12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/photo.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- @class AlignMTB;
- @class CalibrateDebevec;
- @class CalibrateRobertson;
- @class FloatVector;
- @class Mat;
- @class MergeDebevec;
- @class MergeMertens;
- @class MergeRobertson;
- @class Point2i;
- @class Tonemap;
- @class TonemapDrago;
- @class TonemapMantiuk;
- @class TonemapReinhard;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class Photo
- /**
- * The Photo module
- *
- * Member classes: `Tonemap`, `TonemapDrago`, `TonemapReinhard`, `TonemapMantiuk`, `AlignExposures`, `AlignMTB`, `CalibrateCRF`, `CalibrateDebevec`, `CalibrateRobertson`, `MergeExposures`, `MergeDebevec`, `MergeMertens`, `MergeRobertson`
- *
- */
- CV_EXPORTS @interface Photo : NSObject
- #pragma mark - Class Constants
- @property (class, readonly) int INPAINT_NS NS_SWIFT_NAME(INPAINT_NS);
- @property (class, readonly) int INPAINT_TELEA NS_SWIFT_NAME(INPAINT_TELEA);
- @property (class, readonly) int LDR_SIZE NS_SWIFT_NAME(LDR_SIZE);
- @property (class, readonly) int NORMAL_CLONE NS_SWIFT_NAME(NORMAL_CLONE);
- @property (class, readonly) int MIXED_CLONE NS_SWIFT_NAME(MIXED_CLONE);
- @property (class, readonly) int MONOCHROME_TRANSFER NS_SWIFT_NAME(MONOCHROME_TRANSFER);
- @property (class, readonly) int RECURS_FILTER NS_SWIFT_NAME(RECURS_FILTER);
- @property (class, readonly) int NORMCONV_FILTER NS_SWIFT_NAME(NORMCONV_FILTER);
- #pragma mark - Methods
- //
- // void cv::inpaint(Mat src, Mat inpaintMask, Mat& dst, double inpaintRadius, int flags)
- //
- /**
- * Restores the selected region in an image using the region neighborhood.
- *
- * @param src Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.
- * @param inpaintMask Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
- * needs to be inpainted.
- * @param dst Output image with the same size and type as src .
- * @param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered
- * by the algorithm.
- * @param flags Inpainting method that could be cv::INPAINT_NS or cv::INPAINT_TELEA
- *
- * The function reconstructs the selected image area from the pixel near the area boundary. The
- * function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
- * objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details.
- *
- * NOTE:
- * - An example using the inpainting technique can be found at
- * opencv_source_code/samples/cpp/inpaint.cpp
- * - (Python) An example using the inpainting technique can be found at
- * opencv_source_code/samples/python/inpaint.py
- */
- + (void)inpaint:(Mat*)src inpaintMask:(Mat*)inpaintMask dst:(Mat*)dst inpaintRadius:(double)inpaintRadius flags:(int)flags NS_SWIFT_NAME(inpaint(src:inpaintMask:dst:inpaintRadius:flags:));
- //
- // void cv::fastNlMeansDenoising(Mat src, Mat& dst, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21)
- //
- /**
- * Perform image denoising using Non-local Means Denoising algorithm
- * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- * optimizations. Noise expected to be a gaussian white noise
- *
- * @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
- * @param dst Output image with the same size and type as src .
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength. Big h value perfectly removes noise but also
- * removes image details, smaller h value preserves details but also preserves some noise
- *
- * This function expected to be applied to grayscale images. For colored images look at
- * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- * image to CIELAB colorspace and then separately denoise L and AB components with different h
- * parameter.
- */
- + (void)fastNlMeansDenoising:(Mat*)src dst:(Mat*)dst h:(float)h templateWindowSize:(int)templateWindowSize searchWindowSize:(int)searchWindowSize NS_SWIFT_NAME(fastNlMeansDenoising(src:dst:h:templateWindowSize:searchWindowSize:));
- /**
- * Perform image denoising using Non-local Means Denoising algorithm
- * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- * optimizations. Noise expected to be a gaussian white noise
- *
- * @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
- * @param dst Output image with the same size and type as src .
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength. Big h value perfectly removes noise but also
- * removes image details, smaller h value preserves details but also preserves some noise
- *
- * This function expected to be applied to grayscale images. For colored images look at
- * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- * image to CIELAB colorspace and then separately denoise L and AB components with different h
- * parameter.
- */
- + (void)fastNlMeansDenoising:(Mat*)src dst:(Mat*)dst h:(float)h templateWindowSize:(int)templateWindowSize NS_SWIFT_NAME(fastNlMeansDenoising(src:dst:h:templateWindowSize:));
- /**
- * Perform image denoising using Non-local Means Denoising algorithm
- * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- * optimizations. Noise expected to be a gaussian white noise
- *
- * @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
- * @param dst Output image with the same size and type as src .
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength. Big h value perfectly removes noise but also
- * removes image details, smaller h value preserves details but also preserves some noise
- *
- * This function expected to be applied to grayscale images. For colored images look at
- * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- * image to CIELAB colorspace and then separately denoise L and AB components with different h
- * parameter.
- */
- + (void)fastNlMeansDenoising:(Mat*)src dst:(Mat*)dst h:(float)h NS_SWIFT_NAME(fastNlMeansDenoising(src:dst:h:));
- /**
- * Perform image denoising using Non-local Means Denoising algorithm
- * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- * optimizations. Noise expected to be a gaussian white noise
- *
- * @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
- * @param dst Output image with the same size and type as src .
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * removes image details, smaller h value preserves details but also preserves some noise
- *
- * This function expected to be applied to grayscale images. For colored images look at
- * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- * image to CIELAB colorspace and then separately denoise L and AB components with different h
- * parameter.
- */
- + (void)fastNlMeansDenoising:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(fastNlMeansDenoising(src:dst:));
- //
- // void cv::fastNlMeansDenoising(Mat src, Mat& dst, vector_float hVector, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2)
- //
- /**
- * Perform image denoising using Non-local Means Denoising algorithm
- * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- * optimizations. Noise expected to be a gaussian white noise
- *
- * @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- * 2-channel, 3-channel or 4-channel image.
