123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/video.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- @class BackgroundSubtractorKNN;
- @class BackgroundSubtractorMOG2;
- @class Mat;
- @class Rect2i;
- @class RotatedRect;
- @class Size2i;
- @class TermCriteria;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class Video
- /**
- * The Video module
- *
- * Member classes: `KalmanFilter`, `DenseOpticalFlow`, `SparseOpticalFlow`, `FarnebackOpticalFlow`, `VariationalRefinement`, `DISOpticalFlow`, `SparsePyrLKOpticalFlow`, `Tracker`, `TrackerMIL`, `TrackerMILParams`, `TrackerGOTURN`, `TrackerGOTURNParams`, `TrackerDaSiamRPN`, `TrackerDaSiamRPNParams`, `TrackerNano`, `TrackerNanoParams`, `BackgroundSubtractor`, `BackgroundSubtractorMOG2`, `BackgroundSubtractorKNN`
- *
- */
- CV_EXPORTS @interface Video : NSObject
- #pragma mark - Class Constants
- @property (class, readonly) int OPTFLOW_USE_INITIAL_FLOW NS_SWIFT_NAME(OPTFLOW_USE_INITIAL_FLOW);
- @property (class, readonly) int OPTFLOW_LK_GET_MIN_EIGENVALS NS_SWIFT_NAME(OPTFLOW_LK_GET_MIN_EIGENVALS);
- @property (class, readonly) int OPTFLOW_FARNEBACK_GAUSSIAN NS_SWIFT_NAME(OPTFLOW_FARNEBACK_GAUSSIAN);
- @property (class, readonly) int MOTION_TRANSLATION NS_SWIFT_NAME(MOTION_TRANSLATION);
- @property (class, readonly) int MOTION_EUCLIDEAN NS_SWIFT_NAME(MOTION_EUCLIDEAN);
- @property (class, readonly) int MOTION_AFFINE NS_SWIFT_NAME(MOTION_AFFINE);
- @property (class, readonly) int MOTION_HOMOGRAPHY NS_SWIFT_NAME(MOTION_HOMOGRAPHY);
- #pragma mark - Methods
- //
- // RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria)
- //
- /**
- * Finds an object center, size, and orientation.
- *
- * @param probImage Back projection of the object histogram. See calcBackProject.
- * @param window Initial search window.
- * @param criteria Stop criteria for the underlying meanShift.
- * returns
- * (in old interfaces) Number of iterations CAMSHIFT took to converge
- * The function implements the CAMSHIFT object tracking algorithm CITE: Bradski98 . First, it finds an
- * object center using meanShift and then adjusts the window size and finds the optimal rotation. The
- * function returns the rotated rectangle structure that includes the object position, size, and
- * orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
- *
- * See the OpenCV sample camshiftdemo.c that tracks colored objects.
- *
- * NOTE:
- * - (Python) A sample explaining the camshift tracking algorithm can be found at
- * opencv_source_code/samples/python/camshift.py
- */
- + (RotatedRect*)CamShift:(Mat*)probImage window:(Rect2i*)window criteria:(TermCriteria*)criteria NS_SWIFT_NAME(CamShift(probImage:window:criteria:));
- //
- // int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria)
- //
- /**
- * Finds an object on a back projection image.
- *
- * @param probImage Back projection of the object histogram. See calcBackProject for details.
- * @param window Initial search window.
- * @param criteria Stop criteria for the iterative search algorithm.
- * returns
- * : Number of iterations CAMSHIFT took to converge.
- * The function implements the iterative object search algorithm. It takes the input back projection of
- * an object and the initial position. The mass center in window of the back projection image is
- * computed and the search window center shifts to the mass center. The procedure is repeated until the
- * specified number of iterations criteria.maxCount is done or until the window center shifts by less
- * than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
- * window size or orientation do not change during the search. You can simply pass the output of
- * calcBackProject to this function. But better results can be obtained if you pre-filter the back
- * projection and remove the noise. For example, you can do this by retrieving connected components
- * with findContours , throwing away contours with small area ( contourArea ), and rendering the
- * remaining contours with drawContours.
- */
- + (int)meanShift:(Mat*)probImage window:(Rect2i*)window criteria:(TermCriteria*)criteria NS_SWIFT_NAME(meanShift(probImage:window:criteria:));
- //
- // int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true)
- //
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * @param img 8-bit input image.
- * @param pyramid output pyramid.
- * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * @param maxLevel 0-based maximal pyramid level number.
- * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * @param pyrBorder the border mode for pyramid layers.
- * @param derivBorder the border mode for gradients.
- * @param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
- * to force data copying.
