123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/dnn.hpp"
- #import "opencv2/dnn/dnn.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- @class ByteVector;
- @class DictValue;
- @class DoubleVector;
- @class FloatVector;
- @class IntVector;
- @class Layer;
- @class Mat;
- @class Scalar;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class Net
- /**
- * This class allows to create and manipulate comprehensive artificial neural networks.
- *
- * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
- * and edges specify relationships between layers inputs and outputs.
- *
- * Each network layer has unique integer id and unique string name inside its network.
- * LayerId can store either layer name or layer id.
- *
- * This class supports reference counting of its instances, i. e. copies point to the same instance.
- *
- * Member of `Dnn`
- */
- CV_EXPORTS @interface Net : NSObject
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::dnn::Net> nativePtr;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::dnn::Net>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::dnn::Net>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // cv::dnn::Net::Net()
- //
- - (instancetype)init;
- //
- // static Net cv::dnn::Net::readFromModelOptimizer(String xml, String bin)
- //
- /**
- * Create a network from Intel's Model Optimizer intermediate representation (IR).
- * @param xml XML configuration file with network's topology.
- * @param bin Binary file with trained weights.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- + (Net*)readFromModelOptimizer:(NSString*)xml bin:(NSString*)bin NS_SWIFT_NAME(readFromModelOptimizer(xml:bin:));
- //
- // static Net cv::dnn::Net::readFromModelOptimizer(vector_uchar bufferModelConfig, vector_uchar bufferWeights)
- //
- /**
- * Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
- * @param bufferModelConfig buffer with model's configuration.
- * @param bufferWeights buffer with model's trained weights.
- * @return Net object.
- */
- + (Net*)readFromModelOptimizer:(ByteVector*)bufferModelConfig bufferWeights:(ByteVector*)bufferWeights NS_SWIFT_NAME(readFromModelOptimizer(bufferModelConfig:bufferWeights:));
- //
- // bool cv::dnn::Net::empty()
- //
- /**
- * Returns true if there are no layers in the network.
- */
- - (BOOL)empty NS_SWIFT_NAME(empty());
- //
- // String cv::dnn::Net::dump()
- //
- /**
- * Dump net to String
- * @return String with structure, hyperparameters, backend, target and fusion
- * Call method after setInput(). To see correct backend, target and fusion run after forward().
- */
- - (NSString*)dump NS_SWIFT_NAME(dump());
- //
- // void cv::dnn::Net::dumpToFile(String path)
- //
- /**
- * Dump net structure, hyperparameters, backend, target and fusion to dot file
- * @param path path to output file with .dot extension
- * @see `dump()`
- */
- - (void)dumpToFile:(NSString*)path NS_SWIFT_NAME(dumpToFile(path:));
- //
- // int cv::dnn::Net::getLayerId(String layer)
- //
- /**
- * Converts string name of the layer to the integer identifier.
- * @return id of the layer, or -1 if the layer wasn't found.
- */
- - (int)getLayerId:(NSString*)layer NS_SWIFT_NAME(getLayerId(layer:));
- //
- // vector_String cv::dnn::Net::getLayerNames()
- //
- - (NSArray<NSString*>*)getLayerNames NS_SWIFT_NAME(getLayerNames());
- //
- // Ptr_Layer cv::dnn::Net::getLayer(int layerId)
- //
- /**
- * Returns pointer to layer with specified id or name which the network use.
- */
- - (Layer*)getLayer:(int)layerId NS_SWIFT_NAME(getLayer(layerId:));
- //
- // Ptr_Layer cv::dnn::Net::getLayer(String layerName)
- //
- /**
- *
- * @deprecated Use int getLayerId(const String &layer)
- */
- - (Layer*)getLayerByName:(NSString*)layerName NS_SWIFT_NAME(getLayer(layerName:)) DEPRECATED_ATTRIBUTE;
- //
- // Ptr_Layer cv::dnn::Net::getLayer(LayerId layerId)
- //
- /**
- *
- * @deprecated to be removed
- */
- - (Layer*)getLayerByDictValue:(DictValue*)layerId NS_SWIFT_NAME(getLayer(layerId:)) DEPRECATED_ATTRIBUTE;
- //
- // void cv::dnn::Net::connect(String outPin, String inpPin)
- //
- /**
- * Connects output of the first layer to input of the second layer.
