1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/dnn.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- @class ByteVector;
- @class FloatVector;
- @class Image2BlobParams;
- @class IntVector;
- @class Mat;
- @class Net;
- @class Rect2d;
- @class Rect2i;
- @class RotatedRect;
- @class Scalar;
- @class Size2i;
- // C++: enum Backend (cv.dnn.Backend)
- typedef NS_ENUM(int, Backend) {
- DNN_BACKEND_DEFAULT = 0,
- DNN_BACKEND_HALIDE = 0+1,
- DNN_BACKEND_INFERENCE_ENGINE = 0+2,
- DNN_BACKEND_OPENCV = 0+3,
- DNN_BACKEND_VKCOM = 0+4,
- DNN_BACKEND_CUDA = 0+5,
- DNN_BACKEND_WEBNN = 0+6,
- DNN_BACKEND_TIMVX = 0+7,
- DNN_BACKEND_CANN = 0+8
- };
- // C++: enum DataLayout (cv.dnn.DataLayout)
- typedef NS_ENUM(int, DataLayout) {
- DNN_LAYOUT_UNKNOWN = 0,
- DNN_LAYOUT_ND = 1,
- DNN_LAYOUT_NCHW = 2,
- DNN_LAYOUT_NCDHW = 3,
- DNN_LAYOUT_NHWC = 4,
- DNN_LAYOUT_NDHWC = 5,
- DNN_LAYOUT_PLANAR = 6
- };
- // C++: enum ImagePaddingMode (cv.dnn.ImagePaddingMode)
- typedef NS_ENUM(int, ImagePaddingMode) {
- DNN_PMODE_NULL = 0,
- DNN_PMODE_CROP_CENTER = 1,
- DNN_PMODE_LETTERBOX = 2
- };
- // C++: enum SoftNMSMethod (cv.dnn.SoftNMSMethod)
- typedef NS_ENUM(int, SoftNMSMethod) {
- SoftNMSMethod_SOFTNMS_LINEAR NS_SWIFT_NAME(SOFTNMS_LINEAR) = 1,
- SoftNMSMethod_SOFTNMS_GAUSSIAN NS_SWIFT_NAME(SOFTNMS_GAUSSIAN) = 2
- };
- // C++: enum Target (cv.dnn.Target)
- typedef NS_ENUM(int, Target) {
- DNN_TARGET_CPU = 0,
- DNN_TARGET_OPENCL = 0+1,
- DNN_TARGET_OPENCL_FP16 = 0+2,
- DNN_TARGET_MYRIAD = 0+3,
- DNN_TARGET_VULKAN = 0+4,
- DNN_TARGET_FPGA = 0+5,
- DNN_TARGET_CUDA = 0+6,
- DNN_TARGET_CUDA_FP16 = 0+7,
- DNN_TARGET_HDDL = 0+8,
- DNN_TARGET_NPU = 0+9,
- DNN_TARGET_CPU_FP16 = 0+10
- };
- NS_ASSUME_NONNULL_BEGIN
- // C++: class Dnn
- /**
- * The Dnn module
- *
- * Member classes: `DictValue`, `Layer`, `Net`, `Image2BlobParams`, `Model`, `ClassificationModel`, `KeypointsModel`, `SegmentationModel`, `DetectionModel`, `TextRecognitionModel`, `TextDetectionModel`, `TextDetectionModel_EAST`, `TextDetectionModel_DB`
- *
- * Member enums: `Backend`, `Target`, `DataLayout`, `ImagePaddingMode`, `SoftNMSMethod`
- */
- CV_EXPORTS @interface Dnn : NSObject
- #pragma mark - Methods
- //
- // vector_Target cv::dnn::getAvailableTargets(dnn_Backend be)
- //
- // Return type 'vector_Target' is not supported, skipping the function
- //
- // Net cv::dnn::readNetFromDarknet(String cfgFile, String darknetModel = String())
- //
- /**
- * Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param cfgFile path to the .cfg file with text description of the network architecture.
