123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/ml.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "StatModel.h"
- @class Mat;
- @class ParamGrid;
- @class TermCriteria;
- // C++: enum KernelTypes (cv.ml.SVM.KernelTypes)
- typedef NS_ENUM(int, KernelTypes) {
- SVM_CUSTOM NS_SWIFT_NAME(CUSTOM) = -1,
- SVM_LINEAR NS_SWIFT_NAME(LINEAR) = 0,
- SVM_POLY NS_SWIFT_NAME(POLY) = 1,
- SVM_RBF NS_SWIFT_NAME(RBF) = 2,
- SVM_SIGMOID NS_SWIFT_NAME(SIGMOID) = 3,
- SVM_CHI2 NS_SWIFT_NAME(CHI2) = 4,
- SVM_INTER NS_SWIFT_NAME(INTER) = 5
- };
- // C++: enum ParamTypes (cv.ml.SVM.ParamTypes)
- typedef NS_ENUM(int, ParamTypes) {
- SVM_C NS_SWIFT_NAME(C) = 0,
- SVM_GAMMA NS_SWIFT_NAME(GAMMA) = 1,
- SVM_P NS_SWIFT_NAME(P) = 2,
- SVM_NU NS_SWIFT_NAME(NU) = 3,
- SVM_COEF NS_SWIFT_NAME(COEF) = 4,
- SVM_DEGREE NS_SWIFT_NAME(DEGREE) = 5
- };
- // C++: enum SVMTypes (cv.ml.SVM.Types)
- typedef NS_ENUM(int, SVMTypes) {
- SVM_C_SVC NS_SWIFT_NAME(C_SVC) = 100,
- SVM_NU_SVC NS_SWIFT_NAME(NU_SVC) = 101,
- SVM_ONE_CLASS NS_SWIFT_NAME(ONE_CLASS) = 102,
- SVM_EPS_SVR NS_SWIFT_NAME(EPS_SVR) = 103,
- SVM_NU_SVR NS_SWIFT_NAME(NU_SVR) = 104
- };
- NS_ASSUME_NONNULL_BEGIN
- // C++: class SVM
- /**
- * Support Vector Machines.
- *
- * @see REF: ml_intro_svm
- *
- * Member of `Ml`
- */
- CV_EXPORTS @interface SVM : StatModel
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::ml::SVM> nativePtrSVM;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::ml::SVM>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::ml::SVM>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // int cv::ml::SVM::getType()
- //
- /**
- * @see `-setType:`
- */
- - (int)getType NS_SWIFT_NAME(getType());
- //
- // void cv::ml::SVM::setType(int val)
- //
- /**
- * getType @see `-getType:`
- */
- - (void)setType:(int)val NS_SWIFT_NAME(setType(val:));
- //
- // double cv::ml::SVM::getGamma()
- //
- /**
- * @see `-setGamma:`
- */
- - (double)getGamma NS_SWIFT_NAME(getGamma());
- //
- // void cv::ml::SVM::setGamma(double val)
- //
- /**
- * getGamma @see `-getGamma:`
- */
- - (void)setGamma:(double)val NS_SWIFT_NAME(setGamma(val:));
- //
- // double cv::ml::SVM::getCoef0()
- //
- /**
- * @see `-setCoef0:`
- */
- - (double)getCoef0 NS_SWIFT_NAME(getCoef0());
- //
- // void cv::ml::SVM::setCoef0(double val)
- //
- /**
- * getCoef0 @see `-getCoef0:`
- */
- - (void)setCoef0:(double)val NS_SWIFT_NAME(setCoef0(val:));
- //
- // double cv::ml::SVM::getDegree()
- //
- /**
- * @see `-setDegree:`
- */
- - (double)getDegree NS_SWIFT_NAME(getDegree());
- //
- // void cv::ml::SVM::setDegree(double val)
- //
- /**
- * getDegree @see `-getDegree:`
- */
- - (void)setDegree:(double)val NS_SWIFT_NAME(setDegree(val:));
- //
- // double cv::ml::SVM::getC()
- //
- /**
- * @see `-setC:`
- */
- - (double)getC NS_SWIFT_NAME(getC());
- //
- // void cv::ml::SVM::setC(double val)
- //
- /**
- * getC @see `-getC:`
- */
- - (void)setC:(double)val NS_SWIFT_NAME(setC(val:));
- //
- // double cv::ml::SVM::getNu()
- //
- /**
- * @see `-setNu:`
- */
- - (double)getNu NS_SWIFT_NAME(getNu());
