123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/objdetect.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- @class DoubleVector;
- @class FloatVector;
- @class Mat;
- @class Point2i;
- @class Rect2i;
- @class Size2i;
- // C++: enum DescriptorStorageFormat (cv.HOGDescriptor.DescriptorStorageFormat)
- typedef NS_ENUM(int, DescriptorStorageFormat) {
- HOGDescriptor_DESCR_FORMAT_COL_BY_COL NS_SWIFT_NAME(DESCR_FORMAT_COL_BY_COL) = 0,
- HOGDescriptor_DESCR_FORMAT_ROW_BY_ROW NS_SWIFT_NAME(DESCR_FORMAT_ROW_BY_ROW) = 1
- };
- // C++: enum HistogramNormType (cv.HOGDescriptor.HistogramNormType)
- typedef NS_ENUM(int, HistogramNormType) {
- HOGDescriptor_L2Hys NS_SWIFT_NAME(L2Hys) = 0
- };
- NS_ASSUME_NONNULL_BEGIN
- // C++: class HOGDescriptor
- /**
- * Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
- *
- * the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs CITE: Dalal2005 .
- *
- * useful links:
- *
- * https://hal.inria.fr/inria-00548512/document/
- *
- * https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
- *
- * https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
- *
- * http://www.learnopencv.com/histogram-of-oriented-gradients
- *
- * http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial
- *
- * Member of `Objdetect`
- */
- CV_EXPORTS @interface HOGDescriptor : NSObject
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::HOGDescriptor> nativePtr;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::HOGDescriptor>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::HOGDescriptor>)nativePtr;
- #endif
- #pragma mark - Class Constants
- @property (class, readonly) int DEFAULT_NLEVELS NS_SWIFT_NAME(DEFAULT_NLEVELS);
- #pragma mark - Methods
- //
- // cv::HOGDescriptor::HOGDescriptor()
- //
- /**
- * Creates the HOG descriptor and detector with default parameters.
- *
- * aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )
- */
- - (instancetype)init;
- //
- // cv::HOGDescriptor::HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture = 1, double _winSigma = -1, HOGDescriptor_HistogramNormType _histogramNormType = HOGDescriptor::L2Hys, double _L2HysThreshold = 0.2, bool _gammaCorrection = false, int _nlevels = HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient = false)
- //
- /**
- *
- * @param _winSize sets winSize with given value.
- * @param _blockSize sets blockSize with given value.
- * @param _blockStride sets blockStride with given value.
- * @param _cellSize sets cellSize with given value.
- * @param _nbins sets nbins with given value.
- * @param _derivAperture sets derivAperture with given value.
- * @param _winSigma sets winSigma with given value.
- * @param _histogramNormType sets histogramNormType with given value.
- * @param _L2HysThreshold sets L2HysThreshold with given value.
- * @param _gammaCorrection sets gammaCorrection with given value.
- * @param _nlevels sets nlevels with given value.
- * @param _signedGradient sets signedGradient with given value.
- */
- - (instancetype)initWith_winSize:(Size2i*)_winSize _blockSize:(Size2i*)_blockSize _blockStride:(Size2i*)_blockStride _cellSize:(Size2i*)_cellSize _nbins:(int)_nbins _derivAperture:(int)_derivAperture _winSigma:(double)_winSigma _histogramNormType:(HistogramNormType)_histogramNormType _L2HysThreshold:(double)_L2HysThreshold _gammaCorrection:(BOOL)_gammaCorrection _nlevels:(int)_nlevels _signedGradient:(BOOL)_signedGradient;
- /**
- *
- * @param _winSize sets winSize with given value.
- * @param _blockSize sets blockSize with given value.
- * @param _blockStride sets blockStride with given value.
- * @param _cellSize sets cellSize with given value.
- * @param _nbins sets nbins with given value.
- * @param _derivAperture sets derivAperture with given value.
- * @param _winSigma sets winSigma with given value.
- * @param _histogramNormType sets histogramNormType with given value.
- * @param _L2HysThreshold sets L2HysThreshold with given value.
- * @param _gammaCorrection sets gammaCorrection with given value.
- * @param _nlevels sets nlevels with given value.