- * @param darknetModel path to the .weights file with learned network.
- * @return Network object that ready to do forward, throw an exception in failure cases.
- */
- + (Net*)readNetFromDarknetFile:(NSString*)cfgFile darknetModel:(NSString*)darknetModel NS_SWIFT_NAME(readNetFromDarknet(cfgFile:darknetModel:));
- /**
- * Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param cfgFile path to the .cfg file with text description of the network architecture.
- * @return Network object that ready to do forward, throw an exception in failure cases.
- */
- + (Net*)readNetFromDarknetFile:(NSString*)cfgFile NS_SWIFT_NAME(readNetFromDarknet(cfgFile:));
- //
- // Net cv::dnn::readNetFromDarknet(vector_uchar bufferCfg, vector_uchar bufferModel = std::vector<uchar>())
- //
- /**
- * Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
- * @param bufferModel A buffer contains a content of .weights file with learned network.
- * @return Net object.
- */
- + (Net*)readNetFromDarknetBuffer:(ByteVector*)bufferCfg bufferModel:(ByteVector*)bufferModel NS_SWIFT_NAME(readNetFromDarknet(bufferCfg:bufferModel:));
- /**
- * Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
- * @return Net object.
- */
- + (Net*)readNetFromDarknetBuffer:(ByteVector*)bufferCfg NS_SWIFT_NAME(readNetFromDarknet(bufferCfg:));
- //
- // Net cv::dnn::readNetFromCaffe(String prototxt, String caffeModel = String())
- //
- /**
- * Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
- * @param prototxt path to the .prototxt file with text description of the network architecture.
- * @param caffeModel path to the .caffemodel file with learned network.
- * @return Net object.
- */
- + (Net*)readNetFromCaffeFile:(NSString*)prototxt caffeModel:(NSString*)caffeModel NS_SWIFT_NAME(readNetFromCaffe(prototxt:caffeModel:));
- /**
- * Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
- * @param prototxt path to the .prototxt file with text description of the network architecture.
- * @return Net object.
- */
- + (Net*)readNetFromCaffeFile:(NSString*)prototxt NS_SWIFT_NAME(readNetFromCaffe(prototxt:));
- //
- // Net cv::dnn::readNetFromCaffe(vector_uchar bufferProto, vector_uchar bufferModel = std::vector<uchar>())
- //
- /**
- * Reads a network model stored in Caffe model in memory.
- * @param bufferProto buffer containing the content of the .prototxt file
- * @param bufferModel buffer containing the content of the .caffemodel file
- * @return Net object.
- */
- + (Net*)readNetFromCaffeBuffer:(ByteVector*)bufferProto bufferModel:(ByteVector*)bufferModel NS_SWIFT_NAME(readNetFromCaffe(bufferProto:bufferModel:));
- /**
- * Reads a network model stored in Caffe model in memory.
- * @param bufferProto buffer containing the content of the .prototxt file
- * @return Net object.
- */
- + (Net*)readNetFromCaffeBuffer:(ByteVector*)bufferProto NS_SWIFT_NAME(readNetFromCaffe(bufferProto:));
- //
- // Net cv::dnn::readNetFromTensorflow(String model, String config = String())
- //
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param model path to the .pb file with binary protobuf description of the network architecture
- * @param config path to the .pbtxt file that contains text graph definition in protobuf format.
- * Resulting Net object is built by text graph using weights from a binary one that
- * let us make it more flexible.
- * @return Net object.
- */
- + (Net*)readNetFromTensorflowFile:(NSString*)model config:(NSString*)config NS_SWIFT_NAME(readNetFromTensorflow(model:config:));
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param model path to the .pb file with binary protobuf description of the network architecture
- * Resulting Net object is built by text graph using weights from a binary one that
- * let us make it more flexible.
- * @return Net object.