- * @param dst Output image with the same size and type as src .
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * parameter applied to all channels or one per channel in dst. Big h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- * @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
- *
- * This function expected to be applied to grayscale images. For colored images look at
- * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- * image to CIELAB colorspace and then separately denoise L and AB components with different h
- * parameter.
- */
- + (void)fastNlMeansDenoising:(Mat*)src dst:(Mat*)dst hVector:(FloatVector*)hVector templateWindowSize:(int)templateWindowSize searchWindowSize:(int)searchWindowSize normType:(int)normType NS_SWIFT_NAME(fastNlMeansDenoising(src:dst:hVector:templateWindowSize:searchWindowSize:normType:));
- /**
- * Perform image denoising using Non-local Means Denoising algorithm
- * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- * optimizations. Noise expected to be a gaussian white noise
- *
- * @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- * 2-channel, 3-channel or 4-channel image.
- * @param dst Output image with the same size and type as src .
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * parameter applied to all channels or one per channel in dst. Big h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- *
- * This function expected to be applied to grayscale images. For colored images look at
- * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- * image to CIELAB colorspace and then separately denoise L and AB components with different h
- * parameter.
- */
- + (void)fastNlMeansDenoising:(Mat*)src dst:(Mat*)dst hVector:(FloatVector*)hVector templateWindowSize:(int)templateWindowSize searchWindowSize:(int)searchWindowSize NS_SWIFT_NAME(fastNlMeansDenoising(src:dst:hVector:templateWindowSize:searchWindowSize:));
- /**
- * Perform image denoising using Non-local Means Denoising algorithm
- * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- * optimizations. Noise expected to be a gaussian white noise
- *
- * @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- * 2-channel, 3-channel or 4-channel image.
- * @param dst Output image with the same size and type as src .
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * parameter applied to all channels or one per channel in dst. Big h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- *
- * This function expected to be applied to grayscale images. For colored images look at
- * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- * image to CIELAB colorspace and then separately denoise L and AB components with different h
- * parameter.
- */
- + (void)fastNlMeansDenoising:(Mat*)src dst:(Mat*)dst hVector:(FloatVector*)hVector templateWindowSize:(int)templateWindowSize NS_SWIFT_NAME(fastNlMeansDenoising(src:dst:hVector:templateWindowSize:));
- /**
- * Perform image denoising using Non-local Means Denoising algorithm
- * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
- * optimizations. Noise expected to be a gaussian white noise
- *
- * @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- * 2-channel, 3-channel or 4-channel image.
- * @param dst Output image with the same size and type as src .
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * parameter applied to all channels or one per channel in dst. Big h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- *
- * This function expected to be applied to grayscale images. For colored images look at
- * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
- * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
- * image to CIELAB colorspace and then separately denoise L and AB components with different h
- * parameter.
- */
- + (void)fastNlMeansDenoising:(Mat*)src dst:(Mat*)dst hVector:(FloatVector*)hVector NS_SWIFT_NAME(fastNlMeansDenoising(src:dst:hVector:));
- //
- // void cv::fastNlMeansDenoisingColored(Mat src, Mat& dst, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21)
- //
- /**
- * Modification of fastNlMeansDenoising function for colored images
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src .
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise
- * @param hColor The same as h but for color components. For most images value equals 10
- * will be enough to remove colored noise and do not distort colors
- *
- * The function converts image to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoising function.
- */
- + (void)fastNlMeansDenoisingColored:(Mat*)src dst:(Mat*)dst h:(float)h hColor:(float)hColor templateWindowSize:(int)templateWindowSize searchWindowSize:(int)searchWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingColored(src:dst:h:hColor:templateWindowSize:searchWindowSize:));
- /**
- * Modification of fastNlMeansDenoising function for colored images
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src .
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise
- * @param hColor The same as h but for color components. For most images value equals 10
- * will be enough to remove colored noise and do not distort colors
- *
- * The function converts image to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoising function.
- */
- + (void)fastNlMeansDenoisingColored:(Mat*)src dst:(Mat*)dst h:(float)h hColor:(float)hColor templateWindowSize:(int)templateWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingColored(src:dst:h:hColor:templateWindowSize:));
- /**
- * Modification of fastNlMeansDenoising function for colored images
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src .
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise
- * @param hColor The same as h but for color components. For most images value equals 10
- * will be enough to remove colored noise and do not distort colors
- *
- * The function converts image to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoising function.
- */
- + (void)fastNlMeansDenoisingColored:(Mat*)src dst:(Mat*)dst h:(float)h hColor:(float)hColor NS_SWIFT_NAME(fastNlMeansDenoisingColored(src:dst:h:hColor:));
- /**
- * Modification of fastNlMeansDenoising function for colored images
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src .
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise
- * will be enough to remove colored noise and do not distort colors
- *
- * The function converts image to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoising function.
- */
- + (void)fastNlMeansDenoisingColored:(Mat*)src dst:(Mat*)dst h:(float)h NS_SWIFT_NAME(fastNlMeansDenoisingColored(src:dst:h:));
- /**
- * Modification of fastNlMeansDenoising function for colored images
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src .
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise
- * will be enough to remove colored noise and do not distort colors
- *
- * The function converts image to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoising function.
