123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/bioinspired.hpp"
- #import "opencv2/bioinspired/retina.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "Algorithm.h"
- @class Mat;
- @class Size2i;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class Retina
- /**
- * class which allows the Gipsa/Listic Labs model to be used with OpenCV.
- *
- * This retina model allows spatio-temporal image processing (applied on still images, video sequences).
- * As a summary, these are the retina model properties:
- * - It applies a spectral whithening (mid-frequency details enhancement)
- * - high frequency spatio-temporal noise reduction
- * - low frequency luminance to be reduced (luminance range compression)
- * - local logarithmic luminance compression allows details to be enhanced in low light conditions
- *
- * USE : this model can be used basically for spatio-temporal video effects but also for :
- * _using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
- * _using the getMagno method output matrix : motion analysis also with the previously cited properties
- *
- * for more information, reer to the following papers :
- * Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
- *
- * The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
- * take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
- * B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
- * take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
- * more informations in the above cited Jeanny Heraults's book.
- *
- * Member of `Bioinspired`
- */
- CV_EXPORTS @interface Retina : Algorithm
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::bioinspired::Retina> nativePtrRetina;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::bioinspired::Retina>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::bioinspired::Retina>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // Size cv::bioinspired::Retina::getInputSize()
- //
- /**
- * Retreive retina input buffer size
- * @return the retina input buffer size
- */
- - (Size2i*)getInputSize NS_SWIFT_NAME(getInputSize());
- //
- // Size cv::bioinspired::Retina::getOutputSize()
- //
- /**
- * Retreive retina output buffer size that can be different from the input if a spatial log
- * transformation is applied
- * @return the retina output buffer size
- */
- - (Size2i*)getOutputSize NS_SWIFT_NAME(getOutputSize());
- //
- // void cv::bioinspired::Retina::setup(String retinaParameterFile = "", bool applyDefaultSetupOnFailure = true)
- //
- /**
- * Try to open an XML retina parameters file to adjust current retina instance setup
- *
- * - if the xml file does not exist, then default setup is applied
- * - warning, Exceptions are thrown if read XML file is not valid
- * @param retinaParameterFile the parameters filename
- * @param applyDefaultSetupOnFailure set to true if an error must be thrown on error
- *
- * You can retrieve the current parameters structure using the method Retina::getParameters and update
- * it before running method Retina::setup.
- */
- - (void)setup:(NSString*)retinaParameterFile applyDefaultSetupOnFailure:(BOOL)applyDefaultSetupOnFailure NS_SWIFT_NAME(setup(retinaParameterFile:applyDefaultSetupOnFailure:));
- /**
- * Try to open an XML retina parameters file to adjust current retina instance setup
- *
- * - if the xml file does not exist, then default setup is applied
- * - warning, Exceptions are thrown if read XML file is not valid
- * @param retinaParameterFile the parameters filename
- *
- * You can retrieve the current parameters structure using the method Retina::getParameters and update
- * it before running method Retina::setup.
- */
- - (void)setup:(NSString*)retinaParameterFile NS_SWIFT_NAME(setup(retinaParameterFile:));
- /**
- * Try to open an XML retina parameters file to adjust current retina instance setup
- *
- * - if the xml file does not exist, then default setup is applied
- * - warning, Exceptions are thrown if read XML file is not valid
- *
- * You can retrieve the current parameters structure using the method Retina::getParameters and update
- * it before running method Retina::setup.