- */
- - (instancetype)initWith_winSize:(Size2i*)_winSize _blockSize:(Size2i*)_blockSize _blockStride:(Size2i*)_blockStride _cellSize:(Size2i*)_cellSize _nbins:(int)_nbins _derivAperture:(int)_derivAperture _winSigma:(double)_winSigma _histogramNormType:(HistogramNormType)_histogramNormType _L2HysThreshold:(double)_L2HysThreshold _gammaCorrection:(BOOL)_gammaCorrection _nlevels:(int)_nlevels;
- /**
- *
- * @param _winSize sets winSize with given value.
- * @param _blockSize sets blockSize with given value.
- * @param _blockStride sets blockStride with given value.
- * @param _cellSize sets cellSize with given value.
- * @param _nbins sets nbins with given value.
- * @param _derivAperture sets derivAperture with given value.
- * @param _winSigma sets winSigma with given value.
- * @param _histogramNormType sets histogramNormType with given value.
- * @param _L2HysThreshold sets L2HysThreshold with given value.
- * @param _gammaCorrection sets gammaCorrection with given value.
- */
- - (instancetype)initWith_winSize:(Size2i*)_winSize _blockSize:(Size2i*)_blockSize _blockStride:(Size2i*)_blockStride _cellSize:(Size2i*)_cellSize _nbins:(int)_nbins _derivAperture:(int)_derivAperture _winSigma:(double)_winSigma _histogramNormType:(HistogramNormType)_histogramNormType _L2HysThreshold:(double)_L2HysThreshold _gammaCorrection:(BOOL)_gammaCorrection;
- /**
- *
- * @param _winSize sets winSize with given value.
- * @param _blockSize sets blockSize with given value.
- * @param _blockStride sets blockStride with given value.
- * @param _cellSize sets cellSize with given value.
- * @param _nbins sets nbins with given value.
- * @param _derivAperture sets derivAperture with given value.
- * @param _winSigma sets winSigma with given value.
- * @param _histogramNormType sets histogramNormType with given value.
- * @param _L2HysThreshold sets L2HysThreshold with given value.
- */
- - (instancetype)initWith_winSize:(Size2i*)_winSize _blockSize:(Size2i*)_blockSize _blockStride:(Size2i*)_blockStride _cellSize:(Size2i*)_cellSize _nbins:(int)_nbins _derivAperture:(int)_derivAperture _winSigma:(double)_winSigma _histogramNormType:(HistogramNormType)_histogramNormType _L2HysThreshold:(double)_L2HysThreshold;
- /**
- *
- * @param _winSize sets winSize with given value.
- * @param _blockSize sets blockSize with given value.
- * @param _blockStride sets blockStride with given value.
- * @param _cellSize sets cellSize with given value.
- * @param _nbins sets nbins with given value.
- * @param _derivAperture sets derivAperture with given value.
- * @param _winSigma sets winSigma with given value.
- * @param _histogramNormType sets histogramNormType with given value.
- */
- - (instancetype)initWith_winSize:(Size2i*)_winSize _blockSize:(Size2i*)_blockSize _blockStride:(Size2i*)_blockStride _cellSize:(Size2i*)_cellSize _nbins:(int)_nbins _derivAperture:(int)_derivAperture _winSigma:(double)_winSigma _histogramNormType:(HistogramNormType)_histogramNormType;
- /**
- *
- * @param _winSize sets winSize with given value.
- * @param _blockSize sets blockSize with given value.
- * @param _blockStride sets blockStride with given value.
- * @param _cellSize sets cellSize with given value.
- * @param _nbins sets nbins with given value.
- * @param _derivAperture sets derivAperture with given value.
- * @param _winSigma sets winSigma with given value.
- */
- - (instancetype)initWith_winSize:(Size2i*)_winSize _blockSize:(Size2i*)_blockSize _blockStride:(Size2i*)_blockStride _cellSize:(Size2i*)_cellSize _nbins:(int)_nbins _derivAperture:(int)_derivAperture _winSigma:(double)_winSigma;
- /**
- *
- * @param _winSize sets winSize with given value.
- * @param _blockSize sets blockSize with given value.
- * @param _blockStride sets blockStride with given value.
- * @param _cellSize sets cellSize with given value.
- * @param _nbins sets nbins with given value.
- * @param _derivAperture sets derivAperture with given value.