- */
- + (void)fastNlMeansDenoisingColored:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(fastNlMeansDenoisingColored(src:dst:));
- //
- // void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21)
- //
- /**
- * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- * captured in small period of time. For example video. This version of the function is for grayscale
- * images or for manual manipulation with colorspaces. See CITE: Buades2005DenoisingIS for more details
- * (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
- *
- * @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
- * 4-channel images sequence. All images should have the same type and
- * size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength. Bigger h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- */
- + (void)fastNlMeansDenoisingMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize h:(float)h templateWindowSize:(int)templateWindowSize searchWindowSize:(int)searchWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:h:templateWindowSize:searchWindowSize:));
- /**
- * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- * captured in small period of time. For example video. This version of the function is for grayscale
- * images or for manual manipulation with colorspaces. See CITE: Buades2005DenoisingIS for more details
- * (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
- *
- * @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
- * 4-channel images sequence. All images should have the same type and
- * size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength. Bigger h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- */
- + (void)fastNlMeansDenoisingMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize h:(float)h templateWindowSize:(int)templateWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:h:templateWindowSize:));
- /**
- * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- * captured in small period of time. For example video. This version of the function is for grayscale
- * images or for manual manipulation with colorspaces. See CITE: Buades2005DenoisingIS for more details
- * (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
- *
- * @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
- * 4-channel images sequence. All images should have the same type and
- * size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength. Bigger h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- */
- + (void)fastNlMeansDenoisingMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize h:(float)h NS_SWIFT_NAME(fastNlMeansDenoisingMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:h:));
- /**
- * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- * captured in small period of time. For example video. This version of the function is for grayscale
- * images or for manual manipulation with colorspaces. See CITE: Buades2005DenoisingIS for more details
- * (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
- *
- * @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
- * 4-channel images sequence. All images should have the same type and
- * size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- */
- + (void)fastNlMeansDenoisingMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:));
- //
- // void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, vector_float hVector, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2)
- //
- /**
- * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- * captured in small period of time. For example video. This version of the function is for grayscale
- * images or for manual manipulation with colorspaces. See CITE: Buades2005DenoisingIS for more details
- * (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
- *
- * @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- * 2-channel, 3-channel or 4-channel images sequence. All images should
- * have the same type and size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * parameter applied to all channels or one per channel in dst. Big h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- * @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
- */
- + (void)fastNlMeansDenoisingMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize hVector:(FloatVector*)hVector templateWindowSize:(int)templateWindowSize searchWindowSize:(int)searchWindowSize normType:(int)normType NS_SWIFT_NAME(fastNlMeansDenoisingMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:hVector:templateWindowSize:searchWindowSize:normType:));
- /**
- * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- * captured in small period of time. For example video. This version of the function is for grayscale
- * images or for manual manipulation with colorspaces. See CITE: Buades2005DenoisingIS for more details
- * (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
- *
- * @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- * 2-channel, 3-channel or 4-channel images sequence. All images should
- * have the same type and size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * parameter applied to all channels or one per channel in dst. Big h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- */
- + (void)fastNlMeansDenoisingMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize hVector:(FloatVector*)hVector templateWindowSize:(int)templateWindowSize searchWindowSize:(int)searchWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:hVector:templateWindowSize:searchWindowSize:));
- /**
- * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- * captured in small period of time. For example video. This version of the function is for grayscale
- * images or for manual manipulation with colorspaces. See CITE: Buades2005DenoisingIS for more details
- * (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
- *
- * @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- * 2-channel, 3-channel or 4-channel images sequence. All images should
- * have the same type and size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * parameter applied to all channels or one per channel in dst. Big h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- */
- + (void)fastNlMeansDenoisingMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize hVector:(FloatVector*)hVector templateWindowSize:(int)templateWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:hVector:templateWindowSize:));
- /**
- * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
- * captured in small period of time. For example video. This version of the function is for grayscale
- * images or for manual manipulation with colorspaces. See CITE: Buades2005DenoisingIS for more details
- * (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
- *
- * @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
- * 2-channel, 3-channel or 4-channel images sequence. All images should
- * have the same type and size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * parameter applied to all channels or one per channel in dst. Big h value
- * perfectly removes noise but also removes image details, smaller h
- * value preserves details but also preserves some noise
- */
- + (void)fastNlMeansDenoisingMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize hVector:(FloatVector*)hVector NS_SWIFT_NAME(fastNlMeansDenoisingMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:hVector:));
- //
- // void cv::fastNlMeansDenoisingColoredMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21)
- //
- /**
- * Modification of fastNlMeansDenoisingMulti function for colored images sequences
- *
- * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
- * size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise.
- * @param hColor The same as h but for color components.
- *
- * The function converts images to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoisingMulti function.
- */
- + (void)fastNlMeansDenoisingColoredMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize h:(float)h hColor:(float)hColor templateWindowSize:(int)templateWindowSize searchWindowSize:(int)searchWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingColoredMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:h:hColor:templateWindowSize:searchWindowSize:));
- /**
- * Modification of fastNlMeansDenoisingMulti function for colored images sequences
- *
- * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
- * size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise.
- * @param hColor The same as h but for color components.
- *
- * The function converts images to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoisingMulti function.
- */
- + (void)fastNlMeansDenoisingColoredMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize h:(float)h hColor:(float)hColor templateWindowSize:(int)templateWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingColoredMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:h:hColor:templateWindowSize:));
- /**
- * Modification of fastNlMeansDenoisingMulti function for colored images sequences
- *
- * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
- * size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise.
- * @param hColor The same as h but for color components.
- *
- * The function converts images to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoisingMulti function.
- */
- + (void)fastNlMeansDenoisingColoredMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize h:(float)h hColor:(float)hColor NS_SWIFT_NAME(fastNlMeansDenoisingColoredMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:h:hColor:));
- /**
- * Modification of fastNlMeansDenoisingMulti function for colored images sequences
- *
- * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
- * size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise.
- *
- * The function converts images to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoisingMulti function.
- */
- + (void)fastNlMeansDenoisingColoredMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize h:(float)h NS_SWIFT_NAME(fastNlMeansDenoisingColoredMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:h:));
- /**
- * Modification of fastNlMeansDenoisingMulti function for colored images sequences
- *
- * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
- * size.
- * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
- * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
- * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
- * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
- * srcImgs[imgToDenoiseIndex] image.
- * @param dst Output image with the same size and type as srcImgs images.
- * Should be odd. Recommended value 7 pixels
- * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
- * denoising time. Recommended value 21 pixels
- * removes noise but also removes image details, smaller h value preserves details but also preserves
- * some noise.
- *
- * The function converts images to CIELAB colorspace and then separately denoise L and AB components
- * with given h parameters using fastNlMeansDenoisingMulti function.
