBoxArea gamma:(float)gamma kappa:(float)kappa NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:minScore:maxBoxes:edgeMinMag:edgeMergeThr:clusterMinMag:maxAspectRatio:minBoxArea:gamma:kappa:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- * @param minScore min score of boxes to detect.
- * @param maxBoxes max number of boxes to detect.
- * @param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * @param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * @param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- * @param maxAspectRatio max aspect ratio of boxes.
- * @param minBoxArea minimum area of boxes.
- * @param gamma affinity sensitivity.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta minScore:(float)minScore maxBoxes:(int)maxBoxes edgeMinMag:(float)edgeMinMag edgeMergeThr:(float)edgeMergeThr clusterMinMag:(float)clusterMinMag maxAspectRatio:(float)maxAspectRatio minBoxArea:(float)minBoxArea gamma:(float)gamma NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:minScore:maxBoxes:edgeMinMag:edgeMergeThr:clusterMinMag:maxAspectRatio:minBoxArea:gamma:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- * @param minScore min score of boxes to detect.
- * @param maxBoxes max number of boxes to detect.
- * @param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * @param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * @param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- * @param maxAspectRatio max aspect ratio of boxes.
- * @param minBoxArea minimum area of boxes.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta minScore:(float)minScore maxBoxes:(int)maxBoxes edgeMinMag:(float)edgeMinMag edgeMergeThr:(float)edgeMergeThr clusterMinMag:(float)clusterMinMag maxAspectRatio:(float)maxAspectRatio minBoxArea:(float)minBoxArea NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:minScore:maxBoxes:edgeMinMag:edgeMergeThr:clusterMinMag:maxAspectRatio:minBoxArea:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- * @param minScore min score of boxes to detect.
- * @param maxBoxes max number of boxes to detect.
- * @param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * @param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * @param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- * @param maxAspectRatio max aspect ratio of boxes.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta minScore:(float)minScore maxBoxes:(int)maxBoxes edgeMinMag:(float)edgeMinMag edgeMergeThr:(float)edgeMergeThr clusterMinMag:(float)clusterMinMag maxAspectRatio:(float)maxAspectRatio NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:minScore:maxBoxes:edgeMinMag:edgeMergeThr:clusterMinMag:maxAspectRatio:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- * @param minScore min score of boxes to detect.
- * @param maxBoxes max number of boxes to detect.
- * @param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * @param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * @param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta minScore:(float)minScore maxBoxes:(int)maxBoxes edgeMinMag:(float)edgeMinMag edgeMergeThr:(float)edgeMergeThr clusterMinMag:(float)clusterMinMag NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:minScore:maxBoxes:edgeMinMag:edgeMergeThr:clusterMinMag:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- * @param minScore min score of boxes to detect.
- * @param maxBoxes max number of boxes to detect.
- * @param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * @param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta minScore:(float)minScore maxBoxes:(int)maxBoxes edgeMinMag:(float)edgeMinMag edgeMergeThr:(float)edgeMergeThr NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:minScore:maxBoxes:edgeMinMag:edgeMergeThr:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- * @param minScore min score of boxes to detect.
- * @param maxBoxes max number of boxes to detect.
- * @param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta minScore:(float)minScore maxBoxes:(int)maxBoxes edgeMinMag:(float)edgeMinMag NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:minScore:maxBoxes:edgeMinMag:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- * @param minScore min score of boxes to detect.
- * @param maxBoxes max number of boxes to detect.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta minScore:(float)minScore maxBoxes:(int)maxBoxes NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:minScore:maxBoxes:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- * @param minScore min score of boxes to detect.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta minScore:(float)minScore NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:minScore:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- * @param eta adaptation rate for nms threshold.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta eta:(float)eta NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:eta:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- * @param beta nms threshold for object proposals.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha beta:(float)beta NS_SWIFT_NAME(createEdgeBoxes(alpha:beta:));
- /**
- * Creates a Edgeboxes
- *
- * @param alpha step size of sliding window search.
