123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/face.hpp"
- #import "opencv2/face/facerec.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "FaceRecognizer.h"
- @class Mat;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class LBPHFaceRecognizer
- /**
- * The LBPHFaceRecognizer module
- *
- * Member of `Face`
- */
- CV_EXPORTS @interface LBPHFaceRecognizer : FaceRecognizer
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::face::LBPHFaceRecognizer> nativePtrLBPHFaceRecognizer;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::face::LBPHFaceRecognizer>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::face::LBPHFaceRecognizer>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // int cv::face::LBPHFaceRecognizer::getGridX()
- //
- /**
- * @see `-setGridX:`
- */
- - (int)getGridX NS_SWIFT_NAME(getGridX());
- //
- // void cv::face::LBPHFaceRecognizer::setGridX(int val)
- //
- /**
- * getGridX @see `-getGridX:`
- */
- - (void)setGridX:(int)val NS_SWIFT_NAME(setGridX(val:));
- //
- // int cv::face::LBPHFaceRecognizer::getGridY()
- //
- /**
- * @see `-setGridY:`
- */
- - (int)getGridY NS_SWIFT_NAME(getGridY());
- //
- // void cv::face::LBPHFaceRecognizer::setGridY(int val)
- //
- /**
- * getGridY @see `-getGridY:`
- */
- - (void)setGridY:(int)val NS_SWIFT_NAME(setGridY(val:));
- //
- // int cv::face::LBPHFaceRecognizer::getRadius()
- //
- /**
- * @see `-setRadius:`
- */
- - (int)getRadius NS_SWIFT_NAME(getRadius());
- //
- // void cv::face::LBPHFaceRecognizer::setRadius(int val)
- //
- /**
- * getRadius @see `-getRadius:`
- */
- - (void)setRadius:(int)val NS_SWIFT_NAME(setRadius(val:));
- //
- // int cv::face::LBPHFaceRecognizer::getNeighbors()
- //
- /**
- * @see `-setNeighbors:`
- */
- - (int)getNeighbors NS_SWIFT_NAME(getNeighbors());
- //
- // void cv::face::LBPHFaceRecognizer::setNeighbors(int val)
- //
- /**
- * getNeighbors @see `-getNeighbors:`
- */
- - (void)setNeighbors:(int)val NS_SWIFT_NAME(setNeighbors(val:));
- //
- // double cv::face::LBPHFaceRecognizer::getThreshold()
- //
- /**
- * @see `-setThreshold:`
- */
- - (double)getThreshold NS_SWIFT_NAME(getThreshold());
- //
- // void cv::face::LBPHFaceRecognizer::setThreshold(double val)
- //
- /**
- * getThreshold @see `-getThreshold:`
- */
- - (void)setThreshold:(double)val NS_SWIFT_NAME(setThreshold(val:));
- //
- // vector_Mat cv::face::LBPHFaceRecognizer::getHistograms()
- //
- - (NSArray<Mat*>*)getHistograms NS_SWIFT_NAME(getHistograms());
- //
- // Mat cv::face::LBPHFaceRecognizer::getLabels()
- //
- - (Mat*)getLabels NS_SWIFT_NAME(getLabels());
- //
- // static Ptr_LBPHFaceRecognizer cv::face::LBPHFaceRecognizer::create(int radius = 1, int neighbors = 8, int grid_x = 8, int grid_y = 8, double threshold = DBL_MAX)
- //
- /**
- * @param radius The radius used for building the Circular Local Binary Pattern. The greater the
- * radius, the smoother the image but more spatial information you can get.
- * @param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
- * appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
- * the higher the computational cost.
- * @param grid_x The number of cells in the horizontal direction, 8 is a common value used in
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * @param grid_y The number of cells in the vertical direction, 8 is a common value used in
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * @param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
- * is larger than the threshold, this method returns -1.
- *
- * ### Notes:
- *
- * - The Circular Local Binary Patterns (used in training and prediction) expect the data given as
- * grayscale images, use cvtColor to convert between the color spaces.
- * - This model supports updating.
- *
- * ### Model internal data:
- *
- * - radius see LBPHFaceRecognizer::create.
- * - neighbors see LBPHFaceRecognizer::create.
- * - grid_x see LLBPHFaceRecognizer::create.
- * - grid_y see LBPHFaceRecognizer::create.
- * - threshold see LBPHFaceRecognizer::create.
- * - histograms Local Binary Patterns Histograms calculated from the given training data (empty if
- * none was given).
- * - labels Labels corresponding to the calculated Local Binary Patterns Histograms.
- */
- + (LBPHFaceRecognizer*)create:(int)radius neighbors:(int)neighbors grid_x:(int)grid_x grid_y:(int)grid_y threshold:(double)threshold NS_SWIFT_NAME(create(radius:neighbors:grid_x:grid_y:threshold:));
- /**
- * @param radius The radius used for building the Circular Local Binary Pattern. The greater the
- * radius, the smoother the image but more spatial information you can get.
- * @param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
- * appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
- * the higher the computational cost.
- * @param grid_x The number of cells in the horizontal direction, 8 is a common value used in
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * @param grid_y The number of cells in the vertical direction, 8 is a common value used in
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * is larger than the threshold, this method returns -1.
- *
- * ### Notes:
- *
- * - The Circular Local Binary Patterns (used in training and prediction) expect the data given as
- * grayscale images, use cvtColor to convert between the color spaces.