- */
- + (void)fastNlMeansDenoisingColoredMulti:(NSArray<Mat*>*)srcImgs dst:(Mat*)dst imgToDenoiseIndex:(int)imgToDenoiseIndex temporalWindowSize:(int)temporalWindowSize NS_SWIFT_NAME(fastNlMeansDenoisingColoredMulti(srcImgs:dst:imgToDenoiseIndex:temporalWindowSize:));
- //
- // void cv::denoise_TVL1(vector_Mat observations, Mat result, double lambda = 1.0, int niters = 30)
- //
- /**
- * Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
- * finding a function to minimize some functional). As the image denoising, in particular, may be seen
- * as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
- * exactly what is implemented.
- *
- * It should be noted, that this implementation was taken from the July 2013 blog entry
- * CITE: MA13 , which also contained (slightly more general) ready-to-use source code on Python.
- * Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
- * of July 2013 and finally it was slightly adapted by later authors.
- *
- * Although the thorough discussion and justification of the algorithm involved may be found in
- * CITE: ChambolleEtAl, it might make sense to skim over it here, following CITE: MA13 . To begin
- * with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
- * pixels (it may be seen as set
- * `$$\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}$$` for some
- * `$$m,\;n\in\mathbb{N}$$`) into `$$\{0,1,\dots,255\}$$`. We shall denote the noised images as `$$f_i$$` and with
- * this view, given some image `$$x$$` of the same size, we may measure how bad it is by the formula
- *
- * `$$\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|$$`
- *
- * `$$\|\|\cdot\|\|$$` here denotes `$$L_2$$`-norm and as you see, the first addend states that we want our
- * image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
- * we want our result to be close to the observations we've got. If we treat `$$x$$` as a function, this is
- * exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
- *
- * @param observations This array should contain one or more noised versions of the image that is to
- * be restored.
- * @param result Here the denoised image will be stored. There is no need to do pre-allocation of
- * storage space, as it will be automatically allocated, if necessary.
- * @param lambda Corresponds to `$$\lambda$$` in the formulas above. As it is enlarged, the smooth
- * (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
- * speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
- * removed.
- * @param niters Number of iterations that the algorithm will run. Of course, as more iterations as
- * better, but it is hard to quantitatively refine this statement, so just use the default and
- * increase it if the results are poor.
- */
- + (void)denoise_TVL1:(NSArray<Mat*>*)observations result:(Mat*)result lambda:(double)lambda niters:(int)niters NS_SWIFT_NAME(denoise_TVL1(observations:result:lambda:niters:));
- /**
- * Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
- * finding a function to minimize some functional). As the image denoising, in particular, may be seen
- * as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
- * exactly what is implemented.
- *
- * It should be noted, that this implementation was taken from the July 2013 blog entry
- * CITE: MA13 , which also contained (slightly more general) ready-to-use source code on Python.
- * Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
- * of July 2013 and finally it was slightly adapted by later authors.
- *
- * Although the thorough discussion and justification of the algorithm involved may be found in
- * CITE: ChambolleEtAl, it might make sense to skim over it here, following CITE: MA13 . To begin
- * with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
- * pixels (it may be seen as set
- * `$$\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}$$` for some
- * `$$m,\;n\in\mathbb{N}$$`) into `$$\{0,1,\dots,255\}$$`. We shall denote the noised images as `$$f_i$$` and with
- * this view, given some image `$$x$$` of the same size, we may measure how bad it is by the formula
- *
- * `$$\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|$$`
- *
- * `$$\|\|\cdot\|\|$$` here denotes `$$L_2$$`-norm and as you see, the first addend states that we want our
- * image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
- * we want our result to be close to the observations we've got. If we treat `$$x$$` as a function, this is
- * exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
- *
- * @param observations This array should contain one or more noised versions of the image that is to
- * be restored.
- * @param result Here the denoised image will be stored. There is no need to do pre-allocation of
- * storage space, as it will be automatically allocated, if necessary.
- * @param lambda Corresponds to `$$\lambda$$` in the formulas above. As it is enlarged, the smooth
- * (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
- * speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
- * removed.
- * better, but it is hard to quantitatively refine this statement, so just use the default and
- * increase it if the results are poor.
- */
- + (void)denoise_TVL1:(NSArray<Mat*>*)observations result:(Mat*)result lambda:(double)lambda NS_SWIFT_NAME(denoise_TVL1(observations:result:lambda:));
- /**
- * Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
- * finding a function to minimize some functional). As the image denoising, in particular, may be seen
- * as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
- * exactly what is implemented.
- *
- * It should be noted, that this implementation was taken from the July 2013 blog entry
- * CITE: MA13 , which also contained (slightly more general) ready-to-use source code on Python.
- * Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
- * of July 2013 and finally it was slightly adapted by later authors.
- *
- * Although the thorough discussion and justification of the algorithm involved may be found in
- * CITE: ChambolleEtAl, it might make sense to skim over it here, following CITE: MA13 . To begin
- * with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
- * pixels (it may be seen as set
- * `$$\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}$$` for some
- * `$$m,\;n\in\mathbb{N}$$`) into `$$\{0,1,\dots,255\}$$`. We shall denote the noised images as `$$f_i$$` and with
- * this view, given some image `$$x$$` of the same size, we may measure how bad it is by the formula
- *
- * `$$\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|$$`
- *
- * `$$\|\|\cdot\|\|$$` here denotes `$$L_2$$`-norm and as you see, the first addend states that we want our
- * image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
- * we want our result to be close to the observations we've got. If we treat `$$x$$` as a function, this is
- * exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
- *
- * @param observations This array should contain one or more noised versions of the image that is to
- * be restored.
- * @param result Here the denoised image will be stored. There is no need to do pre-allocation of
- * storage space, as it will be automatically allocated, if necessary.
- * (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
- * speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
- * removed.
- * better, but it is hard to quantitatively refine this statement, so just use the default and
- * increase it if the results are poor.
- */
- + (void)denoise_TVL1:(NSArray<Mat*>*)observations result:(Mat*)result NS_SWIFT_NAME(denoise_TVL1(observations:result:));
- //
- // Ptr_Tonemap cv::createTonemap(float gamma = 1.0f)
- //
- /**
- * Creates simple linear mapper with gamma correction
- *
- * @param gamma positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
- * equal to 2.2f is suitable for most displays.
- * Generally gamma \> 1 brightens the image and gamma \< 1 darkens it.