- */
- + (EdgeBoxes*)createEdgeBoxes:(float)alpha NS_SWIFT_NAME(createEdgeBoxes(alpha:));
- /**
- * Creates a Edgeboxes
- *
- */
- + (EdgeBoxes*)createEdgeBoxes NS_SWIFT_NAME(createEdgeBoxes());
- //
- // void cv::ximgproc::weightedMedianFilter(Mat joint, Mat src, Mat& dst, int r, double sigma = 25.5, WMFWeightType weightType = WMF_EXP, Mat mask = Mat())
- //
- /**
- * Applies weighted median filter to an image.
- *
- * For more details about this implementation, please see CITE: zhang2014100+
- *
- * the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
- *
- * @see `medianBlur`, `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`
- */
- + (void)weightedMedianFilter:(Mat*)joint src:(Mat*)src dst:(Mat*)dst r:(int)r sigma:(double)sigma weightType:(WMFWeightType)weightType mask:(Mat*)mask NS_SWIFT_NAME(weightedMedianFilter(joint:src:dst:r:sigma:weightType:mask:));
- /**
- * Applies weighted median filter to an image.
- *
- * For more details about this implementation, please see CITE: zhang2014100+
- *
- * the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
- *
- * @see `medianBlur`, `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`
- */
- + (void)weightedMedianFilter:(Mat*)joint src:(Mat*)src dst:(Mat*)dst r:(int)r sigma:(double)sigma weightType:(WMFWeightType)weightType NS_SWIFT_NAME(weightedMedianFilter(joint:src:dst:r:sigma:weightType:));
- /**
- * Applies weighted median filter to an image.
- *
- * For more details about this implementation, please see CITE: zhang2014100+
- *
- * the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
- *
- * @see `medianBlur`, `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`
- */
- + (void)weightedMedianFilter:(Mat*)joint src:(Mat*)src dst:(Mat*)dst r:(int)r sigma:(double)sigma NS_SWIFT_NAME(weightedMedianFilter(joint:src:dst:r:sigma:));
- /**
- * Applies weighted median filter to an image.
- *
- * For more details about this implementation, please see CITE: zhang2014100+
- *
- * the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
- *
- * @see `medianBlur`, `+jointBilateralFilter:src:dst:d:sigmaColor:sigmaSpace:borderType:`
- */
- + (void)weightedMedianFilter:(Mat*)joint src:(Mat*)src dst:(Mat*)dst r:(int)r NS_SWIFT_NAME(weightedMedianFilter(joint:src:dst:r:));
- //
- // Ptr_GraphSegmentation cv::ximgproc::segmentation::createGraphSegmentation(double sigma = 0.5, float k = 300, int min_size = 100)
- //
- /**
- * Creates a graph based segmentor
- * @param sigma The sigma parameter, used to smooth image
- * @param k The k parameter of the algorythm
- * @param min_size The minimum size of segments
- */
- + (GraphSegmentation*)createGraphSegmentation:(double)sigma k:(float)k min_size:(int)min_size NS_SWIFT_NAME(createGraphSegmentation(sigma:k:min_size:));
- /**
- * Creates a graph based segmentor
- * @param sigma The sigma parameter, used to smooth image
- * @param k The k parameter of the algorythm
- */
- + (GraphSegmentation*)createGraphSegmentation:(double)sigma k:(float)k NS_SWIFT_NAME(createGraphSegmentation(sigma:k:));
- /**
- * Creates a graph based segmentor
- * @param sigma The sigma parameter, used to smooth image
- */
- + (GraphSegmentation*)createGraphSegmentation:(double)sigma NS_SWIFT_NAME(createGraphSegmentation(sigma:));
- /**
- * Creates a graph based segmentor
- */
- + (GraphSegmentation*)createGraphSegmentation NS_SWIFT_NAME(createGraphSegmentation());
- //
- // Ptr_SelectiveSearchSegmentationStrategyColor cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyColor()
- //
- /**
- * Create a new color-based strategy
- */
- + (SelectiveSearchSegmentationStrategyColor*)createSelectiveSearchSegmentationStrategyColor NS_SWIFT_NAME(createSelectiveSearchSegmentationStrategyColor());
- //
- // Ptr_SelectiveSearchSegmentationStrategySize cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategySize()
- //
- /**
- * Create a new size-based strategy
- */