- * @param outPin descriptor of the first layer output.
- * @param inpPin descriptor of the second layer input.
- *
- * Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>:
- * - the first part of the template <DFN>layer_name</DFN> is string name of the added layer.
- * If this part is empty then the network input pseudo layer will be used;
- * - the second optional part of the template <DFN>input_number</DFN>
- * is either number of the layer input, either label one.
- * If this part is omitted then the first layer input will be used.
- *
- * @see `setNetInputs()`, `Layer::inputNameToIndex()`, `Layer::outputNameToIndex()`
- */
- - (void)connect:(NSString*)outPin inpPin:(NSString*)inpPin NS_SWIFT_NAME(connect(outPin:inpPin:));
- //
- // void cv::dnn::Net::setInputsNames(vector_String inputBlobNames)
- //
- /**
- * Sets outputs names of the network input pseudo layer.
- *
- * Each net always has special own the network input pseudo layer with id=0.
- * This layer stores the user blobs only and don't make any computations.
- * In fact, this layer provides the only way to pass user data into the network.
- * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
- */
- - (void)setInputsNames:(NSArray<NSString*>*)inputBlobNames NS_SWIFT_NAME(setInputsNames(inputBlobNames:));
- //
- // void cv::dnn::Net::setInputShape(String inputName, MatShape shape)
- //
- /**
- * Specify shape of network input.
- */
- - (void)setInputShape:(NSString*)inputName shape:(IntVector*)shape NS_SWIFT_NAME(setInputShape(inputName:shape:));
- //
- // Mat cv::dnn::Net::forward(String outputName = String())
- //
- /**
- * Runs forward pass to compute output of layer with name @p outputName.
- * @param outputName name for layer which output is needed to get
- * @return blob for first output of specified layer.
- * By default runs forward pass for the whole network.
- */
- - (Mat*)forward:(NSString*)outputName NS_SWIFT_NAME(forward(outputName:));
- /**
- * Runs forward pass to compute output of layer with name @p outputName.
- * @return blob for first output of specified layer.
- * By default runs forward pass for the whole network.
- */
- - (Mat*)forward NS_SWIFT_NAME(forward());
- //
- // AsyncArray cv::dnn::Net::forwardAsync(String outputName = String())
- //
- // Return type 'AsyncArray' is not supported, skipping the function
- //
- // void cv::dnn::Net::forward(vector_Mat& outputBlobs, String outputName = String())
- //
- /**
- * Runs forward pass to compute output of layer with name @p outputName.
- * @param outputBlobs contains all output blobs for specified layer.
- * @param outputName name for layer which output is needed to get
- * If @p outputName is empty, runs forward pass for the whole network.
- */
- - (void)forwardOutputBlobs:(NSMutableArray<Mat*>*)outputBlobs outputName:(NSString*)outputName NS_SWIFT_NAME(forward(outputBlobs:outputName:));
- /**
- * Runs forward pass to compute output of layer with name @p outputName.
- * @param outputBlobs contains all output blobs for specified layer.
- * If @p outputName is empty, runs forward pass for the whole network.
- */
- - (void)forwardOutputBlobs:(NSMutableArray<Mat*>*)outputBlobs NS_SWIFT_NAME(forward(outputBlobs:));
- //
- // void cv::dnn::Net::forward(vector_Mat& outputBlobs, vector_String outBlobNames)
- //
- /**
- * Runs forward pass to compute outputs of layers listed in @p outBlobNames.
- * @param outputBlobs contains blobs for first outputs of specified layers.