- */
- - (instancetype)initWith_winSize:(Size2i*)_winSize _blockSize:(Size2i*)_blockSize _blockStride:(Size2i*)_blockStride _cellSize:(Size2i*)_cellSize _nbins:(int)_nbins _derivAperture:(int)_derivAperture;
- /**
- *
- * @param _winSize sets winSize with given value.
- * @param _blockSize sets blockSize with given value.
- * @param _blockStride sets blockStride with given value.
- * @param _cellSize sets cellSize with given value.
- * @param _nbins sets nbins with given value.
- */
- - (instancetype)initWith_winSize:(Size2i*)_winSize _blockSize:(Size2i*)_blockSize _blockStride:(Size2i*)_blockStride _cellSize:(Size2i*)_cellSize _nbins:(int)_nbins;
- //
- // cv::HOGDescriptor::HOGDescriptor(String filename)
- //
- /**
- *
- *
- * Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
- * @param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.
- */
- - (instancetype)initWithFilename:(NSString*)filename;
- //
- // size_t cv::HOGDescriptor::getDescriptorSize()
- //
- /**
- * Returns the number of coefficients required for the classification.
- */
- - (size_t)getDescriptorSize NS_SWIFT_NAME(getDescriptorSize());
- //
- // bool cv::HOGDescriptor::checkDetectorSize()
- //
- /**
- * Checks if detector size equal to descriptor size.
- */
- - (BOOL)checkDetectorSize NS_SWIFT_NAME(checkDetectorSize());
- //
- // double cv::HOGDescriptor::getWinSigma()
- //
- /**
- * Returns winSigma value
- */
- - (double)getWinSigma NS_SWIFT_NAME(getWinSigma());
- //
- // void cv::HOGDescriptor::setSVMDetector(Mat svmdetector)
- //
- /**
- * Sets coefficients for the linear SVM classifier.
- * @param svmdetector coefficients for the linear SVM classifier.
- */
- - (void)setSVMDetector:(Mat*)svmdetector NS_SWIFT_NAME(setSVMDetector(svmdetector:));
- //
- // bool cv::HOGDescriptor::load(String filename, String objname = String())
- //
- /**
- * loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
- * @param filename Name of the file to read.
- * @param objname The optional name of the node to read (if empty, the first top-level node will be used).
- */
- - (BOOL)load:(NSString*)filename objname:(NSString*)objname NS_SWIFT_NAME(load(filename:objname:));
- /**
- * loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
- * @param filename Name of the file to read.
- */
- - (BOOL)load:(NSString*)filename NS_SWIFT_NAME(load(filename:));
- //
- // void cv::HOGDescriptor::save(String filename, String objname = String())
- //
- /**
- * saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
- * @param filename File name
- * @param objname Object name
- */
- - (void)save:(NSString*)filename objname:(NSString*)objname NS_SWIFT_NAME(save(filename:objname:));
- /**
- * saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
- * @param filename File name
- */
- - (void)save:(NSString*)filename NS_SWIFT_NAME(save(filename:));
- //
- // void cv::HOGDescriptor::compute(Mat img, vector_float& descriptors, Size winStride = Size(), Size padding = Size(), vector_Point locations = std::vector<Point>())
- //
- /**
- * Computes HOG descriptors of given image.
- * @param img Matrix of the type CV_8U containing an image where HOG features will be calculated.
- * @param descriptors Matrix of the type CV_32F
- * @param winStride Window stride. It must be a multiple of block stride.
- * @param padding Padding
- * @param locations Vector of Point
- */
- - (void)compute:(Mat*)img descriptors:(FloatVector*)descriptors winStride:(Size2i*)winStride padding:(Size2i*)padding locations:(NSArray<Point2i*>*)locations NS_SWIFT_NAME(compute(img:descriptors:winStride:padding:locations:));
- /**
- * Computes HOG descriptors of given image.
- * @param img Matrix of the type CV_8U containing an image where HOG features will be calculated.
- * @param descriptors Matrix of the type CV_32F
- * @param winStride Window stride. It must be a multiple of block stride.
- * @param padding Padding
- */
- - (void)compute:(Mat*)img descriptors:(FloatVector*)descriptors winStride:(Size2i*)winStride padding:(Size2i*)padding NS_SWIFT_NAME(compute(img:descriptors:winStride:padding:));
- /**
- * Computes HOG descriptors of given image.
- * @param img Matrix of the type CV_8U containing an image where HOG features will be calculated.