- */
- - (void)setup NS_SWIFT_NAME(setup());
- //
- // String cv::bioinspired::Retina::printSetup()
- //
- /**
- * Outputs a string showing the used parameters setup
- * @return a string which contains formated parameters information
- */
- - (NSString*)printSetup NS_SWIFT_NAME(printSetup());
- //
- // void cv::bioinspired::Retina::write(String fs)
- //
- /**
- * Write xml/yml formated parameters information
- * @param fs the filename of the xml file that will be open and writen with formatted parameters
- * information
- */
- - (void)write:(NSString*)fs NS_SWIFT_NAME(write(fs:));
- //
- // void cv::bioinspired::Retina::setupOPLandIPLParvoChannel(bool colorMode = true, bool normaliseOutput = true, float photoreceptorsLocalAdaptationSensitivity = 0.7f, float photoreceptorsTemporalConstant = 0.5f, float photoreceptorsSpatialConstant = 0.53f, float horizontalCellsGain = 0.f, float HcellsTemporalConstant = 1.f, float HcellsSpatialConstant = 7.f, float ganglionCellsSensitivity = 0.7f)
- //
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * @param colorMode specifies if (true) color is processed of not (false) to then processing gray
- * level image
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
- * (more log compression effect when value increases)
- * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * @param HcellsTemporalConstant the time constant of the first order low pass filter of the
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * @param HcellsSpatialConstant the spatial constant of the first order low pass filter of the
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * @param ganglionCellsSensitivity the compression strengh of the ganglion cells local adaptation
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel:(BOOL)colorMode normaliseOutput:(BOOL)normaliseOutput photoreceptorsLocalAdaptationSensitivity:(float)photoreceptorsLocalAdaptationSensitivity photoreceptorsTemporalConstant:(float)photoreceptorsTemporalConstant photoreceptorsSpatialConstant:(float)photoreceptorsSpatialConstant horizontalCellsGain:(float)horizontalCellsGain HcellsTemporalConstant:(float)HcellsTemporalConstant HcellsSpatialConstant:(float)HcellsSpatialConstant ganglionCellsSensitivity:(float)ganglionCellsSensitivity NS_SWIFT_NAME(setupOPLandIPLParvoChannel(colorMode:normaliseOutput:photoreceptorsLocalAdaptationSensitivity:photoreceptorsTemporalConstant:photoreceptorsSpatialConstant:horizontalCellsGain:HcellsTemporalConstant:HcellsSpatialConstant:ganglionCellsSensitivity:));
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * @param colorMode specifies if (true) color is processed of not (false) to then processing gray
- * level image
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
- * (more log compression effect when value increases)
- * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * @param HcellsTemporalConstant the time constant of the first order low pass filter of the
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * @param HcellsSpatialConstant the spatial constant of the first order low pass filter of the
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel:(BOOL)colorMode normaliseOutput:(BOOL)normaliseOutput photoreceptorsLocalAdaptationSensitivity:(float)photoreceptorsLocalAdaptationSensitivity photoreceptorsTemporalConstant:(float)photoreceptorsTemporalConstant photoreceptorsSpatialConstant:(float)photoreceptorsSpatialConstant horizontalCellsGain:(float)horizontalCellsGain HcellsTemporalConstant:(float)HcellsTemporalConstant HcellsSpatialConstant:(float)HcellsSpatialConstant NS_SWIFT_NAME(setupOPLandIPLParvoChannel(colorMode:normaliseOutput:photoreceptorsLocalAdaptationSensitivity:photoreceptorsTemporalConstant:photoreceptorsSpatialConstant:horizontalCellsGain:HcellsTemporalConstant:HcellsSpatialConstant:));
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * @param colorMode specifies if (true) color is processed of not (false) to then processing gray
- * level image
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
- * (more log compression effect when value increases)
- * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * @param HcellsTemporalConstant the time constant of the first order low pass filter of the
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel:(BOOL)colorMode normaliseOutput:(BOOL)normaliseOutput photoreceptorsLocalAdaptationSensitivity:(float)photoreceptorsLocalAdaptationSensitivity photoreceptorsTemporalConstant:(float)photoreceptorsTemporalConstant photoreceptorsSpatialConstant:(float)photoreceptorsSpatialConstant horizontalCellsGain:(float)horizontalCellsGain HcellsTemporalConstant:(float)HcellsTemporalConstant NS_SWIFT_NAME(setupOPLandIPLParvoChannel(colorMode:normaliseOutput:photoreceptorsLocalAdaptationSensitivity:photoreceptorsTemporalConstant:photoreceptorsSpatialConstant:horizontalCellsGain:HcellsTemporalConstant:));
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * @param colorMode specifies if (true) color is processed of not (false) to then processing gray
- * level image
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
- * (more log compression effect when value increases)
- * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel:(BOOL)colorMode normaliseOutput:(BOOL)normaliseOutput photoreceptorsLocalAdaptationSensitivity:(float)photoreceptorsLocalAdaptationSensitivity photoreceptorsTemporalConstant:(float)photoreceptorsTemporalConstant photoreceptorsSpatialConstant:(float)photoreceptorsSpatialConstant horizontalCellsGain:(float)horizontalCellsGain NS_SWIFT_NAME(setupOPLandIPLParvoChannel(colorMode:normaliseOutput:photoreceptorsLocalAdaptationSensitivity:photoreceptorsTemporalConstant:photoreceptorsSpatialConstant:horizontalCellsGain:));
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * @param colorMode specifies if (true) color is processed of not (false) to then processing gray
- * level image
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
- * (more log compression effect when value increases)
- * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel:(BOOL)colorMode normaliseOutput:(BOOL)normaliseOutput photoreceptorsLocalAdaptationSensitivity:(float)photoreceptorsLocalAdaptationSensitivity photoreceptorsTemporalConstant:(float)photoreceptorsTemporalConstant photoreceptorsSpatialConstant:(float)photoreceptorsSpatialConstant NS_SWIFT_NAME(setupOPLandIPLParvoChannel(colorMode:normaliseOutput:photoreceptorsLocalAdaptationSensitivity:photoreceptorsTemporalConstant:photoreceptorsSpatialConstant:));
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * @param colorMode specifies if (true) color is processed of not (false) to then processing gray
- * level image
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
- * (more log compression effect when value increases)
- * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel:(BOOL)colorMode normaliseOutput:(BOOL)normaliseOutput photoreceptorsLocalAdaptationSensitivity:(float)photoreceptorsLocalAdaptationSensitivity photoreceptorsTemporalConstant:(float)photoreceptorsTemporalConstant NS_SWIFT_NAME(setupOPLandIPLParvoChannel(colorMode:normaliseOutput:photoreceptorsLocalAdaptationSensitivity:photoreceptorsTemporalConstant:));
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * @param colorMode specifies if (true) color is processed of not (false) to then processing gray
- * level image
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1
- * (more log compression effect when value increases)
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel:(BOOL)colorMode normaliseOutput:(BOOL)normaliseOutput photoreceptorsLocalAdaptationSensitivity:(float)photoreceptorsLocalAdaptationSensitivity NS_SWIFT_NAME(setupOPLandIPLParvoChannel(colorMode:normaliseOutput:photoreceptorsLocalAdaptationSensitivity:));
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * @param colorMode specifies if (true) color is processed of not (false) to then processing gray
- * level image
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * (more log compression effect when value increases)
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel:(BOOL)colorMode normaliseOutput:(BOOL)normaliseOutput NS_SWIFT_NAME(setupOPLandIPLParvoChannel(colorMode:normaliseOutput:));
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * @param colorMode specifies if (true) color is processed of not (false) to then processing gray
- * level image
- * (more log compression effect when value increases)
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel:(BOOL)colorMode NS_SWIFT_NAME(setupOPLandIPLParvoChannel(colorMode:));
- /**
- * Setup the OPL and IPL parvo channels (see biologocal model)
- *
- * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
- * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
- * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
- * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
- * reference papers for more informations.
- * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
- * level image
- * (more log compression effect when value increases)
- * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
- * frames, typical value is 1 frame
- * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
- * pixels, typical value is 1 pixel
- * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
- * still reachable at the output, typicall value is 0
- * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
- * frames, typical value is 1 frame, as the photoreceptors
- * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
- * typical value is 5 pixel, this value is also used for local contrast computing when computing
- * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
- * channel model)
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.7
- */
- - (void)setupOPLandIPLParvoChannel NS_SWIFT_NAME(setupOPLandIPLParvoChannel());
- //
- // void cv::bioinspired::Retina::setupIPLMagnoChannel(bool normaliseOutput = true, float parasolCells_beta = 0.f, float parasolCells_tau = 0.f, float parasolCells_k = 7.f, float amacrinCellsTemporalCutFrequency = 1.2f, float V0CompressionParameter = 0.95f, float localAdaptintegration_tau = 0.f, float localAdaptintegration_k = 7.f)
- //
- /**
- * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
- *
- * this channel processes signals output from OPL processing stage in peripheral vision, it allows
- * motion information enhancement. It is decorrelated from the details channel. See reference
- * papers for more details.