- * @param outBlobNames names for layers which outputs are needed to get
- */
- - (void)forwardOutputBlobs:(NSMutableArray<Mat*>*)outputBlobs outBlobNames:(NSArray<NSString*>*)outBlobNames NS_SWIFT_NAME(forward(outputBlobs:outBlobNames:));
- //
- // void cv::dnn::Net::forward(vector_vector_Mat& outputBlobs, vector_String outBlobNames)
- //
- /**
- * Runs forward pass to compute outputs of layers listed in @p outBlobNames.
- * @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
- * @param outBlobNames names for layers which outputs are needed to get
- */
- - (void)forwardAndRetrieve:(NSMutableArray<NSMutableArray<Mat*>*>*)outputBlobs outBlobNames:(NSArray<NSString*>*)outBlobNames NS_SWIFT_NAME(forwardAndRetrieve(outputBlobs:outBlobNames:));
- //
- // Net cv::dnn::Net::quantize(vector_Mat calibData, int inputsDtype, int outputsDtype, bool perChannel = true)
- //
- /**
- * Returns a quantized Net from a floating-point Net.
- * @param calibData Calibration data to compute the quantization parameters.
- * @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S.
- * @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S.
- * @param perChannel Quantization granularity of quantized Net. The default is true, that means quantize model
- * in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise).
- */
- - (Net*)quantize:(NSArray<Mat*>*)calibData inputsDtype:(int)inputsDtype outputsDtype:(int)outputsDtype perChannel:(BOOL)perChannel NS_SWIFT_NAME(quantize(calibData:inputsDtype:outputsDtype:perChannel:));
- /**
- * Returns a quantized Net from a floating-point Net.
- * @param calibData Calibration data to compute the quantization parameters.
- * @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S.
- * @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S.
- * in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise).
- */
- - (Net*)quantize:(NSArray<Mat*>*)calibData inputsDtype:(int)inputsDtype outputsDtype:(int)outputsDtype NS_SWIFT_NAME(quantize(calibData:inputsDtype:outputsDtype:));
- //
- // void cv::dnn::Net::getInputDetails(vector_float& scales, vector_int& zeropoints)
- //
- /**
- * Returns input scale and zeropoint for a quantized Net.
- * @param scales output parameter for returning input scales.
- * @param zeropoints output parameter for returning input zeropoints.
- */
- - (void)getInputDetails:(FloatVector*)scales zeropoints:(IntVector*)zeropoints NS_SWIFT_NAME(getInputDetails(scales:zeropoints:));
- //
- // void cv::dnn::Net::getOutputDetails(vector_float& scales, vector_int& zeropoints)
- //
- /**
- * Returns output scale and zeropoint for a quantized Net.
- * @param scales output parameter for returning output scales.
- * @param zeropoints output parameter for returning output zeropoints.
- */
- - (void)getOutputDetails:(FloatVector*)scales zeropoints:(IntVector*)zeropoints NS_SWIFT_NAME(getOutputDetails(scales:zeropoints:));
- //
- // void cv::dnn::Net::setHalideScheduler(String scheduler)
- //
- /**
- * Compile Halide layers.
- * @param scheduler Path to YAML file with scheduling directives.
- * @see `-setPreferableBackend:`
- *
- * Schedule layers that support Halide backend. Then compile them for
- * specific target. For layers that not represented in scheduling file
- * or if no manual scheduling used at all, automatic scheduling will be applied.
- */
- - (void)setHalideScheduler:(NSString*)scheduler NS_SWIFT_NAME(setHalideScheduler(scheduler:));
- //
- // void cv::dnn::Net::setPreferableBackend(int backendId)
- //
- /**
- * Ask network to use specific computation backend where it supported.
- * @param backendId backend identifier.
- * @see `Backend`
- *
- * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT
- * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV.
- */
- - (void)setPreferableBackend:(int)backendId NS_SWIFT_NAME(setPreferableBackend(backendId:));
- //
- // void cv::dnn::Net::setPreferableTarget(int targetId)
- //
- /**
- * Ask network to make computations on specific target device.