- * @param descriptors Matrix of the type CV_32F
- * @param winStride Window stride. It must be a multiple of block stride.
- */
- - (void)compute:(Mat*)img descriptors:(FloatVector*)descriptors winStride:(Size2i*)winStride NS_SWIFT_NAME(compute(img:descriptors:winStride:));
- /**
- * Computes HOG descriptors of given image.
- * @param img Matrix of the type CV_8U containing an image where HOG features will be calculated.
- * @param descriptors Matrix of the type CV_32F
- */
- - (void)compute:(Mat*)img descriptors:(FloatVector*)descriptors NS_SWIFT_NAME(compute(img:descriptors:));
- //
- // void cv::HOGDescriptor::detect(Mat img, vector_Point& foundLocations, vector_double& weights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), vector_Point searchLocations = std::vector<Point>())
- //
- /**
- * Performs object detection without a multi-scale window.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
- * @param weights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * @param winStride Window stride. It must be a multiple of block stride.
- * @param padding Padding
- * @param searchLocations Vector of Point includes set of requested locations to be evaluated.
- */
- - (void)detect:(Mat*)img foundLocations:(NSMutableArray<Point2i*>*)foundLocations weights:(DoubleVector*)weights hitThreshold:(double)hitThreshold winStride:(Size2i*)winStride padding:(Size2i*)padding searchLocations:(NSArray<Point2i*>*)searchLocations NS_SWIFT_NAME(detect(img:foundLocations:weights:hitThreshold:winStride:padding:searchLocations:));
- /**
- * Performs object detection without a multi-scale window.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
- * @param weights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * @param winStride Window stride. It must be a multiple of block stride.
- * @param padding Padding
- */
- - (void)detect:(Mat*)img foundLocations:(NSMutableArray<Point2i*>*)foundLocations weights:(DoubleVector*)weights hitThreshold:(double)hitThreshold winStride:(Size2i*)winStride padding:(Size2i*)padding NS_SWIFT_NAME(detect(img:foundLocations:weights:hitThreshold:winStride:padding:));
- /**
- * Performs object detection without a multi-scale window.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
- * @param weights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * @param winStride Window stride. It must be a multiple of block stride.
- */
- - (void)detect:(Mat*)img foundLocations:(NSMutableArray<Point2i*>*)foundLocations weights:(DoubleVector*)weights hitThreshold:(double)hitThreshold winStride:(Size2i*)winStride NS_SWIFT_NAME(detect(img:foundLocations:weights:hitThreshold:winStride:));
- /**
- * Performs object detection without a multi-scale window.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
- * @param weights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- */
- - (void)detect:(Mat*)img foundLocations:(NSMutableArray<Point2i*>*)foundLocations weights:(DoubleVector*)weights hitThreshold:(double)hitThreshold NS_SWIFT_NAME(detect(img:foundLocations:weights:hitThreshold:));
- /**
- * Performs object detection without a multi-scale window.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of point where each point contains left-top corner point of detected object boundaries.
- * @param weights Vector that will contain confidence values for each detected object.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- */
- - (void)detect:(Mat*)img foundLocations:(NSMutableArray<Point2i*>*)foundLocations weights:(DoubleVector*)weights NS_SWIFT_NAME(detect(img:foundLocations:weights:));
- //
- // void cv::HOGDescriptor::detectMultiScale(Mat img, vector_Rect& foundLocations, vector_double& foundWeights, double hitThreshold = 0, Size winStride = Size(), Size padding = Size(), double scale = 1.05, double groupThreshold = 2.0, bool useMeanshiftGrouping = false)
- //
- /**
- * Detects objects of different sizes in the input image. The detected objects are returned as a list
- * of rectangles.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- * @param foundWeights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * @param winStride Window stride. It must be a multiple of block stride.
- * @param padding Padding
- * @param scale Coefficient of the detection window increase.
- * @param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered
- * by many rectangles. 0 means not to perform grouping.
- * @param useMeanshiftGrouping indicates grouping algorithm
- */
- - (void)detectMultiScale:(Mat*)img foundLocations:(NSMutableArray<Rect2i*>*)foundLocations foundWeights:(DoubleVector*)foundWeights hitThreshold:(double)hitThreshold winStride:(Size2i*)winStride padding:(Size2i*)padding scale:(double)scale groupThreshold:(double)groupThreshold useMeanshiftGrouping:(BOOL)useMeanshiftGrouping NS_SWIFT_NAME(detectMultiScale(img:foundLocations:foundWeights:hitThreshold:winStride:padding:scale:groupThreshold:useMeanshiftGrouping:));
- /**
- * Detects objects of different sizes in the input image. The detected objects are returned as a list
- * of rectangles.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- * @param foundWeights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * @param winStride Window stride. It must be a multiple of block stride.