- + (SelectiveSearchSegmentationStrategySize*)createSelectiveSearchSegmentationStrategySize NS_SWIFT_NAME(createSelectiveSearchSegmentationStrategySize());
- //
- // Ptr_SelectiveSearchSegmentationStrategyTexture cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyTexture()
- //
- /**
- * Create a new size-based strategy
- */
- + (SelectiveSearchSegmentationStrategyTexture*)createSelectiveSearchSegmentationStrategyTexture NS_SWIFT_NAME(createSelectiveSearchSegmentationStrategyTexture());
- //
- // Ptr_SelectiveSearchSegmentationStrategyFill cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyFill()
- //
- /**
- * Create a new fill-based strategy
- */
- + (SelectiveSearchSegmentationStrategyFill*)createSelectiveSearchSegmentationStrategyFill NS_SWIFT_NAME(createSelectiveSearchSegmentationStrategyFill());
- //
- // Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple()
- //
- /**
- * Create a new multiple strategy
- */
- + (SelectiveSearchSegmentationStrategyMultiple*)createSelectiveSearchSegmentationStrategyMultiple NS_SWIFT_NAME(createSelectiveSearchSegmentationStrategyMultiple());
- //
- // Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1)
- //
- /**
- * Create a new multiple strategy and set one subtrategy
- * @param s1 The first strategy
- */
- + (SelectiveSearchSegmentationStrategyMultiple*)createSelectiveSearchSegmentationStrategyMultiple:(SelectiveSearchSegmentationStrategy*)s1 NS_SWIFT_NAME(createSelectiveSearchSegmentationStrategyMultiple(s1:));
- //
- // Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1, Ptr_SelectiveSearchSegmentationStrategy s2)
- //
- /**
- * Create a new multiple strategy and set two subtrategies, with equal weights
- * @param s1 The first strategy
- * @param s2 The second strategy
- */
- + (SelectiveSearchSegmentationStrategyMultiple*)createSelectiveSearchSegmentationStrategyMultiple:(SelectiveSearchSegmentationStrategy*)s1 s2:(SelectiveSearchSegmentationStrategy*)s2 NS_SWIFT_NAME(createSelectiveSearchSegmentationStrategyMultiple(s1:s2:));
- //
- // Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1, Ptr_SelectiveSearchSegmentationStrategy s2, Ptr_SelectiveSearchSegmentationStrategy s3)
- //
- /**
- * Create a new multiple strategy and set three subtrategies, with equal weights
- * @param s1 The first strategy
- * @param s2 The second strategy
- * @param s3 The third strategy
- */
- + (SelectiveSearchSegmentationStrategyMultiple*)createSelectiveSearchSegmentationStrategyMultiple:(SelectiveSearchSegmentationStrategy*)s1 s2:(SelectiveSearchSegmentationStrategy*)s2 s3:(SelectiveSearchSegmentationStrategy*)s3 NS_SWIFT_NAME(createSelectiveSearchSegmentationStrategyMultiple(s1:s2:s3:));
- //
- // Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1, Ptr_SelectiveSearchSegmentationStrategy s2, Ptr_SelectiveSearchSegmentationStrategy s3, Ptr_SelectiveSearchSegmentationStrategy s4)
- //
- /**
- * Create a new multiple strategy and set four subtrategies, with equal weights
- * @param s1 The first strategy
- * @param s2 The second strategy
- * @param s3 The third strategy
- * @param s4 The forth strategy
- */
- + (SelectiveSearchSegmentationStrategyMultiple*)createSelectiveSearchSegmentationStrategyMultiple:(SelectiveSearchSegmentationStrategy*)s1 s2:(SelectiveSearchSegmentationStrategy*)s2 s3:(SelectiveSearchSegmentationStrategy*)s3 s4:(SelectiveSearchSegmentationStrategy*)s4 NS_SWIFT_NAME(createSelectiveSearchSegmentationStrategyMultiple(s1:s2:s3:s4:));
- //
- // Ptr_SelectiveSearchSegmentation cv::ximgproc::segmentation::createSelectiveSearchSegmentation()
- //
- /**
- * Create a new SelectiveSearchSegmentation class.
- */
- + (SelectiveSearchSegmentation*)createSelectiveSearchSegmentation NS_SWIFT_NAME(createSelectiveSearchSegmentation());
- //
- // void cv::ximgproc::FastHoughTransform(Mat src, Mat& dst, int dstMatDepth, AngleRangeOption angleRange = ARO_315_135, HoughOp op = FHT_ADD, HoughDeskewOption makeSkew = HDO_DESKEW)
- //
- /**
- * Calculates 2D Fast Hough transform of an image.