- * @param targetId target identifier.
- * @see `Target`
- *
- * List of supported combinations backend / target:
- * | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | DNN_BACKEND_CUDA |
- * |------------------------|--------------------|------------------------------|--------------------|-------------------|
- * | DNN_TARGET_CPU | + | + | + | |
- * | DNN_TARGET_OPENCL | + | + | + | |
- * | DNN_TARGET_OPENCL_FP16 | + | + | | |
- * | DNN_TARGET_MYRIAD | | + | | |
- * | DNN_TARGET_FPGA | | + | | |
- * | DNN_TARGET_CUDA | | | | + |
- * | DNN_TARGET_CUDA_FP16 | | | | + |
- * | DNN_TARGET_HDDL | | + | | |
- */
- - (void)setPreferableTarget:(int)targetId NS_SWIFT_NAME(setPreferableTarget(targetId:));
- //
- // void cv::dnn::Net::setInput(Mat blob, String name = "", double scalefactor = 1.0, Scalar mean = Scalar())
- //
- /**
- * Sets the new input value for the network
- * @param blob A new blob. Should have CV_32F or CV_8U depth.
- * @param name A name of input layer.
- * @param scalefactor An optional normalization scale.
- * @param mean An optional mean subtraction values.
- * @see `connect(String`, `String) to know format of the descriptor.`
- *
- * If scale or mean values are specified, a final input blob is computed
- * as:
- * `$$input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)$$`
- */
- - (void)setInput:(Mat*)blob name:(NSString*)name scalefactor:(double)scalefactor mean:(Scalar*)mean NS_SWIFT_NAME(setInput(blob:name:scalefactor:mean:));
- /**
- * Sets the new input value for the network
- * @param blob A new blob. Should have CV_32F or CV_8U depth.
- * @param name A name of input layer.
- * @param scalefactor An optional normalization scale.
- * @see `connect(String`, `String) to know format of the descriptor.`
- *
- * If scale or mean values are specified, a final input blob is computed
- * as:
- * `$$input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)$$`
- */
- - (void)setInput:(Mat*)blob name:(NSString*)name scalefactor:(double)scalefactor NS_SWIFT_NAME(setInput(blob:name:scalefactor:));
- /**
- * Sets the new input value for the network
- * @param blob A new blob. Should have CV_32F or CV_8U depth.
- * @param name A name of input layer.
- * @see `connect(String`, `String) to know format of the descriptor.`
- *
- * If scale or mean values are specified, a final input blob is computed
- * as:
- * `$$input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)$$`
- */
- - (void)setInput:(Mat*)blob name:(NSString*)name NS_SWIFT_NAME(setInput(blob:name:));
- /**
- * Sets the new input value for the network
- * @param blob A new blob. Should have CV_32F or CV_8U depth.
- * @see `connect(String`, `String) to know format of the descriptor.`
- *
- * If scale or mean values are specified, a final input blob is computed
- * as:
- * `$$input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)$$`
- */
- - (void)setInput:(Mat*)blob NS_SWIFT_NAME(setInput(blob:));
- //
- // void cv::dnn::Net::setParam(int layer, int numParam, Mat blob)
- //
- /**
- * Sets the new value for the learned param of the layer.
- * @param layer name or id of the layer.
- * @param numParam index of the layer parameter in the Layer::blobs array.
- * @param blob the new value.
- * @see `Layer::blobs`
- * NOTE: If shape of the new blob differs from the previous shape,
- * then the following forward pass may fail.
- */
- - (void)setParam:(int)layer numParam:(int)numParam blob:(Mat*)blob NS_SWIFT_NAME(setParam(layer:numParam:blob:));
- //
- // void cv::dnn::Net::setParam(String layerName, int numParam, Mat blob)
- //
- - (void)setParamByName:(NSString*)layerName numParam:(int)numParam blob:(Mat*)blob NS_SWIFT_NAME(setParam(layerName:numParam:blob:));
- //
- // Mat cv::dnn::Net::getParam(int layer, int numParam = 0)
- //
- /**
- * Returns parameter blob of the layer.