- * @return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- + (int)buildOpticalFlowPyramid:(Mat*)img pyramid:(NSMutableArray<Mat*>*)pyramid winSize:(Size2i*)winSize maxLevel:(int)maxLevel withDerivatives:(BOOL)withDerivatives pyrBorder:(int)pyrBorder derivBorder:(int)derivBorder tryReuseInputImage:(BOOL)tryReuseInputImage NS_SWIFT_NAME(buildOpticalFlowPyramid(img:pyramid:winSize:maxLevel:withDerivatives:pyrBorder:derivBorder:tryReuseInputImage:));
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * @param img 8-bit input image.
- * @param pyramid output pyramid.
- * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * @param maxLevel 0-based maximal pyramid level number.
- * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * @param pyrBorder the border mode for pyramid layers.
- * @param derivBorder the border mode for gradients.
- * to force data copying.
- * @return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- + (int)buildOpticalFlowPyramid:(Mat*)img pyramid:(NSMutableArray<Mat*>*)pyramid winSize:(Size2i*)winSize maxLevel:(int)maxLevel withDerivatives:(BOOL)withDerivatives pyrBorder:(int)pyrBorder derivBorder:(int)derivBorder NS_SWIFT_NAME(buildOpticalFlowPyramid(img:pyramid:winSize:maxLevel:withDerivatives:pyrBorder:derivBorder:));
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * @param img 8-bit input image.
- * @param pyramid output pyramid.
- * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * @param maxLevel 0-based maximal pyramid level number.
- * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * @param pyrBorder the border mode for pyramid layers.
- * to force data copying.
- * @return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- + (int)buildOpticalFlowPyramid:(Mat*)img pyramid:(NSMutableArray<Mat*>*)pyramid winSize:(Size2i*)winSize maxLevel:(int)maxLevel withDerivatives:(BOOL)withDerivatives pyrBorder:(int)pyrBorder NS_SWIFT_NAME(buildOpticalFlowPyramid(img:pyramid:winSize:maxLevel:withDerivatives:pyrBorder:));
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * @param img 8-bit input image.
- * @param pyramid output pyramid.
- * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * @param maxLevel 0-based maximal pyramid level number.
- * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * to force data copying.
- * @return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- + (int)buildOpticalFlowPyramid:(Mat*)img pyramid:(NSMutableArray<Mat*>*)pyramid winSize:(Size2i*)winSize maxLevel:(int)maxLevel withDerivatives:(BOOL)withDerivatives NS_SWIFT_NAME(buildOpticalFlowPyramid(img:pyramid:winSize:maxLevel:withDerivatives:));
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * @param img 8-bit input image.
- * @param pyramid output pyramid.
- * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * @param maxLevel 0-based maximal pyramid level number.
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * to force data copying.
- * @return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- + (int)buildOpticalFlowPyramid:(Mat*)img pyramid:(NSMutableArray<Mat*>*)pyramid winSize:(Size2i*)winSize maxLevel:(int)maxLevel NS_SWIFT_NAME(buildOpticalFlowPyramid(img:pyramid:winSize:maxLevel:));
- //
- // void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, Mat prevPts, Mat& nextPts, Mat& status, Mat& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4)
- //
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * @param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * @param winSize size of the search window at each pyramid level.
- * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * @param criteria parameter, specifying the termination criteria of the iterative search algorithm
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * @param flags operation flags:
- * - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * @param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * NOTE:
- *
- * - An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- */
- + (void)calcOpticalFlowPyrLK:(Mat*)prevImg nextImg:(Mat*)nextImg prevPts:(Mat*)prevPts nextPts:(Mat*)nextPts status:(Mat*)status err:(Mat*)err winSize:(Size2i*)winSize maxLevel:(int)maxLevel criteria:(TermCriteria*)criteria flags:(int)flags minEigThreshold:(double)minEigThreshold NS_SWIFT_NAME(calcOpticalFlowPyrLK(prevImg:nextImg:prevPts:nextPts:status:err:winSize:maxLevel:criteria:flags:minEigThreshold:));
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * @param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * @param winSize size of the search window at each pyramid level.
- * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * @param criteria parameter, specifying the termination criteria of the iterative search algorithm
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * @param flags operation flags:
- * - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * NOTE:
- *
- * - An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- */
- + (void)calcOpticalFlowPyrLK:(Mat*)prevImg nextImg:(Mat*)nextImg prevPts:(Mat*)prevPts nextPts:(Mat*)nextPts status:(Mat*)status err:(Mat*)err winSize:(Size2i*)winSize maxLevel:(int)maxLevel criteria:(TermCriteria*)criteria flags:(int)flags NS_SWIFT_NAME(calcOpticalFlowPyrLK(prevImg:nextImg:prevPts:nextPts:status:err:winSize:maxLevel:criteria:flags:));
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * @param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * @param winSize size of the search window at each pyramid level.
- * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * @param criteria parameter, specifying the termination criteria of the iterative search algorithm
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * NOTE:
- *
- * - An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- */
- + (void)calcOpticalFlowPyrLK:(Mat*)prevImg nextImg:(Mat*)nextImg prevPts:(Mat*)prevPts nextPts:(Mat*)nextPts status:(Mat*)status err:(Mat*)err winSize:(Size2i*)winSize maxLevel:(int)maxLevel criteria:(TermCriteria*)criteria NS_SWIFT_NAME(calcOpticalFlowPyrLK(prevImg:nextImg:prevPts:nextPts:status:err:winSize:maxLevel:criteria:));
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * @param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * @param winSize size of the search window at each pyramid level.
- * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * NOTE:
- *
- * - An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- */
- + (void)calcOpticalFlowPyrLK:(Mat*)prevImg nextImg:(Mat*)nextImg prevPts:(Mat*)prevPts nextPts:(Mat*)nextPts status:(Mat*)status err:(Mat*)err winSize:(Size2i*)winSize maxLevel:(int)maxLevel NS_SWIFT_NAME(calcOpticalFlowPyrLK(prevImg:nextImg:prevPts:nextPts:status:err:winSize:maxLevel:));
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * @param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * @param winSize size of the search window at each pyramid level.
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * NOTE:
- *
- * - An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- */
- + (void)calcOpticalFlowPyrLK:(Mat*)prevImg nextImg:(Mat*)nextImg prevPts:(Mat*)prevPts nextPts:(Mat*)nextPts status:(Mat*)status err:(Mat*)err winSize:(Size2i*)winSize NS_SWIFT_NAME(calcOpticalFlowPyrLK(prevImg:nextImg:prevPts:nextPts:status:err:winSize:));
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * @param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * @param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * - **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * - **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * NOTE:
- *
- * - An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * - (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * - (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- */
- + (void)calcOpticalFlowPyrLK:(Mat*)prevImg nextImg:(Mat*)nextImg prevPts:(Mat*)prevPts nextPts:(Mat*)nextPts status:(Mat*)status err:(Mat*)err NS_SWIFT_NAME(calcOpticalFlowPyrLK(prevImg:nextImg:prevPts:nextPts:status:err:));
- //
- // void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags)
- //
- /**
- * Computes a dense optical flow using the Gunnar Farneback's algorithm.
- *
- * @param prev first 8-bit single-channel input image.
- * @param next second input image of the same size and the same type as prev.
- * @param flow computed flow image that has the same size as prev and type CV_32FC2.
- * @param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
- * pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
- * one.
- * @param levels number of pyramid layers including the initial image; levels=1 means that no extra
- * layers are created and only the original images are used.
- * @param winsize averaging window size; larger values increase the algorithm robustness to image
- * noise and give more chances for fast motion detection, but yield more blurred motion field.
- * @param iterations number of iterations the algorithm does at each pyramid level.
- * @param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
- * larger values mean that the image will be approximated with smoother surfaces, yielding more
- * robust algorithm and more blurred motion field, typically poly_n =5 or 7.
- * @param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
- * basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
- * good value would be poly_sigma=1.5.
- * @param flags operation flags that can be a combination of the following:
- * - **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
- * - **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian `$$\texttt{winsize}\times\texttt{winsize}$$`
- * filter instead of a box filter of the same size for optical flow estimation; usually, this
- * option gives z more accurate flow than with a box filter, at the cost of lower speed;
- * normally, winsize for a Gaussian window should be set to a larger value to achieve the same
- * level of robustness.
- *
- * The function finds an optical flow for each prev pixel using the CITE: Farneback2003 algorithm so that
- *
- * `$$\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])$$`
- *
- * NOTE:
- *
- * - An example using the optical flow algorithm described by Gunnar Farneback can be found at
- * opencv_source_code/samples/cpp/fback.cpp
- * - (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
- * found at opencv_source_code/samples/python/opt_flow.py
- */
- + (void)calcOpticalFlowFarneback:(Mat*)prev next:(Mat*)next flow:(Mat*)flow pyr_scale:(double)pyr_scale levels:(int)levels winsize:(int)winsize iterations:(int)iterations poly_n:(int)poly_n poly_sigma:(double)poly_sigma flags:(int)flags NS_SWIFT_NAME(calcOpticalFlowFarneback(prev:next:flow:pyr_scale:levels:winsize:iterations:poly_n:poly_sigma:flags:));
- //
- // double cv::computeECC(Mat templateImage, Mat inputImage, Mat inputMask = Mat())
- //
- /**
- * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 .