- */
- + (Tonemap*)createTonemap:(float)gamma NS_SWIFT_NAME(createTonemap(gamma:));
- /**
- * Creates simple linear mapper with gamma correction
- *
- * equal to 2.2f is suitable for most displays.
- * Generally gamma \> 1 brightens the image and gamma \< 1 darkens it.
- */
- + (Tonemap*)createTonemap NS_SWIFT_NAME(createTonemap());
- //
- // Ptr_TonemapDrago cv::createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f)
- //
- /**
- * Creates TonemapDrago object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * @param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater
- * than 1 increase saturation and values less than 1 decrease it.
- * @param bias value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
- * results, default value is 0.85.
- */
- + (TonemapDrago*)createTonemapDrago:(float)gamma saturation:(float)saturation bias:(float)bias NS_SWIFT_NAME(createTonemapDrago(gamma:saturation:bias:));
- /**
- * Creates TonemapDrago object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * @param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater
- * than 1 increase saturation and values less than 1 decrease it.
- * results, default value is 0.85.
- */
- + (TonemapDrago*)createTonemapDrago:(float)gamma saturation:(float)saturation NS_SWIFT_NAME(createTonemapDrago(gamma:saturation:));
- /**
- * Creates TonemapDrago object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * than 1 increase saturation and values less than 1 decrease it.
- * results, default value is 0.85.
- */
- + (TonemapDrago*)createTonemapDrago:(float)gamma NS_SWIFT_NAME(createTonemapDrago(gamma:));
- /**
- * Creates TonemapDrago object
- *
- * than 1 increase saturation and values less than 1 decrease it.
- * results, default value is 0.85.
- */
- + (TonemapDrago*)createTonemapDrago NS_SWIFT_NAME(createTonemapDrago());
- //
- // Ptr_TonemapReinhard cv::createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f)
- //
- /**
- * Creates TonemapReinhard object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
- * @param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
- * value, if 0 it's global, otherwise it's a weighted mean of this two cases.
- * @param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
- * if 0 adaptation level is the same for each channel.
- */
- + (TonemapReinhard*)createTonemapReinhard:(float)gamma intensity:(float)intensity light_adapt:(float)light_adapt color_adapt:(float)color_adapt NS_SWIFT_NAME(createTonemapReinhard(gamma:intensity:light_adapt:color_adapt:));
- /**
- * Creates TonemapReinhard object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
- * @param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
- * value, if 0 it's global, otherwise it's a weighted mean of this two cases.
- * if 0 adaptation level is the same for each channel.
- */
- + (TonemapReinhard*)createTonemapReinhard:(float)gamma intensity:(float)intensity light_adapt:(float)light_adapt NS_SWIFT_NAME(createTonemapReinhard(gamma:intensity:light_adapt:));
- /**
- * Creates TonemapReinhard object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
- * value, if 0 it's global, otherwise it's a weighted mean of this two cases.
- * if 0 adaptation level is the same for each channel.
- */
- + (TonemapReinhard*)createTonemapReinhard:(float)gamma intensity:(float)intensity NS_SWIFT_NAME(createTonemapReinhard(gamma:intensity:));
- /**
- * Creates TonemapReinhard object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * value, if 0 it's global, otherwise it's a weighted mean of this two cases.
- * if 0 adaptation level is the same for each channel.
- */
- + (TonemapReinhard*)createTonemapReinhard:(float)gamma NS_SWIFT_NAME(createTonemapReinhard(gamma:));
- /**
- * Creates TonemapReinhard object
- *
- * value, if 0 it's global, otherwise it's a weighted mean of this two cases.
- * if 0 adaptation level is the same for each channel.
- */
- + (TonemapReinhard*)createTonemapReinhard NS_SWIFT_NAME(createTonemapReinhard());
- //
- // Ptr_TonemapMantiuk cv::createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f)
- //
- /**
- * Creates TonemapMantiuk object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * @param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing
- * dynamic range. Values from 0.6 to 0.9 produce best results.
- * @param saturation saturation enhancement value. See createTonemapDrago
- */
- + (TonemapMantiuk*)createTonemapMantiuk:(float)gamma scale:(float)scale saturation:(float)saturation NS_SWIFT_NAME(createTonemapMantiuk(gamma:scale:saturation:));
- /**
- * Creates TonemapMantiuk object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * @param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing
- * dynamic range. Values from 0.6 to 0.9 produce best results.
- */
- + (TonemapMantiuk*)createTonemapMantiuk:(float)gamma scale:(float)scale NS_SWIFT_NAME(createTonemapMantiuk(gamma:scale:));
- /**
- * Creates TonemapMantiuk object
- *
- * @param gamma gamma value for gamma correction. See createTonemap
- * dynamic range. Values from 0.6 to 0.9 produce best results.
- */
- + (TonemapMantiuk*)createTonemapMantiuk:(float)gamma NS_SWIFT_NAME(createTonemapMantiuk(gamma:));
- /**
- * Creates TonemapMantiuk object
- *
- * dynamic range. Values from 0.6 to 0.9 produce best results.
- */
- + (TonemapMantiuk*)createTonemapMantiuk NS_SWIFT_NAME(createTonemapMantiuk());
- //
- // Ptr_AlignMTB cv::createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true)
- //
- /**
- * Creates AlignMTB object
- *
- * @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
- * usually good enough (31 and 63 pixels shift respectively).
- * @param exclude_range range for exclusion bitmap that is constructed to suppress noise around the
- * median value.
- * @param cut if true cuts images, otherwise fills the new regions with zeros.
- */
- + (AlignMTB*)createAlignMTB:(int)max_bits exclude_range:(int)exclude_range cut:(BOOL)cut NS_SWIFT_NAME(createAlignMTB(max_bits:exclude_range:cut:));
- /**
- * Creates AlignMTB object
- *
- * @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
- * usually good enough (31 and 63 pixels shift respectively).
- * @param exclude_range range for exclusion bitmap that is constructed to suppress noise around the
- * median value.
- */
- + (AlignMTB*)createAlignMTB:(int)max_bits exclude_range:(int)exclude_range NS_SWIFT_NAME(createAlignMTB(max_bits:exclude_range:));
- /**
- * Creates AlignMTB object
- *
- * @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
- * usually good enough (31 and 63 pixels shift respectively).