- *
- * The function calculates the fast Hough transform for full, half or quarter
- * range of angles.
- */
- + (void)FastHoughTransform:(Mat*)src dst:(Mat*)dst dstMatDepth:(int)dstMatDepth angleRange:(AngleRangeOption)angleRange op:(HoughOp)op makeSkew:(HoughDeskewOption)makeSkew NS_SWIFT_NAME(FastHoughTransform(src:dst:dstMatDepth:angleRange:op:makeSkew:));
- /**
- * Calculates 2D Fast Hough transform of an image.
- *
- * The function calculates the fast Hough transform for full, half or quarter
- * range of angles.
- */
- + (void)FastHoughTransform:(Mat*)src dst:(Mat*)dst dstMatDepth:(int)dstMatDepth angleRange:(AngleRangeOption)angleRange op:(HoughOp)op NS_SWIFT_NAME(FastHoughTransform(src:dst:dstMatDepth:angleRange:op:));
- /**
- * Calculates 2D Fast Hough transform of an image.
- *
- * The function calculates the fast Hough transform for full, half or quarter
- * range of angles.
- */
- + (void)FastHoughTransform:(Mat*)src dst:(Mat*)dst dstMatDepth:(int)dstMatDepth angleRange:(AngleRangeOption)angleRange NS_SWIFT_NAME(FastHoughTransform(src:dst:dstMatDepth:angleRange:));
- /**
- * Calculates 2D Fast Hough transform of an image.
- *
- * The function calculates the fast Hough transform for full, half or quarter
- * range of angles.
- */
- + (void)FastHoughTransform:(Mat*)src dst:(Mat*)dst dstMatDepth:(int)dstMatDepth NS_SWIFT_NAME(FastHoughTransform(src:dst:dstMatDepth:));
- //
- // Vec4i cv::ximgproc::HoughPoint2Line(Point houghPoint, Mat srcImgInfo, AngleRangeOption angleRange = ARO_315_135, HoughDeskewOption makeSkew = HDO_DESKEW, int rules = RO_IGNORE_BORDERS)
- //
- /**
- * Calculates coordinates of line segment corresponded by point in Hough space.
- * @retval [Vec4i] Coordinates of line segment corresponded by point in Hough space.
- * @remarks If rules parameter set to RO_STRICT
- * then returned line cut along the border of source image.
- * @remarks If rules parameter set to RO_WEAK then in case of point, which belongs
- * the incorrect part of Hough image, returned line will not intersect source image.
- *
- * The function calculates coordinates of line segment corresponded by point in Hough space.
- */
- + (Int4*)HoughPoint2Line:(Point2i*)houghPoint srcImgInfo:(Mat*)srcImgInfo angleRange:(AngleRangeOption)angleRange makeSkew:(HoughDeskewOption)makeSkew rules:(int)rules NS_SWIFT_NAME(HoughPoint2Line(houghPoint:srcImgInfo:angleRange:makeSkew:rules:));
- /**
- * Calculates coordinates of line segment corresponded by point in Hough space.
- * @retval [Vec4i] Coordinates of line segment corresponded by point in Hough space.
- * @remarks If rules parameter set to RO_STRICT
- * then returned line cut along the border of source image.
- * @remarks If rules parameter set to RO_WEAK then in case of point, which belongs
- * the incorrect part of Hough image, returned line will not intersect source image.
- *
- * The function calculates coordinates of line segment corresponded by point in Hough space.
- */
- + (Int4*)HoughPoint2Line:(Point2i*)houghPoint srcImgInfo:(Mat*)srcImgInfo angleRange:(AngleRangeOption)angleRange makeSkew:(HoughDeskewOption)makeSkew NS_SWIFT_NAME(HoughPoint2Line(houghPoint:srcImgInfo:angleRange:makeSkew:));
- /**
- * Calculates coordinates of line segment corresponded by point in Hough space.
- * @retval [Vec4i] Coordinates of line segment corresponded by point in Hough space.
- * @remarks If rules parameter set to RO_STRICT
- * then returned line cut along the border of source image.
- * @remarks If rules parameter set to RO_WEAK then in case of point, which belongs
- * the incorrect part of Hough image, returned line will not intersect source image.