- *
- * @param templateImage single-channel template image; CV_8U or CV_32F array.
- * @param inputImage single-channel input image to be warped to provide an image similar to
- * templateImage, same type as templateImage.
- * @param inputMask An optional mask to indicate valid values of inputImage.
- *
- * @sa
- * findTransformECC
- */
- + (double)computeECC:(Mat*)templateImage inputImage:(Mat*)inputImage inputMask:(Mat*)inputMask NS_SWIFT_NAME(computeECC(templateImage:inputImage:inputMask:));
- /**
- * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 .
- *
- * @param templateImage single-channel template image; CV_8U or CV_32F array.
- * @param inputImage single-channel input image to be warped to provide an image similar to
- * templateImage, same type as templateImage.
- *
- * @sa
- * findTransformECC
- */
- + (double)computeECC:(Mat*)templateImage inputImage:(Mat*)inputImage NS_SWIFT_NAME(computeECC(templateImage:inputImage:));
- //
- // double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize)
- //
- /**
- * Finds the geometric transform (warp) between two images in terms of the ECC criterion CITE: EP08 .
- *
- * @param templateImage single-channel template image; CV_8U or CV_32F array.
- * @param inputImage single-channel input image which should be warped with the final warpMatrix in
- * order to provide an image similar to templateImage, same type as templateImage.
- * @param warpMatrix floating-point `$$2\times 3$$` or `$$3\times 3$$` mapping matrix (warp).
- * @param motionType parameter, specifying the type of motion:
- * - **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is `$$2\times 3$$` with
- * the first `$$2\times 2$$` part being the unity matrix and the rest two parameters being
- * estimated.
- * - **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
- * parameters are estimated; warpMatrix is `$$2\times 3$$`.
- * - **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
- * warpMatrix is `$$2\times 3$$`.
- * - **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
- * estimated;\`warpMatrix\` is `$$3\times 3$$`.
- * @param criteria parameter, specifying the termination criteria of the ECC algorithm;
- * criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
- * iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
- * Default values are shown in the declaration above.
- * @param inputMask An optional mask to indicate valid values of inputImage.
- * @param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
- *
- * The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
- * (CITE: EP08), that is
- *
- * `$$\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))$$`
- *
- * where
- *
- * `$$\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$`
- *
- * (the equation holds with homogeneous coordinates for homography). It returns the final enhanced
- * correlation coefficient, that is the correlation coefficient between the template image and the
- * final warped input image. When a `$$3\times 3$$` matrix is given with motionType =0, 1 or 2, the third
- * row is ignored.
- *
- * Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
- * area-based alignment that builds on intensity similarities. In essence, the function updates the
- * initial transformation that roughly aligns the images. If this information is missing, the identity
- * warp (unity matrix) is used as an initialization. Note that if images undergo strong
- * displacements/rotations, an initial transformation that roughly aligns the images is necessary
- * (e.g., a simple euclidean/similarity transform that allows for the images showing the same image
- * content approximately). Use inverse warping in the second image to take an image close to the first
- * one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
- * sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
- * an exception if algorithm does not converges.
- *
- * @sa
- * computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
- */
- + (double)findTransformECC:(Mat*)templateImage inputImage:(Mat*)inputImage warpMatrix:(Mat*)warpMatrix motionType:(int)motionType criteria:(TermCriteria*)criteria inputMask:(Mat*)inputMask gaussFiltSize:(int)gaussFiltSize NS_SWIFT_NAME(findTransformECC(templateImage:inputImage:warpMatrix:motionType:criteria:inputMask:gaussFiltSize:));
- //
- // double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat())
- //
- + (double)findTransformECC:(Mat*)templateImage inputImage:(Mat*)inputImage warpMatrix:(Mat*)warpMatrix motionType:(int)motionType criteria:(TermCriteria*)criteria inputMask:(Mat*)inputMask NS_SWIFT_NAME(findTransformECC(templateImage:inputImage:warpMatrix:motionType:criteria:inputMask:));
- + (double)findTransformECC:(Mat*)templateImage inputImage:(Mat*)inputImage warpMatrix:(Mat*)warpMatrix motionType:(int)motionType criteria:(TermCriteria*)criteria NS_SWIFT_NAME(findTransformECC(templateImage:inputImage:warpMatrix:motionType:criteria:));
- + (double)findTransformECC:(Mat*)templateImage inputImage:(Mat*)inputImage warpMatrix:(Mat*)warpMatrix motionType:(int)motionType NS_SWIFT_NAME(findTransformECC(templateImage:inputImage:warpMatrix:motionType:));
- + (double)findTransformECC:(Mat*)templateImage inputImage:(Mat*)inputImage warpMatrix:(Mat*)warpMatrix NS_SWIFT_NAME(findTransformECC(templateImage:inputImage:warpMatrix:));
- //
- // Mat cv::readOpticalFlow(String path)
- //
- /**
- * Read a .flo file
- *
- * @param path Path to the file to be loaded
- *
- * The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
- * Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
- * flow in the horizontal direction (u), second - vertical (v).