- * @param layer name or id of the layer.
- * @param numParam index of the layer parameter in the Layer::blobs array.
- * @see `Layer::blobs`
- */
- - (Mat*)getParam:(int)layer numParam:(int)numParam NS_SWIFT_NAME(getParam(layer:numParam:));
- /**
- * Returns parameter blob of the layer.
- * @param layer name or id of the layer.
- * @see `Layer::blobs`
- */
- - (Mat*)getParam:(int)layer NS_SWIFT_NAME(getParam(layer:));
- //
- // Mat cv::dnn::Net::getParam(String layerName, int numParam = 0)
- //
- - (Mat*)getParamByName:(NSString*)layerName numParam:(int)numParam NS_SWIFT_NAME(getParam(layerName:numParam:));
- - (Mat*)getParamByName:(NSString*)layerName NS_SWIFT_NAME(getParam(layerName:));
- //
- // vector_int cv::dnn::Net::getUnconnectedOutLayers()
- //
- /**
- * Returns indexes of layers with unconnected outputs.
- *
- * FIXIT: Rework API to registerOutput() approach, deprecate this call
- */
- - (IntVector*)getUnconnectedOutLayers NS_SWIFT_NAME(getUnconnectedOutLayers());
- //
- // vector_String cv::dnn::Net::getUnconnectedOutLayersNames()
- //
- /**
- * Returns names of layers with unconnected outputs.
- *
- * FIXIT: Rework API to registerOutput() approach, deprecate this call
- */
- - (NSArray<NSString*>*)getUnconnectedOutLayersNames NS_SWIFT_NAME(getUnconnectedOutLayersNames());
- //
- // void cv::dnn::Net::getLayersShapes(vector_MatShape netInputShapes, vector_int& layersIds, vector_vector_MatShape& inLayersShapes, vector_vector_MatShape& outLayersShapes)
- //
- /**
- * Returns input and output shapes for all layers in loaded model;
- * preliminary inferencing isn't necessary.
- * @param netInputShapes shapes for all input blobs in net input layer.
- * @param layersIds output parameter for layer IDs.
- * @param inLayersShapes output parameter for input layers shapes;
- * order is the same as in layersIds
- * @param outLayersShapes output parameter for output layers shapes;
- * order is the same as in layersIds
- */
- - (void)getLayersShapesWithNetInputShapes:(NSArray<IntVector*>*)netInputShapes layersIds:(IntVector*)layersIds inLayersShapes:(NSMutableArray<NSMutableArray<IntVector*>*>*)inLayersShapes outLayersShapes:(NSMutableArray<NSMutableArray<IntVector*>*>*)outLayersShapes NS_SWIFT_NAME(getLayersShapes(netInputShapes:layersIds:inLayersShapes:outLayersShapes:));
- //
- // void cv::dnn::Net::getLayersShapes(MatShape netInputShape, vector_int& layersIds, vector_vector_MatShape& inLayersShapes, vector_vector_MatShape& outLayersShapes)
- //
- - (void)getLayersShapesWithNetInputShape:(IntVector*)netInputShape layersIds:(IntVector*)layersIds inLayersShapes:(NSMutableArray<NSMutableArray<IntVector*>*>*)inLayersShapes outLayersShapes:(NSMutableArray<NSMutableArray<IntVector*>*>*)outLayersShapes NS_SWIFT_NAME(getLayersShapes(netInputShape:layersIds:inLayersShapes:outLayersShapes:));
- //
- // int64 cv::dnn::Net::getFLOPS(vector_MatShape netInputShapes)
- //
- /**
- * Computes FLOP for whole loaded model with specified input shapes.
- * @param netInputShapes vector of shapes for all net inputs.
- * @return computed FLOP.