- */
- + (Net*)readNetFromTensorflowFile:(NSString*)model NS_SWIFT_NAME(readNetFromTensorflow(model:));
- //
- // Net cv::dnn::readNetFromTensorflow(vector_uchar bufferModel, vector_uchar bufferConfig = std::vector<uchar>())
- //
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param bufferModel buffer containing the content of the pb file
- * @param bufferConfig buffer containing the content of the pbtxt file
- * @return Net object.
- */
- + (Net*)readNetFromTensorflowBuffer:(ByteVector*)bufferModel bufferConfig:(ByteVector*)bufferConfig NS_SWIFT_NAME(readNetFromTensorflow(bufferModel:bufferConfig:));
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param bufferModel buffer containing the content of the pb file
- * @return Net object.
- */
- + (Net*)readNetFromTensorflowBuffer:(ByteVector*)bufferModel NS_SWIFT_NAME(readNetFromTensorflow(bufferModel:));
- //
- // Net cv::dnn::readNetFromTFLite(String model)
- //
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format.
- * @param model path to the .tflite file with binary flatbuffers description of the network architecture
- * @return Net object.
- */
- + (Net*)readNetFromTFLiteFile:(NSString*)model NS_SWIFT_NAME(readNetFromTFLite(model:));
- //
- // Net cv::dnn::readNetFromTFLite(vector_uchar bufferModel)
- //
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/lite">TFLite</a> framework's format.
- * @param bufferModel buffer containing the content of the tflite file
- * @return Net object.
- */
- + (Net*)readNetFromTFLite:(ByteVector*)bufferModel NS_SWIFT_NAME(readNetFromTFLite(bufferModel:));
- //
- // Net cv::dnn::readNetFromTorch(String model, bool isBinary = true, bool evaluate = true)
- //
- /**
- * Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
- * @param model path to the file, dumped from Torch by using torch.save() function.
- * @param isBinary specifies whether the network was serialized in ascii mode or binary.
- * @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch.
- * @return Net object.
- *
- * NOTE: Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
- * which has various bit-length on different systems.
- *
- * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
- * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
- *
- * List of supported layers (i.e. object instances derived from Torch nn.Module class):
- * - nn.Sequential
- * - nn.Parallel
- * - nn.Concat
- * - nn.Linear
- * - nn.SpatialConvolution
- * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
- * - nn.ReLU, nn.TanH, nn.Sigmoid
- * - nn.Reshape
- * - nn.SoftMax, nn.LogSoftMax
- *
- * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
- */
- + (Net*)readNetFromTorch:(NSString*)model isBinary:(BOOL)isBinary evaluate:(BOOL)evaluate NS_SWIFT_NAME(readNetFromTorch(model:isBinary:evaluate:));
- /**
- * Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
- * @param model path to the file, dumped from Torch by using torch.save() function.
- * @param isBinary specifies whether the network was serialized in ascii mode or binary.
- * @return Net object.
- *
- * NOTE: Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
- * which has various bit-length on different systems.
- *
- * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
- * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
- *
- * List of supported layers (i.e. object instances derived from Torch nn.Module class):
- * - nn.Sequential
- * - nn.Parallel
- * - nn.Concat
- * - nn.Linear
- * - nn.SpatialConvolution
- * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
- * - nn.ReLU, nn.TanH, nn.Sigmoid
- * - nn.Reshape
- * - nn.SoftMax, nn.LogSoftMax
- *
- * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
- */
- + (Net*)readNetFromTorch:(NSString*)model isBinary:(BOOL)isBinary NS_SWIFT_NAME(readNetFromTorch(model:isBinary:));
- /**
- * Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
- * @param model path to the file, dumped from Torch by using torch.save() function.
- * @return Net object.
- *
- * NOTE: Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
- * which has various bit-length on different systems.