- * median value.
- */
- + (AlignMTB*)createAlignMTB:(int)max_bits NS_SWIFT_NAME(createAlignMTB(max_bits:));
- /**
- * Creates AlignMTB object
- *
- * usually good enough (31 and 63 pixels shift respectively).
- * median value.
- */
- + (AlignMTB*)createAlignMTB NS_SWIFT_NAME(createAlignMTB());
- //
- // Ptr_CalibrateDebevec cv::createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false)
- //
- /**
- * Creates CalibrateDebevec object
- *
- * @param samples number of pixel locations to use
- * @param lambda smoothness term weight. Greater values produce smoother results, but can alter the
- * response.
- * @param random if true sample pixel locations are chosen at random, otherwise they form a
- * rectangular grid.
- */
- + (CalibrateDebevec*)createCalibrateDebevec:(int)samples lambda:(float)lambda random:(BOOL)random NS_SWIFT_NAME(createCalibrateDebevec(samples:lambda:random:));
- /**
- * Creates CalibrateDebevec object
- *
- * @param samples number of pixel locations to use
- * @param lambda smoothness term weight. Greater values produce smoother results, but can alter the
- * response.
- * rectangular grid.
- */
- + (CalibrateDebevec*)createCalibrateDebevec:(int)samples lambda:(float)lambda NS_SWIFT_NAME(createCalibrateDebevec(samples:lambda:));
- /**
- * Creates CalibrateDebevec object
- *
- * @param samples number of pixel locations to use
- * response.
- * rectangular grid.
- */
- + (CalibrateDebevec*)createCalibrateDebevec:(int)samples NS_SWIFT_NAME(createCalibrateDebevec(samples:));
- /**
- * Creates CalibrateDebevec object
- *
- * response.
- * rectangular grid.
- */
- + (CalibrateDebevec*)createCalibrateDebevec NS_SWIFT_NAME(createCalibrateDebevec());
- //
- // Ptr_CalibrateRobertson cv::createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f)
- //
- /**
- * Creates CalibrateRobertson object
- *
- * @param max_iter maximal number of Gauss-Seidel solver iterations.
- * @param threshold target difference between results of two successive steps of the minimization.
- */
- + (CalibrateRobertson*)createCalibrateRobertson:(int)max_iter threshold:(float)threshold NS_SWIFT_NAME(createCalibrateRobertson(max_iter:threshold:));
- /**
- * Creates CalibrateRobertson object
- *
- * @param max_iter maximal number of Gauss-Seidel solver iterations.
- */
- + (CalibrateRobertson*)createCalibrateRobertson:(int)max_iter NS_SWIFT_NAME(createCalibrateRobertson(max_iter:));
- /**
- * Creates CalibrateRobertson object
- *
- */
- + (CalibrateRobertson*)createCalibrateRobertson NS_SWIFT_NAME(createCalibrateRobertson());
- //
- // Ptr_MergeDebevec cv::createMergeDebevec()
- //
- /**
- * Creates MergeDebevec object
- */
- + (MergeDebevec*)createMergeDebevec NS_SWIFT_NAME(createMergeDebevec());
- //
- // Ptr_MergeMertens cv::createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f)
- //
- /**
- * Creates MergeMertens object
- *
- * @param contrast_weight contrast measure weight. See MergeMertens.
- * @param saturation_weight saturation measure weight
- * @param exposure_weight well-exposedness measure weight
- */
- + (MergeMertens*)createMergeMertens:(float)contrast_weight saturation_weight:(float)saturation_weight exposure_weight:(float)exposure_weight NS_SWIFT_NAME(createMergeMertens(contrast_weight:saturation_weight:exposure_weight:));
- /**
- * Creates MergeMertens object
- *
- * @param contrast_weight contrast measure weight. See MergeMertens.
- * @param saturation_weight saturation measure weight
- */
- + (MergeMertens*)createMergeMertens:(float)contrast_weight saturation_weight:(float)saturation_weight NS_SWIFT_NAME(createMergeMertens(contrast_weight:saturation_weight:));
- /**
- * Creates MergeMertens object
- *
- * @param contrast_weight contrast measure weight. See MergeMertens.
- */
- + (MergeMertens*)createMergeMertens:(float)contrast_weight NS_SWIFT_NAME(createMergeMertens(contrast_weight:));
- /**
- * Creates MergeMertens object
- *
- */
- + (MergeMertens*)createMergeMertens NS_SWIFT_NAME(createMergeMertens());
- //
- // Ptr_MergeRobertson cv::createMergeRobertson()
- //
- /**
- * Creates MergeRobertson object
- */
- + (MergeRobertson*)createMergeRobertson NS_SWIFT_NAME(createMergeRobertson());
- //
- // void cv::decolor(Mat src, Mat& grayscale, Mat& color_boost)
- //
- /**
- * Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
- * black-and-white photograph rendering, and in many single channel image processing applications
- * CITE: CL12 .
- *
- * @param src Input 8-bit 3-channel image.
- * @param grayscale Output 8-bit 1-channel image.
- * @param color_boost Output 8-bit 3-channel image.
- *
- * This function is to be applied on color images.
- */
- + (void)decolor:(Mat*)src grayscale:(Mat*)grayscale color_boost:(Mat*)color_boost NS_SWIFT_NAME(decolor(src:grayscale:color_boost:));
- //
- // void cv::seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat& blend, int flags)
- //
- /**
- * Image editing tasks concern either global changes (color/intensity corrections, filters,
- * deformations) or local changes concerned to a selection. Here we are interested in achieving local
- * changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
- * manner. The extent of the changes ranges from slight distortions to complete replacement by novel
- * content CITE: PM03 .
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param p Point in dst image where object is placed.
- * @param blend Output image with the same size and type as dst.
- * @param flags Cloning method that could be cv::NORMAL_CLONE, cv::MIXED_CLONE or cv::MONOCHROME_TRANSFER
- */
- + (void)seamlessClone:(Mat*)src dst:(Mat*)dst mask:(Mat*)mask p:(Point2i*)p blend:(Mat*)blend flags:(int)flags NS_SWIFT_NAME(seamlessClone(src:dst:mask:p:blend:flags:));
- //
- // void cv::colorChange(Mat src, Mat mask, Mat& dst, float red_mul = 1.0f, float green_mul = 1.0f, float blue_mul = 1.0f)
- //
- /**
- * Given an original color image, two differently colored versions of this image can be mixed
- * seamlessly.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src .