- //
- // void cv::ml::SVM::setNu(double val)
- //
- /**
- * getNu @see `-getNu:`
- */
- - (void)setNu:(double)val NS_SWIFT_NAME(setNu(val:));
- //
- // double cv::ml::SVM::getP()
- //
- /**
- * @see `-setP:`
- */
- - (double)getP NS_SWIFT_NAME(getP());
- //
- // void cv::ml::SVM::setP(double val)
- //
- /**
- * getP @see `-getP:`
- */
- - (void)setP:(double)val NS_SWIFT_NAME(setP(val:));
- //
- // Mat cv::ml::SVM::getClassWeights()
- //
- /**
- * @see `-setClassWeights:`
- */
- - (Mat*)getClassWeights NS_SWIFT_NAME(getClassWeights());
- //
- // void cv::ml::SVM::setClassWeights(Mat val)
- //
- /**
- * getClassWeights @see `-getClassWeights:`
- */
- - (void)setClassWeights:(Mat*)val NS_SWIFT_NAME(setClassWeights(val:));
- //
- // TermCriteria cv::ml::SVM::getTermCriteria()
- //
- /**
- * @see `-setTermCriteria:`
- */
- - (TermCriteria*)getTermCriteria NS_SWIFT_NAME(getTermCriteria());
- //
- // void cv::ml::SVM::setTermCriteria(TermCriteria val)
- //
- /**
- * getTermCriteria @see `-getTermCriteria:`
- */
- - (void)setTermCriteria:(TermCriteria*)val NS_SWIFT_NAME(setTermCriteria(val:));
- //
- // int cv::ml::SVM::getKernelType()
- //
- /**
- * Type of a %SVM kernel.
- * See SVM::KernelTypes. Default value is SVM::RBF.
- */
- - (int)getKernelType NS_SWIFT_NAME(getKernelType());
- //
- // void cv::ml::SVM::setKernel(int kernelType)
- //
- /**
- * Initialize with one of predefined kernels.
- * See SVM::KernelTypes.
- */
- - (void)setKernel:(int)kernelType NS_SWIFT_NAME(setKernel(kernelType:));
- //
- // bool cv::ml::SVM::trainAuto(Mat samples, int layout, Mat responses, int kFold = 10, Ptr_ParamGrid Cgrid = SVM::getDefaultGridPtr(SVM::C), Ptr_ParamGrid gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA), Ptr_ParamGrid pGrid = SVM::getDefaultGridPtr(SVM::P), Ptr_ParamGrid nuGrid = SVM::getDefaultGridPtr(SVM::NU), Ptr_ParamGrid coeffGrid = SVM::getDefaultGridPtr(SVM::COEF), Ptr_ParamGrid degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE), bool balanced = false)
- //
- /**
- * Trains an %SVM with optimal parameters
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- * subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- * @param Cgrid grid for C
- * @param gammaGrid grid for gamma
- * @param pGrid grid for p
- * @param nuGrid grid for nu
- * @param coeffGrid grid for coeff
- * @param degreeGrid grid for degree
- * @param balanced If true and the problem is 2-class classification then the method creates more
- * balanced cross-validation subsets that is proportions between classes in subsets are close
- * to such proportion in the whole train dataset.
- *
- * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- * nu, coef0, degree. Parameters are considered optimal when the cross-validation
- * estimate of the test set error is minimal.
- *
- * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- * offers rudimentary parameter options.
- *
- * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- * the usual %SVM with parameters specified in params is executed.