- *
- * The function calculates coordinates of line segment corresponded by point in Hough space.
- */
- + (Int4*)HoughPoint2Line:(Point2i*)houghPoint srcImgInfo:(Mat*)srcImgInfo angleRange:(AngleRangeOption)angleRange NS_SWIFT_NAME(HoughPoint2Line(houghPoint:srcImgInfo:angleRange:));
- /**
- * Calculates coordinates of line segment corresponded by point in Hough space.
- * @retval [Vec4i] Coordinates of line segment corresponded by point in Hough space.
- * @remarks If rules parameter set to RO_STRICT
- * then returned line cut along the border of source image.
- * @remarks If rules parameter set to RO_WEAK then in case of point, which belongs
- * the incorrect part of Hough image, returned line will not intersect source image.
- *
- * The function calculates coordinates of line segment corresponded by point in Hough space.
- */
- + (Int4*)HoughPoint2Line:(Point2i*)houghPoint srcImgInfo:(Mat*)srcImgInfo NS_SWIFT_NAME(HoughPoint2Line(houghPoint:srcImgInfo:));
- //
- // void cv::ximgproc::PeiLinNormalization(Mat I, Mat& T)
- //
- + (void)PeiLinNormalization:(Mat*)I T:(Mat*)T NS_SWIFT_NAME(PeiLinNormalization(I:T:));
- //
- // void cv::ximgproc::fourierDescriptor(Mat src, Mat& dst, int nbElt = -1, int nbFD = -1)
- //
- /**
- * Fourier descriptors for planed closed curves
- *
- * For more details about this implementation, please see CITE: PersoonFu1977
- *
- *
- */
- + (void)fourierDescriptor:(Mat*)src dst:(Mat*)dst nbElt:(int)nbElt nbFD:(int)nbFD NS_SWIFT_NAME(fourierDescriptor(src:dst:nbElt:nbFD:));
- /**
- * Fourier descriptors for planed closed curves
- *
- * For more details about this implementation, please see CITE: PersoonFu1977
- *
- *
- */
- + (void)fourierDescriptor:(Mat*)src dst:(Mat*)dst nbElt:(int)nbElt NS_SWIFT_NAME(fourierDescriptor(src:dst:nbElt:));
- /**
- * Fourier descriptors for planed closed curves
- *
- * For more details about this implementation, please see CITE: PersoonFu1977
- *
- *
- */
- + (void)fourierDescriptor:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(fourierDescriptor(src:dst:));
- //
- // void cv::ximgproc::transformFD(Mat src, Mat t, Mat& dst, bool fdContour = true)
- //
- /**
- * transform a contour
- *
- *
- */
- + (void)transformFD:(Mat*)src t:(Mat*)t dst:(Mat*)dst fdContour:(BOOL)fdContour NS_SWIFT_NAME(transformFD(src:t:dst:fdContour:));
- /**
- * transform a contour
- *
- *
- */
- + (void)transformFD:(Mat*)src t:(Mat*)t dst:(Mat*)dst NS_SWIFT_NAME(transformFD(src:t:dst:));
- //
- // void cv::ximgproc::contourSampling(Mat src, Mat& out, int nbElt)
- //
- /**
- * Contour sampling .
- *
- *
- */
- + (void)contourSampling:(Mat*)src out:(Mat*)out nbElt:(int)nbElt NS_SWIFT_NAME(contourSampling(src:out:nbElt:));
- //
- // Ptr_ContourFitting cv::ximgproc::createContourFitting(int ctr = 1024, int fd = 16)
- //
- /**
- * create ContourFitting algorithm object
- *
- * @param ctr number of Fourier descriptors equal to number of contour points after resampling.
- * @param fd Contour defining second shape (Target).
- */
- + (ContourFitting*)createContourFitting:(int)ctr fd:(int)fd NS_SWIFT_NAME(createContourFitting(ctr:fd:));
- /**
- * create ContourFitting algorithm object
- *
- * @param ctr number of Fourier descriptors equal to number of contour points after resampling.
- */
- + (ContourFitting*)createContourFitting:(int)ctr NS_SWIFT_NAME(createContourFitting(ctr:));
- /**
- * create ContourFitting algorithm object
- *
- */
- + (ContourFitting*)createContourFitting NS_SWIFT_NAME(createContourFitting());
- //
- // Ptr_EdgeAwareInterpolator cv::ximgproc::createEdgeAwareInterpolator()
- //
- /**
- * Factory method that creates an instance of the
- * EdgeAwareInterpolator.