- * @param padding Padding
- * @param scale Coefficient of the detection window increase.
- * @param groupThreshold Coefficient to regulate the similarity threshold. When detected, some objects can be covered
- * by many rectangles. 0 means not to perform grouping.
- */
- - (void)detectMultiScale:(Mat*)img foundLocations:(NSMutableArray<Rect2i*>*)foundLocations foundWeights:(DoubleVector*)foundWeights hitThreshold:(double)hitThreshold winStride:(Size2i*)winStride padding:(Size2i*)padding scale:(double)scale groupThreshold:(double)groupThreshold NS_SWIFT_NAME(detectMultiScale(img:foundLocations:foundWeights:hitThreshold:winStride:padding:scale:groupThreshold:));
- /**
- * Detects objects of different sizes in the input image. The detected objects are returned as a list
- * of rectangles.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- * @param foundWeights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * @param winStride Window stride. It must be a multiple of block stride.
- * @param padding Padding
- * @param scale Coefficient of the detection window increase.
- * by many rectangles. 0 means not to perform grouping.
- */
- - (void)detectMultiScale:(Mat*)img foundLocations:(NSMutableArray<Rect2i*>*)foundLocations foundWeights:(DoubleVector*)foundWeights hitThreshold:(double)hitThreshold winStride:(Size2i*)winStride padding:(Size2i*)padding scale:(double)scale NS_SWIFT_NAME(detectMultiScale(img:foundLocations:foundWeights:hitThreshold:winStride:padding:scale:));
- /**
- * Detects objects of different sizes in the input image. The detected objects are returned as a list
- * of rectangles.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- * @param foundWeights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * @param winStride Window stride. It must be a multiple of block stride.
- * @param padding Padding
- * by many rectangles. 0 means not to perform grouping.
- */
- - (void)detectMultiScale:(Mat*)img foundLocations:(NSMutableArray<Rect2i*>*)foundLocations foundWeights:(DoubleVector*)foundWeights hitThreshold:(double)hitThreshold winStride:(Size2i*)winStride padding:(Size2i*)padding NS_SWIFT_NAME(detectMultiScale(img:foundLocations:foundWeights:hitThreshold:winStride:padding:));
- /**
- * Detects objects of different sizes in the input image. The detected objects are returned as a list
- * of rectangles.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- * @param foundWeights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * @param winStride Window stride. It must be a multiple of block stride.
- * by many rectangles. 0 means not to perform grouping.
- */
- - (void)detectMultiScale:(Mat*)img foundLocations:(NSMutableArray<Rect2i*>*)foundLocations foundWeights:(DoubleVector*)foundWeights hitThreshold:(double)hitThreshold winStride:(Size2i*)winStride NS_SWIFT_NAME(detectMultiScale(img:foundLocations:foundWeights:hitThreshold:winStride:));
- /**
- * Detects objects of different sizes in the input image. The detected objects are returned as a list
- * of rectangles.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- * @param foundWeights Vector that will contain confidence values for each detected object.
- * @param hitThreshold Threshold for the distance between features and SVM classifying plane.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * by many rectangles. 0 means not to perform grouping.
- */
- - (void)detectMultiScale:(Mat*)img foundLocations:(NSMutableArray<Rect2i*>*)foundLocations foundWeights:(DoubleVector*)foundWeights hitThreshold:(double)hitThreshold NS_SWIFT_NAME(detectMultiScale(img:foundLocations:foundWeights:hitThreshold:));
- /**
- * Detects objects of different sizes in the input image. The detected objects are returned as a list
- * of rectangles.
- * @param img Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
- * @param foundLocations Vector of rectangles where each rectangle contains the detected object.
- * @param foundWeights Vector that will contain confidence values for each detected object.
- * Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
- * But if the free coefficient is omitted (which is allowed), you can specify it manually here.
- * by many rectangles. 0 means not to perform grouping.