- */
- - (long)getFLOPSWithNetInputShapes:(NSArray<IntVector*>*)netInputShapes NS_SWIFT_NAME(getFLOPS(netInputShapes:));
- //
- // int64 cv::dnn::Net::getFLOPS(MatShape netInputShape)
- //
- - (long)getFLOPSWithNetInputShape:(IntVector*)netInputShape NS_SWIFT_NAME(getFLOPS(netInputShape:));
- //
- // int64 cv::dnn::Net::getFLOPS(int layerId, vector_MatShape netInputShapes)
- //
- - (long)getFLOPSWithLayerId:(int)layerId netInputShapes:(NSArray<IntVector*>*)netInputShapes NS_SWIFT_NAME(getFLOPS(layerId:netInputShapes:));
- //
- // int64 cv::dnn::Net::getFLOPS(int layerId, MatShape netInputShape)
- //
- - (long)getFLOPSWithLayerId:(int)layerId netInputShape:(IntVector*)netInputShape NS_SWIFT_NAME(getFLOPS(layerId:netInputShape:));
- //
- // void cv::dnn::Net::getLayerTypes(vector_String& layersTypes)
- //
- /**
- * Returns list of types for layer used in model.
- * @param layersTypes output parameter for returning types.
- */
- - (void)getLayerTypes:(NSMutableArray<NSString*>*)layersTypes NS_SWIFT_NAME(getLayerTypes(layersTypes:));
- //
- // int cv::dnn::Net::getLayersCount(String layerType)
- //
- /**
- * Returns count of layers of specified type.
- * @param layerType type.
- * @return count of layers
- */
- - (int)getLayersCount:(NSString*)layerType NS_SWIFT_NAME(getLayersCount(layerType:));
- //
- // void cv::dnn::Net::getMemoryConsumption(MatShape netInputShape, size_t& weights, size_t& blobs)
- //
- - (void)getMemoryConsumption:(IntVector*)netInputShape weights:(size_t)weights blobs:(size_t)blobs NS_SWIFT_NAME(getMemoryConsumption(netInputShape:weights:blobs:));
- //
- // void cv::dnn::Net::getMemoryConsumption(int layerId, vector_MatShape netInputShapes, size_t& weights, size_t& blobs)
- //
- - (void)getMemoryConsumption:(int)layerId netInputShapes:(NSArray<IntVector*>*)netInputShapes weights:(size_t)weights blobs:(size_t)blobs NS_SWIFT_NAME(getMemoryConsumption(layerId:netInputShapes:weights:blobs:));
- //
- // void cv::dnn::Net::getMemoryConsumption(int layerId, MatShape netInputShape, size_t& weights, size_t& blobs)
- //
- - (void)getMemoryConsumption:(int)layerId netInputShape:(IntVector*)netInputShape weights:(size_t)weights blobs:(size_t)blobs NS_SWIFT_NAME(getMemoryConsumption(layerId:netInputShape:weights:blobs:));
- //
- // void cv::dnn::Net::enableFusion(bool fusion)
- //
- /**
- * Enables or disables layer fusion in the network.
- * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
- */
- - (void)enableFusion:(BOOL)fusion NS_SWIFT_NAME(enableFusion(fusion:));
- //
- // void cv::dnn::Net::enableWinograd(bool useWinograd)
- //
- /**
- * Enables or disables the Winograd compute branch. The Winograd compute branch can speed up
- * 3x3 Convolution at a small loss of accuracy.
- * @param useWinograd true to enable the Winograd compute branch. The default is true.
- */
- - (void)enableWinograd:(BOOL)useWinograd NS_SWIFT_NAME(enableWinograd(useWinograd:));
- //
- // int64 cv::dnn::Net::getPerfProfile(vector_double& timings)
- //
- /**
- * Returns overall time for inference and timings (in ticks) for layers.
- *
- * Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
- * in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only.
- *
- * @param timings vector for tick timings for all layers.
- * @return overall ticks for model inference.
- */
- - (long)getPerfProfile:(DoubleVector*)timings NS_SWIFT_NAME(getPerfProfile(timings:));
- @end
- NS_ASSUME_NONNULL_END
|