- */
- + (EdgeAwareInterpolator*)createEdgeAwareInterpolator NS_SWIFT_NAME(createEdgeAwareInterpolator());
- //
- // Ptr_RICInterpolator cv::ximgproc::createRICInterpolator()
- //
- /**
- * Factory method that creates an instance of the
- * RICInterpolator.
- */
- + (RICInterpolator*)createRICInterpolator NS_SWIFT_NAME(createRICInterpolator());
- //
- // Ptr_EdgeDrawing cv::ximgproc::createEdgeDrawing()
- //
- /**
- * Creates a smart pointer to a EdgeDrawing object and initializes it
- */
- + (EdgeDrawing*)createEdgeDrawing NS_SWIFT_NAME(createEdgeDrawing());
- //
- // void cv::ximgproc::RadonTransform(Mat src, Mat& dst, double theta = 1, double start_angle = 0, double end_angle = 180, bool crop = false, bool norm = false)
- //
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- */
- + (void)RadonTransform:(Mat*)src dst:(Mat*)dst theta:(double)theta start_angle:(double)start_angle end_angle:(double)end_angle crop:(BOOL)crop norm:(BOOL)norm NS_SWIFT_NAME(RadonTransform(src:dst:theta:start_angle:end_angle:crop:norm:));
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- */
- + (void)RadonTransform:(Mat*)src dst:(Mat*)dst theta:(double)theta start_angle:(double)start_angle end_angle:(double)end_angle crop:(BOOL)crop NS_SWIFT_NAME(RadonTransform(src:dst:theta:start_angle:end_angle:crop:));
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- */
- + (void)RadonTransform:(Mat*)src dst:(Mat*)dst theta:(double)theta start_angle:(double)start_angle end_angle:(double)end_angle NS_SWIFT_NAME(RadonTransform(src:dst:theta:start_angle:end_angle:));
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- */
- + (void)RadonTransform:(Mat*)src dst:(Mat*)dst theta:(double)theta start_angle:(double)start_angle NS_SWIFT_NAME(RadonTransform(src:dst:theta:start_angle:));
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- */
- + (void)RadonTransform:(Mat*)src dst:(Mat*)dst theta:(double)theta NS_SWIFT_NAME(RadonTransform(src:dst:theta:));
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- */
- + (void)RadonTransform:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(RadonTransform(src:dst:));
- //
- // Ptr_SuperpixelSEEDS cv::ximgproc::createSuperpixelSEEDS(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior = 2, int histogram_bins = 5, bool double_step = false)
- //
- /**
- * Initializes a SuperpixelSEEDS object.
- *
- * @param image_width Image width.
- * @param image_height Image height.
- * @param image_channels Number of channels of the image.
- * @param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
- * get the actual number.
- * @param num_levels Number of block levels. The more levels, the more accurate is the segmentation,
- * but needs more memory and CPU time.
- * @param prior enable 3x3 shape smoothing term if \>0. A larger value leads to smoother shapes. prior
- * must be in the range [0, 5].
- * @param histogram_bins Number of histogram bins.
- * @param double_step If true, iterate each block level twice for higher accuracy.
- *
- * The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
- * the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
- * superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
- * double_step.
- *
- * The number of levels in num_levels defines the amount of block levels that the algorithm use in the
- * optimization. The initialization is a grid, in which the superpixels are equally distributed through
- * the width and the height of the image. The larger blocks correspond to the superpixel size, and the
- * levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
- * recursively until the smaller block level. An example of initialization of 4 block levels is
- * illustrated in the following figure.
- *
- * ![image](pics/superpixels_blocks.png)
- */
- + (SuperpixelSEEDS*)createSuperpixelSEEDS:(int)image_width image_height:(int)image_height image_channels:(int)image_channels num_superpixels:(int)num_superpixels num_levels:(int)num_levels prior:(int)prior histogram_bins:(int)histogram_bins double_step:(BOOL)double_step NS_SWIFT_NAME(createSuperpixelSEEDS(image_width:image_height:image_channels:num_superpixels:num_levels:prior:histogram_bins:double_step:));
- /**
- * Initializes a SuperpixelSEEDS object.