- * @param red_mul R-channel multiply factor.
- * @param green_mul G-channel multiply factor.
- * @param blue_mul B-channel multiply factor.
- *
- * Multiplication factor is between .5 to 2.5.
- */
- + (void)colorChange:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst red_mul:(float)red_mul green_mul:(float)green_mul blue_mul:(float)blue_mul NS_SWIFT_NAME(colorChange(src:mask:dst:red_mul:green_mul:blue_mul:));
- /**
- * Given an original color image, two differently colored versions of this image can be mixed
- * seamlessly.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src .
- * @param red_mul R-channel multiply factor.
- * @param green_mul G-channel multiply factor.
- *
- * Multiplication factor is between .5 to 2.5.
- */
- + (void)colorChange:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst red_mul:(float)red_mul green_mul:(float)green_mul NS_SWIFT_NAME(colorChange(src:mask:dst:red_mul:green_mul:));
- /**
- * Given an original color image, two differently colored versions of this image can be mixed
- * seamlessly.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src .
- * @param red_mul R-channel multiply factor.
- *
- * Multiplication factor is between .5 to 2.5.
- */
- + (void)colorChange:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst red_mul:(float)red_mul NS_SWIFT_NAME(colorChange(src:mask:dst:red_mul:));
- /**
- * Given an original color image, two differently colored versions of this image can be mixed
- * seamlessly.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src .
- *
- * Multiplication factor is between .5 to 2.5.
- */
- + (void)colorChange:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst NS_SWIFT_NAME(colorChange(src:mask:dst:));
- //
- // void cv::illuminationChange(Mat src, Mat mask, Mat& dst, float alpha = 0.2f, float beta = 0.4f)
- //
- /**
- * Applying an appropriate non-linear transformation to the gradient field inside the selection and
- * then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src.
- * @param alpha Value ranges between 0-2.
- * @param beta Value ranges between 0-2.
- *
- * This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
- */
- + (void)illuminationChange:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst alpha:(float)alpha beta:(float)beta NS_SWIFT_NAME(illuminationChange(src:mask:dst:alpha:beta:));
- /**
- * Applying an appropriate non-linear transformation to the gradient field inside the selection and
- * then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src.
- * @param alpha Value ranges between 0-2.
- *
- * This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
- */
- + (void)illuminationChange:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst alpha:(float)alpha NS_SWIFT_NAME(illuminationChange(src:mask:dst:alpha:));
- /**
- * Applying an appropriate non-linear transformation to the gradient field inside the selection and
- * then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src.
- *
- * This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
- */
- + (void)illuminationChange:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst NS_SWIFT_NAME(illuminationChange(src:mask:dst:));
- //
- // void cv::textureFlattening(Mat src, Mat mask, Mat& dst, float low_threshold = 30, float high_threshold = 45, int kernel_size = 3)
- //
- /**
- * By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
- * washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src.
- * @param low_threshold %Range from 0 to 100.
- * @param high_threshold Value \> 100.
- * @param kernel_size The size of the Sobel kernel to be used.
- *
- * NOTE:
- * The algorithm assumes that the color of the source image is close to that of the destination. This
- * assumption means that when the colors don't match, the source image color gets tinted toward the
- * color of the destination image.
- */
- + (void)textureFlattening:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst low_threshold:(float)low_threshold high_threshold:(float)high_threshold kernel_size:(int)kernel_size NS_SWIFT_NAME(textureFlattening(src:mask:dst:low_threshold:high_threshold:kernel_size:));
- /**
- * By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
- * washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src.
- * @param low_threshold %Range from 0 to 100.
- * @param high_threshold Value \> 100.
- *
- * NOTE:
- * The algorithm assumes that the color of the source image is close to that of the destination. This
- * assumption means that when the colors don't match, the source image color gets tinted toward the
- * color of the destination image.
- */
- + (void)textureFlattening:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst low_threshold:(float)low_threshold high_threshold:(float)high_threshold NS_SWIFT_NAME(textureFlattening(src:mask:dst:low_threshold:high_threshold:));
- /**
- * By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
- * washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src.
- * @param low_threshold %Range from 0 to 100.
- *
- * NOTE:
- * The algorithm assumes that the color of the source image is close to that of the destination. This
- * assumption means that when the colors don't match, the source image color gets tinted toward the
- * color of the destination image.
- */
- + (void)textureFlattening:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst low_threshold:(float)low_threshold NS_SWIFT_NAME(textureFlattening(src:mask:dst:low_threshold:));
- /**
- * By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
- * washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
- *
- * @param src Input 8-bit 3-channel image.
- * @param mask Input 8-bit 1 or 3-channel image.
- * @param dst Output image with the same size and type as src.
- *
- * NOTE:
- * The algorithm assumes that the color of the source image is close to that of the destination. This
- * assumption means that when the colors don't match, the source image color gets tinted toward the
- * color of the destination image.
- */
- + (void)textureFlattening:(Mat*)src mask:(Mat*)mask dst:(Mat*)dst NS_SWIFT_NAME(textureFlattening(src:mask:dst:));
- //
- // void cv::edgePreservingFilter(Mat src, Mat& dst, int flags = 1, float sigma_s = 60, float sigma_r = 0.4f)
- //
- /**
- * Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
- * filters are used in many different applications CITE: EM11 .
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output 8-bit 3-channel image.
- * @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
- * @param sigma_s %Range between 0 to 200.
- * @param sigma_r %Range between 0 to 1.
- */
- + (void)edgePreservingFilter:(Mat*)src dst:(Mat*)dst flags:(int)flags sigma_s:(float)sigma_s sigma_r:(float)sigma_r NS_SWIFT_NAME(edgePreservingFilter(src:dst:flags:sigma_s:sigma_r:));
- /**
- * Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
- * filters are used in many different applications CITE: EM11 .
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output 8-bit 3-channel image.
