123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/xphoto.hpp"
- #import "opencv2/xphoto/white_balance.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "WhiteBalancer.h"
- @class Mat;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class LearningBasedWB
- /**
- * More sophisticated learning-based automatic white balance algorithm.
- *
- * As REF: GrayworldWB, this algorithm works by applying different gains to the input
- * image channels, but their computation is a bit more involved compared to the
- * simple gray-world assumption. More details about the algorithm can be found in
- * CITE: Cheng2015 .
- *
- * To mask out saturated pixels this function uses only pixels that satisfy the
- * following condition:
- *
- * `$$ \frac{\textrm{max}(R,G,B)}{\texttt{range\_max\_val}} < \texttt{saturation\_thresh} $$`
- *
- * Currently supports images of type REF: CV_8UC3 and REF: CV_16UC3.
- *
- * Member of `Xphoto`
- */
- CV_EXPORTS @interface LearningBasedWB : WhiteBalancer
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::xphoto::LearningBasedWB> nativePtrLearningBasedWB;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::xphoto::LearningBasedWB>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::xphoto::LearningBasedWB>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // void cv::xphoto::LearningBasedWB::extractSimpleFeatures(Mat src, Mat& dst)
- //
- /**
- * Implements the feature extraction part of the algorithm.
- *
- * In accordance with CITE: Cheng2015 , computes the following features for the input image:
- * 1. Chromaticity of an average (R,G,B) tuple
- * 2. Chromaticity of the brightest (R,G,B) tuple (while ignoring saturated pixels)
- * 3. Chromaticity of the dominant (R,G,B) tuple (the one that has the highest value in the RGB histogram)
- * 4. Mode of the chromaticity palette, that is constructed by taking 300 most common colors according to
- * the RGB histogram and projecting them on the chromaticity plane. Mode is the most high-density point
- * of the palette, which is computed by a straightforward fixed-bandwidth kernel density estimator with
- * a Epanechnikov kernel function.
- *
- * @param src Input three-channel image (BGR color space is assumed).
- * @param dst An array of four (r,g) chromaticity tuples corresponding to the features listed above.
- */
- - (void)extractSimpleFeatures:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(extractSimpleFeatures(src:dst:));
- //
- // int cv::xphoto::LearningBasedWB::getRangeMaxVal()
- //
- /**
- * Maximum possible value of the input image (e.g. 255 for 8 bit images,
- * 4095 for 12 bit images)
- * @see `-setRangeMaxVal:`
- */
- - (int)getRangeMaxVal NS_SWIFT_NAME(getRangeMaxVal());
- //
- // void cv::xphoto::LearningBasedWB::setRangeMaxVal(int val)
- //
- /**
- * getRangeMaxVal @see `-getRangeMaxVal:`
- */
- - (void)setRangeMaxVal:(int)val NS_SWIFT_NAME(setRangeMaxVal(val:));
- //
- // float cv::xphoto::LearningBasedWB::getSaturationThreshold()
- //
- /**
- * Threshold that is used to determine saturated pixels, i.e. pixels where at least one of the
- * channels exceeds `$$\texttt{saturation\_threshold}\times\texttt{range\_max\_val}$$` are ignored.
- * @see `-setSaturationThreshold:`
- */
- - (float)getSaturationThreshold NS_SWIFT_NAME(getSaturationThreshold());
- //
- // void cv::xphoto::LearningBasedWB::setSaturationThreshold(float val)
- //
- /**
- * getSaturationThreshold @see `-getSaturationThreshold:`
- */
- - (void)setSaturationThreshold:(float)val NS_SWIFT_NAME(setSaturationThreshold(val:));
- //
- // int cv::xphoto::LearningBasedWB::getHistBinNum()
- //
- /**
- * Defines the size of one dimension of a three-dimensional RGB histogram that is used internally
- * by the algorithm. It often makes sense to increase the number of bins for images with higher bit depth
- * (e.g. 256 bins for a 12 bit image).
- * @see `-setHistBinNum:`
- */
- - (int)getHistBinNum NS_SWIFT_NAME(getHistBinNum());
- //
- // void cv::xphoto::LearningBasedWB::setHistBinNum(int val)
- //
- /**
- * getHistBinNum @see `-getHistBinNum:`
- */
- - (void)setHistBinNum:(int)val NS_SWIFT_NAME(setHistBinNum(val:));
- @end
- NS_ASSUME_NONNULL_END
|