- */
- + (Mat*)readOpticalFlow:(NSString*)path NS_SWIFT_NAME(readOpticalFlow(path:));
- //
- // bool cv::writeOpticalFlow(String path, Mat flow)
- //
- /**
- * Write a .flo to disk
- *
- * @param path Path to the file to be written
- * @param flow Flow field to be stored
- *
- * The function stores a flow field in a file, returns true on success, false otherwise.
- * The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
- * to the flow in the horizontal direction (u), second - vertical (v).
- */
- + (BOOL)writeOpticalFlow:(NSString*)path flow:(Mat*)flow NS_SWIFT_NAME(writeOpticalFlow(path:flow:));
- //
- // Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true)
- //
- /**
- * Creates MOG2 Background Subtractor
- *
- * @param history Length of the history.
- * @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
- * to decide whether a pixel is well described by the background model. This parameter does not
- * affect the background update.
- * @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
- * speed a bit, so if you do not need this feature, set the parameter to false.
- */
- + (BackgroundSubtractorMOG2*)createBackgroundSubtractorMOG2:(int)history varThreshold:(double)varThreshold detectShadows:(BOOL)detectShadows NS_SWIFT_NAME(createBackgroundSubtractorMOG2(history:varThreshold:detectShadows:));
- /**
- * Creates MOG2 Background Subtractor
- *
- * @param history Length of the history.
- * @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
- * to decide whether a pixel is well described by the background model. This parameter does not
- * affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- */
- + (BackgroundSubtractorMOG2*)createBackgroundSubtractorMOG2:(int)history varThreshold:(double)varThreshold NS_SWIFT_NAME(createBackgroundSubtractorMOG2(history:varThreshold:));
- /**
- * Creates MOG2 Background Subtractor
- *
- * @param history Length of the history.
- * to decide whether a pixel is well described by the background model. This parameter does not
- * affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- */
- + (BackgroundSubtractorMOG2*)createBackgroundSubtractorMOG2:(int)history NS_SWIFT_NAME(createBackgroundSubtractorMOG2(history:));
- /**
- * Creates MOG2 Background Subtractor
- *
- * to decide whether a pixel is well described by the background model. This parameter does not
- * affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- */
- + (BackgroundSubtractorMOG2*)createBackgroundSubtractorMOG2 NS_SWIFT_NAME(createBackgroundSubtractorMOG2());
- //
- // Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true)
- //
- /**
- * Creates KNN Background Subtractor
- *
- * @param history Length of the history.
- * @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
- * whether a pixel is close to that sample. This parameter does not affect the background update.
- * @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
- * speed a bit, so if you do not need this feature, set the parameter to false.
- */
- + (BackgroundSubtractorKNN*)createBackgroundSubtractorKNN:(int)history dist2Threshold:(double)dist2Threshold detectShadows:(BOOL)detectShadows NS_SWIFT_NAME(createBackgroundSubtractorKNN(history:dist2Threshold:detectShadows:));
- /**
- * Creates KNN Background Subtractor
- *
- * @param history Length of the history.
- * @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
- * whether a pixel is close to that sample. This parameter does not affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- */
- + (BackgroundSubtractorKNN*)createBackgroundSubtractorKNN:(int)history dist2Threshold:(double)dist2Threshold NS_SWIFT_NAME(createBackgroundSubtractorKNN(history:dist2Threshold:));
- /**
- * Creates KNN Background Subtractor
- *
- * @param history Length of the history.
- * whether a pixel is close to that sample. This parameter does not affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- */
- + (BackgroundSubtractorKNN*)createBackgroundSubtractorKNN:(int)history NS_SWIFT_NAME(createBackgroundSubtractorKNN(history:));
- /**
- * Creates KNN Background Subtractor
- *
- * whether a pixel is close to that sample. This parameter does not affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- */
- + (BackgroundSubtractorKNN*)createBackgroundSubtractorKNN NS_SWIFT_NAME(createBackgroundSubtractorKNN());
- @end
- NS_ASSUME_NONNULL_END
|