- *
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
- * IPL level of the retina (for ganglion cells local adaptation), typical value is 0
- * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
- * value is 0 (immediate response)
- * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
- * value is 5
- * @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
- * the magnocellular way (motion information channel), unit is frames, typical value is 1.2
- * @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.95
- * @param localAdaptintegration_tau specifies the temporal constant of the low pas filter
- * involved in the computation of the local "motion mean" for the local adaptation computation
- * @param localAdaptintegration_k specifies the spatial constant of the low pas filter involved
- * in the computation of the local "motion mean" for the local adaptation computation
- */
- - (void)setupIPLMagnoChannel:(BOOL)normaliseOutput parasolCells_beta:(float)parasolCells_beta parasolCells_tau:(float)parasolCells_tau parasolCells_k:(float)parasolCells_k amacrinCellsTemporalCutFrequency:(float)amacrinCellsTemporalCutFrequency V0CompressionParameter:(float)V0CompressionParameter localAdaptintegration_tau:(float)localAdaptintegration_tau localAdaptintegration_k:(float)localAdaptintegration_k NS_SWIFT_NAME(setupIPLMagnoChannel(normaliseOutput:parasolCells_beta:parasolCells_tau:parasolCells_k:amacrinCellsTemporalCutFrequency:V0CompressionParameter:localAdaptintegration_tau:localAdaptintegration_k:));
- /**
- * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
- *
- * this channel processes signals output from OPL processing stage in peripheral vision, it allows
- * motion information enhancement. It is decorrelated from the details channel. See reference
- * papers for more details.
- *
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
- * IPL level of the retina (for ganglion cells local adaptation), typical value is 0
- * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
- * value is 0 (immediate response)
- * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
- * value is 5
- * @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
- * the magnocellular way (motion information channel), unit is frames, typical value is 1.2
- * @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.95
- * @param localAdaptintegration_tau specifies the temporal constant of the low pas filter
- * involved in the computation of the local "motion mean" for the local adaptation computation
- * in the computation of the local "motion mean" for the local adaptation computation
- */
- - (void)setupIPLMagnoChannel:(BOOL)normaliseOutput parasolCells_beta:(float)parasolCells_beta parasolCells_tau:(float)parasolCells_tau parasolCells_k:(float)parasolCells_k amacrinCellsTemporalCutFrequency:(float)amacrinCellsTemporalCutFrequency V0CompressionParameter:(float)V0CompressionParameter localAdaptintegration_tau:(float)localAdaptintegration_tau NS_SWIFT_NAME(setupIPLMagnoChannel(normaliseOutput:parasolCells_beta:parasolCells_tau:parasolCells_k:amacrinCellsTemporalCutFrequency:V0CompressionParameter:localAdaptintegration_tau:));
- /**
- * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
- *
- * this channel processes signals output from OPL processing stage in peripheral vision, it allows
- * motion information enhancement. It is decorrelated from the details channel. See reference
- * papers for more details.
- *
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
- * IPL level of the retina (for ganglion cells local adaptation), typical value is 0
- * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
- * value is 0 (immediate response)
- * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
- * value is 5
- * @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
- * the magnocellular way (motion information channel), unit is frames, typical value is 1.2
- * @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.95
- * involved in the computation of the local "motion mean" for the local adaptation computation
- * in the computation of the local "motion mean" for the local adaptation computation
- */
- - (void)setupIPLMagnoChannel:(BOOL)normaliseOutput parasolCells_beta:(float)parasolCells_beta parasolCells_tau:(float)parasolCells_tau parasolCells_k:(float)parasolCells_k amacrinCellsTemporalCutFrequency:(float)amacrinCellsTemporalCutFrequency V0CompressionParameter:(float)V0CompressionParameter NS_SWIFT_NAME(setupIPLMagnoChannel(normaliseOutput:parasolCells_beta:parasolCells_tau:parasolCells_k:amacrinCellsTemporalCutFrequency:V0CompressionParameter:));
- /**
- * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
- *
- * this channel processes signals output from OPL processing stage in peripheral vision, it allows
- * motion information enhancement. It is decorrelated from the details channel. See reference
- * papers for more details.