- *
- * @param image_width Image width.
- * @param image_height Image height.
- * @param image_channels Number of channels of the image.
- * @param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
- * get the actual number.
- * @param num_levels Number of block levels. The more levels, the more accurate is the segmentation,
- * but needs more memory and CPU time.
- * @param prior enable 3x3 shape smoothing term if \>0. A larger value leads to smoother shapes. prior
- * must be in the range [0, 5].
- * @param histogram_bins Number of histogram bins.
- *
- * The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
- * the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
- * superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
- * double_step.
- *
- * The number of levels in num_levels defines the amount of block levels that the algorithm use in the
- * optimization. The initialization is a grid, in which the superpixels are equally distributed through
- * the width and the height of the image. The larger blocks correspond to the superpixel size, and the
- * levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
- * recursively until the smaller block level. An example of initialization of 4 block levels is
- * illustrated in the following figure.
- *
- * ![image](pics/superpixels_blocks.png)
- */
- + (SuperpixelSEEDS*)createSuperpixelSEEDS:(int)image_width image_height:(int)image_height image_channels:(int)image_channels num_superpixels:(int)num_superpixels num_levels:(int)num_levels prior:(int)prior histogram_bins:(int)histogram_bins NS_SWIFT_NAME(createSuperpixelSEEDS(image_width:image_height:image_channels:num_superpixels:num_levels:prior:histogram_bins:));
- /**
- * Initializes a SuperpixelSEEDS object.
- *
- * @param image_width Image width.
- * @param image_height Image height.
- * @param image_channels Number of channels of the image.
- * @param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
- * get the actual number.
- * @param num_levels Number of block levels. The more levels, the more accurate is the segmentation,
- * but needs more memory and CPU time.
- * @param prior enable 3x3 shape smoothing term if \>0. A larger value leads to smoother shapes. prior
- * must be in the range [0, 5].
- *
- * The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
- * the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
- * superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
- * double_step.
- *
- * The number of levels in num_levels defines the amount of block levels that the algorithm use in the
- * optimization. The initialization is a grid, in which the superpixels are equally distributed through
- * the width and the height of the image. The larger blocks correspond to the superpixel size, and the
- * levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
- * recursively until the smaller block level. An example of initialization of 4 block levels is
- * illustrated in the following figure.
- *
- * ![image](pics/superpixels_blocks.png)
- */
- + (SuperpixelSEEDS*)createSuperpixelSEEDS:(int)image_width image_height:(int)image_height image_channels:(int)image_channels num_superpixels:(int)num_superpixels num_levels:(int)num_levels prior:(int)prior NS_SWIFT_NAME(createSuperpixelSEEDS(image_width:image_height:image_channels:num_superpixels:num_levels:prior:));
- /**
- * Initializes a SuperpixelSEEDS object.
- *
- * @param image_width Image width.
- * @param image_height Image height.
- * @param image_channels Number of channels of the image.
- * @param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
- * get the actual number.
- * @param num_levels Number of block levels. The more levels, the more accurate is the segmentation,
- * but needs more memory and CPU time.
- * must be in the range [0, 5].
- *
- * The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
- * the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
- * superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
- * double_step.
- *
- * The number of levels in num_levels defines the amount of block levels that the algorithm use in the
- * optimization. The initialization is a grid, in which the superpixels are equally distributed through
- * the width and the height of the image. The larger blocks correspond to the superpixel size, and the
- * levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
- * recursively until the smaller block level. An example of initialization of 4 block levels is
- * illustrated in the following figure.
- *
- * ![image](pics/superpixels_blocks.png)
- */
- + (SuperpixelSEEDS*)createSuperpixelSEEDS:(int)image_width image_height:(int)image_height image_channels:(int)image_channels num_superpixels:(int)num_superpixels num_levels:(int)num_levels NS_SWIFT_NAME(createSuperpixelSEEDS(image_width:image_height:image_channels:num_superpixels:num_levels:));
- //
- // Ptr_FastLineDetector cv::ximgproc::createFastLineDetector(int length_threshold = 10, float distance_threshold = 1.414213562f, double canny_th1 = 50.0, double canny_th2 = 50.0, int canny_aperture_size = 3, bool do_merge = false)
- //
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * @param length_threshold Segment shorter than this will be discarded
- * @param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * @param canny_th1 First threshold for hysteresis procedure in Canny()
- * @param canny_th2 Second threshold for hysteresis procedure in Canny()
- * @param canny_aperture_size Aperturesize for the sobel operator in Canny().