- *
- * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
- * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
- *
- * List of supported layers (i.e. object instances derived from Torch nn.Module class):
- * - nn.Sequential
- * - nn.Parallel
- * - nn.Concat
- * - nn.Linear
- * - nn.SpatialConvolution
- * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
- * - nn.ReLU, nn.TanH, nn.Sigmoid
- * - nn.Reshape
- * - nn.SoftMax, nn.LogSoftMax
- *
- * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
- */
- + (Net*)readNetFromTorch:(NSString*)model NS_SWIFT_NAME(readNetFromTorch(model:));
- //
- // Net cv::dnn::readNet(String model, String config = "", String framework = "")
- //
- /**
- * Read deep learning network represented in one of the supported formats.
- * @param model Binary file contains trained weights. The following file
- * extensions are expected for models from different frameworks:
- * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pb` (TensorFlow, https://www.tensorflow.org/)
- * * `*.t7` | `*.net` (Torch, http://torch.ch/)
- * * `*.weights` (Darknet, https://pjreddie.com/darknet/)
- * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
- * * `*.onnx` (ONNX, https://onnx.ai/)
- * @param config Text file contains network configuration. It could be a
- * file with the following extensions:
- * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
- * * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
- * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
- * @param framework Explicit framework name tag to determine a format.
- * @return Net object.
- *
- * This function automatically detects an origin framework of trained model
- * and calls an appropriate function such REF: readNetFromCaffe, REF: readNetFromTensorflow,
- * REF: readNetFromTorch or REF: readNetFromDarknet. An order of @p model and @p config
- * arguments does not matter.
- */
- + (Net*)readNet:(NSString*)model config:(NSString*)config framework:(NSString*)framework NS_SWIFT_NAME(readNet(model:config:framework:));
- /**
- * Read deep learning network represented in one of the supported formats.
- * @param model Binary file contains trained weights. The following file
- * extensions are expected for models from different frameworks:
- * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pb` (TensorFlow, https://www.tensorflow.org/)
- * * `*.t7` | `*.net` (Torch, http://torch.ch/)
- * * `*.weights` (Darknet, https://pjreddie.com/darknet/)
- * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
- * * `*.onnx` (ONNX, https://onnx.ai/)
- * @param config Text file contains network configuration. It could be a
- * file with the following extensions:
- * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
- * * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
- * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
- * @return Net object.
- *
- * This function automatically detects an origin framework of trained model
- * and calls an appropriate function such REF: readNetFromCaffe, REF: readNetFromTensorflow,
- * REF: readNetFromTorch or REF: readNetFromDarknet. An order of @p model and @p config
- * arguments does not matter.
- */
- + (Net*)readNet:(NSString*)model config:(NSString*)config NS_SWIFT_NAME(readNet(model:config:));
- /**
- * Read deep learning network represented in one of the supported formats.
- * @param model Binary file contains trained weights. The following file
- * extensions are expected for models from different frameworks:
- * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pb` (TensorFlow, https://www.tensorflow.org/)
- * * `*.t7` | `*.net` (Torch, http://torch.ch/)
- * * `*.weights` (Darknet, https://pjreddie.com/darknet/)
- * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
- * * `*.onnx` (ONNX, https://onnx.ai/)
- * file with the following extensions:
- * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
- * * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
- * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
- * @return Net object.
- *
- * This function automatically detects an origin framework of trained model
- * and calls an appropriate function such REF: readNetFromCaffe, REF: readNetFromTensorflow,
- * REF: readNetFromTorch or REF: readNetFromDarknet. An order of @p model and @p config
- * arguments does not matter.
- */
- + (Net*)readNet:(NSString*)model NS_SWIFT_NAME(readNet(model:));
- //
- // Net cv::dnn::readNet(String framework, vector_uchar bufferModel, vector_uchar bufferConfig = std::vector<uchar>())
- //
- /**
- * Read deep learning network represented in one of the supported formats.
- * This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param framework Name of origin framework.
- * @param bufferModel A buffer with a content of binary file with weights
- * @param bufferConfig A buffer with a content of text file contains network configuration.