- */
- - (void)detectMultiScale:(Mat*)img foundLocations:(NSMutableArray<Rect2i*>*)foundLocations foundWeights:(DoubleVector*)foundWeights NS_SWIFT_NAME(detectMultiScale(img:foundLocations:foundWeights:));
- //
- // void cv::HOGDescriptor::computeGradient(Mat img, Mat& grad, Mat& angleOfs, Size paddingTL = Size(), Size paddingBR = Size())
- //
- /**
- * Computes gradients and quantized gradient orientations.
- * @param img Matrix contains the image to be computed
- * @param grad Matrix of type CV_32FC2 contains computed gradients
- * @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations
- * @param paddingTL Padding from top-left
- * @param paddingBR Padding from bottom-right
- */
- - (void)computeGradient:(Mat*)img grad:(Mat*)grad angleOfs:(Mat*)angleOfs paddingTL:(Size2i*)paddingTL paddingBR:(Size2i*)paddingBR NS_SWIFT_NAME(computeGradient(img:grad:angleOfs:paddingTL:paddingBR:));
- /**
- * Computes gradients and quantized gradient orientations.
- * @param img Matrix contains the image to be computed
- * @param grad Matrix of type CV_32FC2 contains computed gradients
- * @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations
- * @param paddingTL Padding from top-left
- */
- - (void)computeGradient:(Mat*)img grad:(Mat*)grad angleOfs:(Mat*)angleOfs paddingTL:(Size2i*)paddingTL NS_SWIFT_NAME(computeGradient(img:grad:angleOfs:paddingTL:));
- /**
- * Computes gradients and quantized gradient orientations.
- * @param img Matrix contains the image to be computed
- * @param grad Matrix of type CV_32FC2 contains computed gradients
- * @param angleOfs Matrix of type CV_8UC2 contains quantized gradient orientations
- */
- - (void)computeGradient:(Mat*)img grad:(Mat*)grad angleOfs:(Mat*)angleOfs NS_SWIFT_NAME(computeGradient(img:grad:angleOfs:));
- //
- // static vector_float cv::HOGDescriptor::getDefaultPeopleDetector()
- //
- /**
- * Returns coefficients of the classifier trained for people detection (for 64x128 windows).
- */
- + (FloatVector*)getDefaultPeopleDetector NS_SWIFT_NAME(getDefaultPeopleDetector());
- //
- // static vector_float cv::HOGDescriptor::getDaimlerPeopleDetector()
- //
- /**
- * Returns coefficients of the classifier trained for people detection (for 48x96 windows).
- */
- + (FloatVector*)getDaimlerPeopleDetector NS_SWIFT_NAME(getDaimlerPeopleDetector());
- //
- // C++: Size cv::HOGDescriptor::winSize
- //
- @property (readonly) Size2i* winSize;
- //
- // C++: Size cv::HOGDescriptor::blockSize
- //
- @property (readonly) Size2i* blockSize;
- //
- // C++: Size cv::HOGDescriptor::blockStride
- //
- @property (readonly) Size2i* blockStride;
- //
- // C++: Size cv::HOGDescriptor::cellSize
- //
- @property (readonly) Size2i* cellSize;
- //
- // C++: int cv::HOGDescriptor::nbins
- //
- @property (readonly) int nbins;
- //
- // C++: int cv::HOGDescriptor::derivAperture
- //
- @property (readonly) int derivAperture;
- //
- // C++: double cv::HOGDescriptor::winSigma
- //
- @property (readonly) double winSigma;
- //
- // C++: HOGDescriptor_HistogramNormType cv::HOGDescriptor::histogramNormType
- //
- @property (readonly) HistogramNormType histogramNormType;
- //
- // C++: double cv::HOGDescriptor::L2HysThreshold
- //
- @property (readonly) double L2HysThreshold;
- //
- // C++: bool cv::HOGDescriptor::gammaCorrection
- //
- @property (readonly) BOOL gammaCorrection;
- //
- // C++: vector_float cv::HOGDescriptor::svmDetector
- //
- @property (readonly) FloatVector* svmDetector;
- //
- // C++: int cv::HOGDescriptor::nlevels
- //
- @property (readonly) int nlevels;
- //
- // C++: bool cv::HOGDescriptor::signedGradient
- //
- @property (readonly) BOOL signedGradient;
- @end
- NS_ASSUME_NONNULL_END
|