- */
- - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid nuGrid:(ParamGrid*)nuGrid coeffGrid:(ParamGrid*)coeffGrid degreeGrid:(ParamGrid*)degreeGrid balanced:(BOOL)balanced NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:nuGrid:coeffGrid:degreeGrid:balanced:));
- /**
- * Trains an %SVM with optimal parameters
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- * subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- * @param Cgrid grid for C
- * @param gammaGrid grid for gamma
- * @param pGrid grid for p
- * @param nuGrid grid for nu
- * @param coeffGrid grid for coeff
- * @param degreeGrid grid for degree
- * balanced cross-validation subsets that is proportions between classes in subsets are close
- * to such proportion in the whole train dataset.
- *
- * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- * nu, coef0, degree. Parameters are considered optimal when the cross-validation
- * estimate of the test set error is minimal.
- *
- * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- * offers rudimentary parameter options.
- *
- * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- * the usual %SVM with parameters specified in params is executed.
- */
- - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid nuGrid:(ParamGrid*)nuGrid coeffGrid:(ParamGrid*)coeffGrid degreeGrid:(ParamGrid*)degreeGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:nuGrid:coeffGrid:degreeGrid:));
- /**
- * Trains an %SVM with optimal parameters
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- * subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- * @param Cgrid grid for C
- * @param gammaGrid grid for gamma
- * @param pGrid grid for p
- * @param nuGrid grid for nu
- * @param coeffGrid grid for coeff
- * balanced cross-validation subsets that is proportions between classes in subsets are close
- * to such proportion in the whole train dataset.
- *
- * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- * nu, coef0, degree. Parameters are considered optimal when the cross-validation
- * estimate of the test set error is minimal.
- *
- * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- * offers rudimentary parameter options.
- *
- * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- * the usual %SVM with parameters specified in params is executed.
- */
- - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid nuGrid:(ParamGrid*)nuGrid coeffGrid:(ParamGrid*)coeffGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:nuGrid:coeffGrid:));
- /**
- * Trains an %SVM with optimal parameters
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- * subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- * @param Cgrid grid for C
- * @param gammaGrid grid for gamma
- * @param pGrid grid for p
- * @param nuGrid grid for nu
- * balanced cross-validation subsets that is proportions between classes in subsets are close
- * to such proportion in the whole train dataset.
- *
- * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- * nu, coef0, degree. Parameters are considered optimal when the cross-validation
- * estimate of the test set error is minimal.
- *
- * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- * offers rudimentary parameter options.
- *
- * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- * the usual %SVM with parameters specified in params is executed.
- */
- - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid nuGrid:(ParamGrid*)nuGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:nuGrid:));
- /**
- * Trains an %SVM with optimal parameters
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- * subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- * @param Cgrid grid for C
- * @param gammaGrid grid for gamma
- * @param pGrid grid for p
- * balanced cross-validation subsets that is proportions between classes in subsets are close
- * to such proportion in the whole train dataset.
- *
- * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- * nu, coef0, degree. Parameters are considered optimal when the cross-validation
- * estimate of the test set error is minimal.
- *
- * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- * offers rudimentary parameter options.
- *
- * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- * the usual %SVM with parameters specified in params is executed.
- */
- - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:));
- /**
- * Trains an %SVM with optimal parameters
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- * subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- * @param Cgrid grid for C
- * @param gammaGrid grid for gamma
- * balanced cross-validation subsets that is proportions between classes in subsets are close
- * to such proportion in the whole train dataset.
- *
- * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- * nu, coef0, degree. Parameters are considered optimal when the cross-validation
- * estimate of the test set error is minimal.
- *
- * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- * offers rudimentary parameter options.
- *
- * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- * the usual %SVM with parameters specified in params is executed.
- */
- - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:));
- /**
- * Trains an %SVM with optimal parameters
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- * subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- * @param Cgrid grid for C
- * balanced cross-validation subsets that is proportions between classes in subsets are close
- * to such proportion in the whole train dataset.
- *
- * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- * nu, coef0, degree. Parameters are considered optimal when the cross-validation
- * estimate of the test set error is minimal.
- *
- * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- * offers rudimentary parameter options.
- *
- * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- * the usual %SVM with parameters specified in params is executed.