- *
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
- * IPL level of the retina (for ganglion cells local adaptation), typical value is 0
- * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
- * value is 0 (immediate response)
- * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
- * value is 5
- * @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of
- * the magnocellular way (motion information channel), unit is frames, typical value is 1.2
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.95
- * involved in the computation of the local "motion mean" for the local adaptation computation
- * in the computation of the local "motion mean" for the local adaptation computation
- */
- - (void)setupIPLMagnoChannel:(BOOL)normaliseOutput parasolCells_beta:(float)parasolCells_beta parasolCells_tau:(float)parasolCells_tau parasolCells_k:(float)parasolCells_k amacrinCellsTemporalCutFrequency:(float)amacrinCellsTemporalCutFrequency NS_SWIFT_NAME(setupIPLMagnoChannel(normaliseOutput:parasolCells_beta:parasolCells_tau:parasolCells_k:amacrinCellsTemporalCutFrequency:));
- /**
- * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
- *
- * this channel processes signals output from OPL processing stage in peripheral vision, it allows
- * motion information enhancement. It is decorrelated from the details channel. See reference
- * papers for more details.
- *
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
- * IPL level of the retina (for ganglion cells local adaptation), typical value is 0
- * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
- * value is 0 (immediate response)
- * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
- * value is 5
- * the magnocellular way (motion information channel), unit is frames, typical value is 1.2
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.95
- * involved in the computation of the local "motion mean" for the local adaptation computation
- * in the computation of the local "motion mean" for the local adaptation computation
- */
- - (void)setupIPLMagnoChannel:(BOOL)normaliseOutput parasolCells_beta:(float)parasolCells_beta parasolCells_tau:(float)parasolCells_tau parasolCells_k:(float)parasolCells_k NS_SWIFT_NAME(setupIPLMagnoChannel(normaliseOutput:parasolCells_beta:parasolCells_tau:parasolCells_k:));
- /**
- * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
- *
- * this channel processes signals output from OPL processing stage in peripheral vision, it allows
- * motion information enhancement. It is decorrelated from the details channel. See reference
- * papers for more details.
- *
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
- * IPL level of the retina (for ganglion cells local adaptation), typical value is 0
- * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
- * value is 0 (immediate response)
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
- * value is 5
- * the magnocellular way (motion information channel), unit is frames, typical value is 1.2
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.95
- * involved in the computation of the local "motion mean" for the local adaptation computation
- * in the computation of the local "motion mean" for the local adaptation computation
- */
- - (void)setupIPLMagnoChannel:(BOOL)normaliseOutput parasolCells_beta:(float)parasolCells_beta parasolCells_tau:(float)parasolCells_tau NS_SWIFT_NAME(setupIPLMagnoChannel(normaliseOutput:parasolCells_beta:parasolCells_tau:));
- /**
- * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
- *
- * this channel processes signals output from OPL processing stage in peripheral vision, it allows
- * motion information enhancement. It is decorrelated from the details channel. See reference
- * papers for more details.
- *
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the
- * IPL level of the retina (for ganglion cells local adaptation), typical value is 0
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
- * value is 0 (immediate response)
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
- * value is 5
- * the magnocellular way (motion information channel), unit is frames, typical value is 1.2
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.95
- * involved in the computation of the local "motion mean" for the local adaptation computation
- * in the computation of the local "motion mean" for the local adaptation computation
- */
- - (void)setupIPLMagnoChannel:(BOOL)normaliseOutput parasolCells_beta:(float)parasolCells_beta NS_SWIFT_NAME(setupIPLMagnoChannel(normaliseOutput:parasolCells_beta:));
- /**
- * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
- *
- * this channel processes signals output from OPL processing stage in peripheral vision, it allows
- * motion information enhancement. It is decorrelated from the details channel. See reference
- * papers for more details.