- * @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
- * @param sigma_s %Range between 0 to 200.
- */
- + (void)edgePreservingFilter:(Mat*)src dst:(Mat*)dst flags:(int)flags sigma_s:(float)sigma_s NS_SWIFT_NAME(edgePreservingFilter(src:dst:flags:sigma_s:));
- /**
- * Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
- * filters are used in many different applications CITE: EM11 .
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output 8-bit 3-channel image.
- * @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
- */
- + (void)edgePreservingFilter:(Mat*)src dst:(Mat*)dst flags:(int)flags NS_SWIFT_NAME(edgePreservingFilter(src:dst:flags:));
- /**
- * Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
- * filters are used in many different applications CITE: EM11 .
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output 8-bit 3-channel image.
- */
- + (void)edgePreservingFilter:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(edgePreservingFilter(src:dst:));
- //
- // void cv::detailEnhance(Mat src, Mat& dst, float sigma_s = 10, float sigma_r = 0.15f)
- //
- /**
- * This filter enhances the details of a particular image.
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src.
- * @param sigma_s %Range between 0 to 200.
- * @param sigma_r %Range between 0 to 1.
- */
- + (void)detailEnhance:(Mat*)src dst:(Mat*)dst sigma_s:(float)sigma_s sigma_r:(float)sigma_r NS_SWIFT_NAME(detailEnhance(src:dst:sigma_s:sigma_r:));
- /**
- * This filter enhances the details of a particular image.
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src.
- * @param sigma_s %Range between 0 to 200.
- */
- + (void)detailEnhance:(Mat*)src dst:(Mat*)dst sigma_s:(float)sigma_s NS_SWIFT_NAME(detailEnhance(src:dst:sigma_s:));
- /**
- * This filter enhances the details of a particular image.
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src.
- */
- + (void)detailEnhance:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(detailEnhance(src:dst:));
- //
- // void cv::pencilSketch(Mat src, Mat& dst1, Mat& dst2, float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f)
- //
- /**
- * Pencil-like non-photorealistic line drawing
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst1 Output 8-bit 1-channel image.
- * @param dst2 Output image with the same size and type as src.
- * @param sigma_s %Range between 0 to 200.
- * @param sigma_r %Range between 0 to 1.
- * @param shade_factor %Range between 0 to 0.1.
- */
- + (void)pencilSketch:(Mat*)src dst1:(Mat*)dst1 dst2:(Mat*)dst2 sigma_s:(float)sigma_s sigma_r:(float)sigma_r shade_factor:(float)shade_factor NS_SWIFT_NAME(pencilSketch(src:dst1:dst2:sigma_s:sigma_r:shade_factor:));
- /**
- * Pencil-like non-photorealistic line drawing
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst1 Output 8-bit 1-channel image.
- * @param dst2 Output image with the same size and type as src.
- * @param sigma_s %Range between 0 to 200.
- * @param sigma_r %Range between 0 to 1.
- */
- + (void)pencilSketch:(Mat*)src dst1:(Mat*)dst1 dst2:(Mat*)dst2 sigma_s:(float)sigma_s sigma_r:(float)sigma_r NS_SWIFT_NAME(pencilSketch(src:dst1:dst2:sigma_s:sigma_r:));
- /**
- * Pencil-like non-photorealistic line drawing
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst1 Output 8-bit 1-channel image.
- * @param dst2 Output image with the same size and type as src.
- * @param sigma_s %Range between 0 to 200.
- */
- + (void)pencilSketch:(Mat*)src dst1:(Mat*)dst1 dst2:(Mat*)dst2 sigma_s:(float)sigma_s NS_SWIFT_NAME(pencilSketch(src:dst1:dst2:sigma_s:));
- /**
- * Pencil-like non-photorealistic line drawing
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst1 Output 8-bit 1-channel image.
- * @param dst2 Output image with the same size and type as src.
- */
- + (void)pencilSketch:(Mat*)src dst1:(Mat*)dst1 dst2:(Mat*)dst2 NS_SWIFT_NAME(pencilSketch(src:dst1:dst2:));
- //
- // void cv::stylization(Mat src, Mat& dst, float sigma_s = 60, float sigma_r = 0.45f)
- //
- /**
- * Stylization aims to produce digital imagery with a wide variety of effects not focused on
- * photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
- * contrast while preserving, or enhancing, high-contrast features.
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src.
- * @param sigma_s %Range between 0 to 200.
- * @param sigma_r %Range between 0 to 1.
- */
- + (void)stylization:(Mat*)src dst:(Mat*)dst sigma_s:(float)sigma_s sigma_r:(float)sigma_r NS_SWIFT_NAME(stylization(src:dst:sigma_s:sigma_r:));
- /**
- * Stylization aims to produce digital imagery with a wide variety of effects not focused on
- * photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
- * contrast while preserving, or enhancing, high-contrast features.
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src.
- * @param sigma_s %Range between 0 to 200.
- */
- + (void)stylization:(Mat*)src dst:(Mat*)dst sigma_s:(float)sigma_s NS_SWIFT_NAME(stylization(src:dst:sigma_s:));
- /**
- * Stylization aims to produce digital imagery with a wide variety of effects not focused on
- * photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
- * contrast while preserving, or enhancing, high-contrast features.
- *
- * @param src Input 8-bit 3-channel image.
- * @param dst Output image with the same size and type as src.
- */
- + (void)stylization:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(stylization(src:dst:));
- //
- // void cv::cuda::nonLocalMeans(GpuMat src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, int borderMode = BORDER_DEFAULT, _hidden_ stream = Stream::Null())
- //
- // Unknown type 'GpuMat' (I), skipping the function
- //
- // void cv::cuda::fastNlMeansDenoising(GpuMat src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, Stream stream = Stream::Null())
- //
- // Unknown type 'GpuMat' (I), skipping the function
- //
- // void cv::cuda::fastNlMeansDenoisingColored(GpuMat src, GpuMat& dst, float h_luminance, float photo_render, int search_window = 21, int block_size = 7, Stream stream = Stream::Null())
- //
- // Unknown type 'GpuMat' (I), skipping the function
- @end
- NS_ASSUME_NONNULL_END
|