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- * @param do_merge If true, incremental merging of segments will be performed
- */
- + (FastLineDetector*)createFastLineDetector:(int)length_threshold distance_threshold:(float)distance_threshold canny_th1:(double)canny_th1 canny_th2:(double)canny_th2 canny_aperture_size:(int)canny_aperture_size do_merge:(BOOL)do_merge NS_SWIFT_NAME(createFastLineDetector(length_threshold:distance_threshold:canny_th1:canny_th2:canny_aperture_size:do_merge:));
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * @param length_threshold Segment shorter than this will be discarded
- * @param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * @param canny_th1 First threshold for hysteresis procedure in Canny()
- * @param canny_th2 Second threshold for hysteresis procedure in Canny()
- * @param canny_aperture_size Aperturesize for the sobel operator in Canny().
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- */
- + (FastLineDetector*)createFastLineDetector:(int)length_threshold distance_threshold:(float)distance_threshold canny_th1:(double)canny_th1 canny_th2:(double)canny_th2 canny_aperture_size:(int)canny_aperture_size NS_SWIFT_NAME(createFastLineDetector(length_threshold:distance_threshold:canny_th1:canny_th2:canny_aperture_size:));
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * @param length_threshold Segment shorter than this will be discarded
- * @param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * @param canny_th1 First threshold for hysteresis procedure in Canny()
- * @param canny_th2 Second threshold for hysteresis procedure in Canny()
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- */
- + (FastLineDetector*)createFastLineDetector:(int)length_threshold distance_threshold:(float)distance_threshold canny_th1:(double)canny_th1 canny_th2:(double)canny_th2 NS_SWIFT_NAME(createFastLineDetector(length_threshold:distance_threshold:canny_th1:canny_th2:));
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * @param length_threshold Segment shorter than this will be discarded
- * @param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * @param canny_th1 First threshold for hysteresis procedure in Canny()
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- */
- + (FastLineDetector*)createFastLineDetector:(int)length_threshold distance_threshold:(float)distance_threshold canny_th1:(double)canny_th1 NS_SWIFT_NAME(createFastLineDetector(length_threshold:distance_threshold:canny_th1:));
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * @param length_threshold Segment shorter than this will be discarded
- * @param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- */
- + (FastLineDetector*)createFastLineDetector:(int)length_threshold distance_threshold:(float)distance_threshold NS_SWIFT_NAME(createFastLineDetector(length_threshold:distance_threshold:));
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * @param length_threshold Segment shorter than this will be discarded
- * segment farther than this will be regarded as an outlier
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- */
- + (FastLineDetector*)createFastLineDetector:(int)length_threshold NS_SWIFT_NAME(createFastLineDetector(length_threshold:));
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * segment farther than this will be regarded as an outlier
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- */
- + (FastLineDetector*)createFastLineDetector NS_SWIFT_NAME(createFastLineDetector());
- //
- // void cv::ximgproc::covarianceEstimation(Mat src, Mat& dst, int windowRows, int windowCols)
- //
- /**
- * Computes the estimated covariance matrix of an image using the sliding
- * window forumlation.
- *
- * @param src The source image. Input image must be of a complex type.
- * @param dst The destination estimated covariance matrix. Output matrix will be size (windowRows*windowCols, windowRows*windowCols).
- * @param windowRows The number of rows in the window.
- * @param windowCols The number of cols in the window.
- * The window size parameters control the accuracy of the estimation.
- * The sliding window moves over the entire image from the top-left corner
- * to the bottom right corner. Each location of the window represents a sample.
- * If the window is the size of the image, then this gives the exact covariance matrix.
- * For all other cases, the sizes of the window will impact the number of samples
- * and the number of elements in the estimated covariance matrix.
- */
- + (void)covarianceEstimation:(Mat*)src dst:(Mat*)dst windowRows:(int)windowRows windowCols:(int)windowCols NS_SWIFT_NAME(covarianceEstimation(src:dst:windowRows:windowCols:));
- @end
- NS_ASSUME_NONNULL_END
|