- *
- * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false)
- * IPL level of the retina (for ganglion cells local adaptation), typical value is 0
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
- * value is 0 (immediate response)
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
- * value is 5
- * the magnocellular way (motion information channel), unit is frames, typical value is 1.2
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.95
- * involved in the computation of the local "motion mean" for the local adaptation computation
- * in the computation of the local "motion mean" for the local adaptation computation
- */
- - (void)setupIPLMagnoChannel:(BOOL)normaliseOutput NS_SWIFT_NAME(setupIPLMagnoChannel(normaliseOutput:));
- /**
- * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
- *
- * this channel processes signals output from OPL processing stage in peripheral vision, it allows
- * motion information enhancement. It is decorrelated from the details channel. See reference
- * papers for more details.
- *
- * IPL level of the retina (for ganglion cells local adaptation), typical value is 0
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
- * value is 0 (immediate response)
- * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
- * value is 5
- * the magnocellular way (motion information channel), unit is frames, typical value is 1.2
- * output, set a value between 0.6 and 1 for best results, a high value increases more the low
- * value sensitivity... and the output saturates faster, recommended value: 0.95
- * involved in the computation of the local "motion mean" for the local adaptation computation
- * in the computation of the local "motion mean" for the local adaptation computation
- */
- - (void)setupIPLMagnoChannel NS_SWIFT_NAME(setupIPLMagnoChannel());
- //
- // void cv::bioinspired::Retina::run(Mat inputImage)
- //
- /**
- * Method which allows retina to be applied on an input image,
- *
- * after run, encapsulated retina module is ready to deliver its outputs using dedicated
- * acccessors, see getParvo and getMagno methods
- * @param inputImage the input Mat image to be processed, can be gray level or BGR coded in any
- * format (from 8bit to 16bits)
- */
- - (void)run:(Mat*)inputImage NS_SWIFT_NAME(run(inputImage:));
- //
- // void cv::bioinspired::Retina::applyFastToneMapping(Mat inputImage, Mat& outputToneMappedImage)
- //
- /**
- * Method which processes an image in the aim to correct its luminance correct
- * backlight problems, enhance details in shadows.
- *
- * This method is designed to perform High Dynamic Range image tone mapping (compress \>8bit/pixel
- * images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model
- * (simplified version of the run/getParvo methods call) since it does not include the
- * spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral
- * whitening and many other stuff. However, it works great for tone mapping and in a faster way.
- *
- * Check the demos and experiments section to see examples and the way to perform tone mapping
- * using the original retina model and the method.
- *
- * @param inputImage the input image to process (should be coded in float format : CV_32F,
- * CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered).
- * @param outputToneMappedImage the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).
- */
- - (void)applyFastToneMapping:(Mat*)inputImage outputToneMappedImage:(Mat*)outputToneMappedImage NS_SWIFT_NAME(applyFastToneMapping(inputImage:outputToneMappedImage:));
- //
- // void cv::bioinspired::Retina::getParvo(Mat& retinaOutput_parvo)
- //
- /**
- * Accessor of the details channel of the retina (models foveal vision).
- *
- * Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while
- * the non RAW method allows a normalized matrix to be retrieved.
- *
- * @param retinaOutput_parvo the output buffer (reallocated if necessary), format can be :
- * - a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
- * - RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1,
- * B2, ...Bn), this output is the original retina filter model output, without any
- * quantification or rescaling.
- * @see `-getParvoRAW:`
- */
- - (void)getParvo:(Mat*)retinaOutput_parvo NS_SWIFT_NAME(getParvo(retinaOutput_parvo:));
- //
- // void cv::bioinspired::Retina::getParvoRAW(Mat& retinaOutput_parvo)
- //
- /**
- * Accessor of the details channel of the retina (models foveal vision).
- * @see `-getParvo:`
- */
- - (void)getParvoRAW:(Mat*)retinaOutput_parvo NS_SWIFT_NAME(getParvoRAW(retinaOutput_parvo:));
- //
- // void cv::bioinspired::Retina::getMagno(Mat& retinaOutput_magno)
- //
- /**
- * Accessor of the motion channel of the retina (models peripheral vision).