- * - This model supports updating.
- *
- * ### Model internal data:
- *
- * - radius see LBPHFaceRecognizer::create.
- * - neighbors see LBPHFaceRecognizer::create.
- * - grid_x see LLBPHFaceRecognizer::create.
- * - grid_y see LBPHFaceRecognizer::create.
- * - threshold see LBPHFaceRecognizer::create.
- * - histograms Local Binary Patterns Histograms calculated from the given training data (empty if
- * none was given).
- * - labels Labels corresponding to the calculated Local Binary Patterns Histograms.
- */
- + (LBPHFaceRecognizer*)create:(int)radius neighbors:(int)neighbors grid_x:(int)grid_x grid_y:(int)grid_y NS_SWIFT_NAME(create(radius:neighbors:grid_x:grid_y:));
- /**
- * @param radius The radius used for building the Circular Local Binary Pattern. The greater the
- * radius, the smoother the image but more spatial information you can get.
- * @param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
- * appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
- * the higher the computational cost.
- * @param grid_x The number of cells in the horizontal direction, 8 is a common value used in
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * is larger than the threshold, this method returns -1.
- *
- * ### Notes:
- *
- * - The Circular Local Binary Patterns (used in training and prediction) expect the data given as
- * grayscale images, use cvtColor to convert between the color spaces.
- * - This model supports updating.
- *
- * ### Model internal data:
- *
- * - radius see LBPHFaceRecognizer::create.
- * - neighbors see LBPHFaceRecognizer::create.
- * - grid_x see LLBPHFaceRecognizer::create.
- * - grid_y see LBPHFaceRecognizer::create.
- * - threshold see LBPHFaceRecognizer::create.
- * - histograms Local Binary Patterns Histograms calculated from the given training data (empty if
- * none was given).
- * - labels Labels corresponding to the calculated Local Binary Patterns Histograms.
- */
- + (LBPHFaceRecognizer*)create:(int)radius neighbors:(int)neighbors grid_x:(int)grid_x NS_SWIFT_NAME(create(radius:neighbors:grid_x:));
- /**
- * @param radius The radius used for building the Circular Local Binary Pattern. The greater the
- * radius, the smoother the image but more spatial information you can get.
- * @param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
- * appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
- * the higher the computational cost.
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * is larger than the threshold, this method returns -1.
- *
- * ### Notes:
- *
- * - The Circular Local Binary Patterns (used in training and prediction) expect the data given as
- * grayscale images, use cvtColor to convert between the color spaces.
- * - This model supports updating.
- *
- * ### Model internal data:
- *
- * - radius see LBPHFaceRecognizer::create.
- * - neighbors see LBPHFaceRecognizer::create.
- * - grid_x see LLBPHFaceRecognizer::create.
- * - grid_y see LBPHFaceRecognizer::create.
- * - threshold see LBPHFaceRecognizer::create.
- * - histograms Local Binary Patterns Histograms calculated from the given training data (empty if
- * none was given).
- * - labels Labels corresponding to the calculated Local Binary Patterns Histograms.
- */
- + (LBPHFaceRecognizer*)create:(int)radius neighbors:(int)neighbors NS_SWIFT_NAME(create(radius:neighbors:));
- /**
- * @param radius The radius used for building the Circular Local Binary Pattern. The greater the
- * radius, the smoother the image but more spatial information you can get.
- * appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
- * the higher the computational cost.
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * is larger than the threshold, this method returns -1.
- *
- * ### Notes:
- *
- * - The Circular Local Binary Patterns (used in training and prediction) expect the data given as
- * grayscale images, use cvtColor to convert between the color spaces.
- * - This model supports updating.
- *
- * ### Model internal data:
- *
- * - radius see LBPHFaceRecognizer::create.
- * - neighbors see LBPHFaceRecognizer::create.
- * - grid_x see LLBPHFaceRecognizer::create.
- * - grid_y see LBPHFaceRecognizer::create.
- * - threshold see LBPHFaceRecognizer::create.
- * - histograms Local Binary Patterns Histograms calculated from the given training data (empty if
- * none was given).
- * - labels Labels corresponding to the calculated Local Binary Patterns Histograms.
- */
- + (LBPHFaceRecognizer*)create:(int)radius NS_SWIFT_NAME(create(radius:));
- /**
- * radius, the smoother the image but more spatial information you can get.
- * appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
- * the higher the computational cost.
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- * feature vector.
- * is larger than the threshold, this method returns -1.
- *
- * ### Notes:
- *
- * - The Circular Local Binary Patterns (used in training and prediction) expect the data given as
- * grayscale images, use cvtColor to convert between the color spaces.
- * - This model supports updating.
- *
- * ### Model internal data:
- *
- * - radius see LBPHFaceRecognizer::create.
- * - neighbors see LBPHFaceRecognizer::create.
- * - grid_x see LLBPHFaceRecognizer::create.
- * - grid_y see LBPHFaceRecognizer::create.
- * - threshold see LBPHFaceRecognizer::create.
- * - histograms Local Binary Patterns Histograms calculated from the given training data (empty if
- * none was given).
- * - labels Labels corresponding to the calculated Local Binary Patterns Histograms.
- */
- + (LBPHFaceRecognizer*)create NS_SWIFT_NAME(create());
- @end
- NS_ASSUME_NONNULL_END
|