- */
- - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:));
- /**
- * Trains an %SVM with optimal parameters
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- * subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- * balanced cross-validation subsets that is proportions between classes in subsets are close
- * to such proportion in the whole train dataset.
- *
- * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- * nu, coef0, degree. Parameters are considered optimal when the cross-validation
- * estimate of the test set error is minimal.
- *
- * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- * offers rudimentary parameter options.
- *
- * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- * the usual %SVM with parameters specified in params is executed.
- */
- - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:));
- /**
- * Trains an %SVM with optimal parameters
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- * subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- * balanced cross-validation subsets that is proportions between classes in subsets are close
- * to such proportion in the whole train dataset.
- *
- * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- * nu, coef0, degree. Parameters are considered optimal when the cross-validation
- * estimate of the test set error is minimal.
- *
- * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- * offers rudimentary parameter options.
- *
- * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- * the usual %SVM with parameters specified in params is executed.
- */
- - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses NS_SWIFT_NAME(trainAuto(samples:layout:responses:));
- //
- // Mat cv::ml::SVM::getSupportVectors()
- //
- /**
- * Retrieves all the support vectors
- *
- * The method returns all the support vectors as a floating-point matrix, where support vectors are
- * stored as matrix rows.
- */
- - (Mat*)getSupportVectors NS_SWIFT_NAME(getSupportVectors());
- //
- // Mat cv::ml::SVM::getUncompressedSupportVectors()
- //
- /**
- * Retrieves all the uncompressed support vectors of a linear %SVM
- *
- * The method returns all the uncompressed support vectors of a linear %SVM that the compressed
- * support vector, used for prediction, was derived from. They are returned in a floating-point
- * matrix, where the support vectors are stored as matrix rows.
- */
- - (Mat*)getUncompressedSupportVectors NS_SWIFT_NAME(getUncompressedSupportVectors());
- //
- // double cv::ml::SVM::getDecisionFunction(int i, Mat& alpha, Mat& svidx)
- //
- /**
- * Retrieves the decision function
- *
- * @param i the index of the decision function. If the problem solved is regression, 1-class or
- * 2-class classification, then there will be just one decision function and the index should
- * always be 0. Otherwise, in the case of N-class classification, there will be `$$N(N-1)/2$$`
- * decision functions.
- * @param alpha the optional output vector for weights, corresponding to different support vectors.
- * In the case of linear %SVM all the alpha's will be 1's.
- * @param svidx the optional output vector of indices of support vectors within the matrix of
- * support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear
- * %SVM each decision function consists of a single "compressed" support vector.
- *
- * The method returns rho parameter of the decision function, a scalar subtracted from the weighted
- * sum of kernel responses.
- */
- - (double)getDecisionFunction:(int)i alpha:(Mat*)alpha svidx:(Mat*)svidx NS_SWIFT_NAME(getDecisionFunction(i:alpha:svidx:));
- //
- // static Ptr_ParamGrid cv::ml::SVM::getDefaultGridPtr(int param_id)
- //
- /**
- * Generates a grid for %SVM parameters.
- *
- * @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
- * generated for the parameter with this ID.
- *
- * The function generates a grid pointer for the specified parameter of the %SVM algorithm.
- * The grid may be passed to the function SVM::trainAuto.
- */
- + (ParamGrid*)getDefaultGridPtr:(int)param_id NS_SWIFT_NAME(getDefaultGridPtr(param_id:));
- //
- // static Ptr_SVM cv::ml::SVM::create()
- //
- /**
- * Creates empty model.
- * Use StatModel::train to train the model. Since %SVM has several parameters, you may want to
- * find the best parameters for your problem, it can be done with SVM::trainAuto.
- */
- + (SVM*)create NS_SWIFT_NAME(create());
- //
- // static Ptr_SVM cv::ml::SVM::load(String filepath)
- //
- /**
- * Loads and creates a serialized svm from a file
- *
- * Use SVM::save to serialize and store an SVM to disk.
- * Load the SVM from this file again, by calling this function with the path to the file.
- *
- * @param filepath path to serialized svm
- */
- + (SVM*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:));
- @end
- NS_ASSUME_NONNULL_END
|