- *
- * Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while
- * the non RAW method allows a normalized matrix to be retrieved.
- * @param retinaOutput_magno the output buffer (reallocated if necessary), format can be :
- * - a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
- * - RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the
- * original retina filter model output, without any quantification or rescaling.
- * @see `-getMagnoRAW:`
- */
- - (void)getMagno:(Mat*)retinaOutput_magno NS_SWIFT_NAME(getMagno(retinaOutput_magno:));
- //
- // void cv::bioinspired::Retina::getMagnoRAW(Mat& retinaOutput_magno)
- //
- /**
- * Accessor of the motion channel of the retina (models peripheral vision).
- * @see `-getMagno:`
- */
- - (void)getMagnoRAW:(Mat*)retinaOutput_magno NS_SWIFT_NAME(getMagnoRAW(retinaOutput_magno:));
- //
- // Mat cv::bioinspired::Retina::getMagnoRAW()
- //
- - (Mat*)getMagnoRAW NS_SWIFT_NAME(getMagnoRAW());
- //
- // Mat cv::bioinspired::Retina::getParvoRAW()
- //
- - (Mat*)getParvoRAW NS_SWIFT_NAME(getParvoRAW());
- //
- // void cv::bioinspired::Retina::setColorSaturation(bool saturateColors = true, float colorSaturationValue = 4.0f)
- //
- /**
- * Activate color saturation as the final step of the color demultiplexing process -\> this
- * saturation is a sigmoide function applied to each channel of the demultiplexed image.
- * @param saturateColors boolean that activates color saturation (if true) or desactivate (if false)
- * @param colorSaturationValue the saturation factor : a simple factor applied on the chrominance
- * buffers
- */
- - (void)setColorSaturation:(BOOL)saturateColors colorSaturationValue:(float)colorSaturationValue NS_SWIFT_NAME(setColorSaturation(saturateColors:colorSaturationValue:));
- /**
- * Activate color saturation as the final step of the color demultiplexing process -\> this
- * saturation is a sigmoide function applied to each channel of the demultiplexed image.
- * @param saturateColors boolean that activates color saturation (if true) or desactivate (if false)
- * buffers
- */
- - (void)setColorSaturation:(BOOL)saturateColors NS_SWIFT_NAME(setColorSaturation(saturateColors:));
- /**
- * Activate color saturation as the final step of the color demultiplexing process -\> this
- * saturation is a sigmoide function applied to each channel of the demultiplexed image.
- * buffers
- */
- - (void)setColorSaturation NS_SWIFT_NAME(setColorSaturation());
- //
- // void cv::bioinspired::Retina::clearBuffers()
- //
- /**
- * Clears all retina buffers
- *
- * (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal
- * transition occuring just after this method call.
- */
- - (void)clearBuffers NS_SWIFT_NAME(clearBuffers());
- //
- // void cv::bioinspired::Retina::activateMovingContoursProcessing(bool activate)
- //
- /**
- * Activate/desactivate the Magnocellular pathway processing (motion information extraction), by
- * default, it is activated
- * @param activate true if Magnocellular output should be activated, false if not... if activated,
- * the Magnocellular output can be retrieved using the **getMagno** methods
- */
- - (void)activateMovingContoursProcessing:(BOOL)activate NS_SWIFT_NAME(activateMovingContoursProcessing(activate:));
- //
- // void cv::bioinspired::Retina::activateContoursProcessing(bool activate)
- //
- /**
- * Activate/desactivate the Parvocellular pathway processing (contours information extraction), by
- * default, it is activated
- * @param activate true if Parvocellular (contours information extraction) output should be
- * activated, false if not... if activated, the Parvocellular output can be retrieved using the
- * Retina::getParvo methods
- */
- - (void)activateContoursProcessing:(BOOL)activate NS_SWIFT_NAME(activateContoursProcessing(activate:));
- //
- // static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize)
- //
- + (Retina*)create:(Size2i*)inputSize NS_SWIFT_NAME(create(inputSize:));
- //
- // static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize, bool colorMode, int colorSamplingMethod = RETINA_COLOR_BAYER, bool useRetinaLogSampling = false, float reductionFactor = 1.0f, float samplingStrength = 10.0f)
- //
- /**
- * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
- *
- * @param inputSize the input frame size
- * @param colorMode the chosen processing mode : with or without color processing
- * @param colorSamplingMethod specifies which kind of color sampling will be used :
- * - cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
- * - cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
- * - cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
- * @param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
- * be used
- * @param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction
- * factor of the output frame (as the center (fovea) is high resolution and corners can be
- * underscaled, then a reduction of the output is allowed without precision leak
- * @param samplingStrength only usefull if param useRetinaLogSampling=true, specifies the strength of
- * the log scale that is applied
- */
- + (Retina*)create:(Size2i*)inputSize colorMode:(BOOL)colorMode colorSamplingMethod:(int)colorSamplingMethod useRetinaLogSampling:(BOOL)useRetinaLogSampling reductionFactor:(float)reductionFactor samplingStrength:(float)samplingStrength NS_SWIFT_NAME(create(inputSize:colorMode:colorSamplingMethod:useRetinaLogSampling:reductionFactor:samplingStrength:));
- /**
- * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
- *
- * @param inputSize the input frame size
- * @param colorMode the chosen processing mode : with or without color processing
- * @param colorSamplingMethod specifies which kind of color sampling will be used :
- * - cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
- * - cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
- * - cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
- * @param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
- * be used
- * @param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction
- * factor of the output frame (as the center (fovea) is high resolution and corners can be
- * underscaled, then a reduction of the output is allowed without precision leak
- * the log scale that is applied
- */
- + (Retina*)create:(Size2i*)inputSize colorMode:(BOOL)colorMode colorSamplingMethod:(int)colorSamplingMethod useRetinaLogSampling:(BOOL)useRetinaLogSampling reductionFactor:(float)reductionFactor NS_SWIFT_NAME(create(inputSize:colorMode:colorSamplingMethod:useRetinaLogSampling:reductionFactor:));
- /**
- * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
- *
- * @param inputSize the input frame size
- * @param colorMode the chosen processing mode : with or without color processing
- * @param colorSamplingMethod specifies which kind of color sampling will be used :
- * - cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
- * - cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
- * - cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
- * @param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can
- * be used
- * factor of the output frame (as the center (fovea) is high resolution and corners can be
- * underscaled, then a reduction of the output is allowed without precision leak
- * the log scale that is applied
- */
- + (Retina*)create:(Size2i*)inputSize colorMode:(BOOL)colorMode colorSamplingMethod:(int)colorSamplingMethod useRetinaLogSampling:(BOOL)useRetinaLogSampling NS_SWIFT_NAME(create(inputSize:colorMode:colorSamplingMethod:useRetinaLogSampling:));
- /**
- * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
- *
- * @param inputSize the input frame size
- * @param colorMode the chosen processing mode : with or without color processing
- * @param colorSamplingMethod specifies which kind of color sampling will be used :
- * - cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
- * - cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
- * - cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
- * be used
- * factor of the output frame (as the center (fovea) is high resolution and corners can be
- * underscaled, then a reduction of the output is allowed without precision leak
- * the log scale that is applied
- */
- + (Retina*)create:(Size2i*)inputSize colorMode:(BOOL)colorMode colorSamplingMethod:(int)colorSamplingMethod NS_SWIFT_NAME(create(inputSize:colorMode:colorSamplingMethod:));
- /**
- * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
- *
- * @param inputSize the input frame size
- * @param colorMode the chosen processing mode : with or without color processing
- * - cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
- * - cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
- * - cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
- * be used
- * factor of the output frame (as the center (fovea) is high resolution and corners can be
- * underscaled, then a reduction of the output is allowed without precision leak
- * the log scale that is applied
- */
- + (Retina*)create:(Size2i*)inputSize colorMode:(BOOL)colorMode NS_SWIFT_NAME(create(inputSize:colorMode:));
- @end
- NS_ASSUME_NONNULL_END
|