- * @return Net object.
- */
- + (Net*)readNet:(NSString*)framework bufferModel:(ByteVector*)bufferModel bufferConfig:(ByteVector*)bufferConfig NS_SWIFT_NAME(readNet(framework:bufferModel:bufferConfig:));
- /**
- * Read deep learning network represented in one of the supported formats.
- * This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param framework Name of origin framework.
- * @param bufferModel A buffer with a content of binary file with weights
- * @return Net object.
- */
- + (Net*)readNet:(NSString*)framework bufferModel:(ByteVector*)bufferModel NS_SWIFT_NAME(readNet(framework:bufferModel:));
- //
- // Mat cv::dnn::readTorchBlob(String filename, bool isBinary = true)
- //
- /**
- * Loads blob which was serialized as torch.Tensor object of Torch7 framework.
- * @warning This function has the same limitations as readNetFromTorch().
- */
- + (Mat*)readTorchBlob:(NSString*)filename isBinary:(BOOL)isBinary NS_SWIFT_NAME(readTorchBlob(filename:isBinary:));
- /**
- * Loads blob which was serialized as torch.Tensor object of Torch7 framework.
- * @warning This function has the same limitations as readNetFromTorch().
- */
- + (Mat*)readTorchBlob:(NSString*)filename NS_SWIFT_NAME(readTorchBlob(filename:));
- //
- // Net cv::dnn::readNetFromModelOptimizer(String xml, String bin)
- //
- /**
- * Load a network from Intel's Model Optimizer intermediate representation.
- * @param xml XML configuration file with network's topology.
- * @param bin Binary file with trained weights.
- * @return Net object.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- + (Net*)readNetFromModelOptimizer:(NSString*)xml bin:(NSString*)bin NS_SWIFT_NAME(readNetFromModelOptimizer(xml:bin:));
- //
- // Net cv::dnn::readNetFromModelOptimizer(vector_uchar bufferModelConfig, vector_uchar bufferWeights)
- //
- /**
- * Load a network from Intel's Model Optimizer intermediate representation.
- * @param bufferModelConfig Buffer contains XML configuration with network's topology.
- * @param bufferWeights Buffer contains binary data with trained weights.
- * @return Net object.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- + (Net*)readNetFromModelOptimizer:(ByteVector*)bufferModelConfig bufferWeights:(ByteVector*)bufferWeights NS_SWIFT_NAME(readNetFromModelOptimizer(bufferModelConfig:bufferWeights:));
- //
- // Net cv::dnn::readNetFromONNX(String onnxFile)
- //
- /**
- * Reads a network model <a href="https://onnx.ai/">ONNX</a>.
- * @param onnxFile path to the .onnx file with text description of the network architecture.
- * @return Network object that ready to do forward, throw an exception in failure cases.
- */
- + (Net*)readNetFromONNXFile:(NSString*)onnxFile NS_SWIFT_NAME(readNetFromONNX(onnxFile:));
- //
- // Net cv::dnn::readNetFromONNX(vector_uchar buffer)
- //
- /**
- * Reads a network model from <a href="https://onnx.ai/">ONNX</a>
- * in-memory buffer.
- * @param buffer in-memory buffer that stores the ONNX model bytes.
- * @return Network object that ready to do forward, throw an exception
- * in failure cases.
- */
- + (Net*)readNetFromONNXBuffer:(ByteVector*)buffer NS_SWIFT_NAME(readNetFromONNX(buffer:));
- //
- // Mat cv::dnn::readTensorFromONNX(String path)
- //
- /**
- * Creates blob from .pb file.
- * @param path to the .pb file with input tensor.
- * @return Mat.
- */
- + (Mat*)readTensorFromONNX:(NSString*)path NS_SWIFT_NAME(readTensorFromONNX(path:));
- //
- // Mat cv::dnn::blobFromImage(Mat image, double scalefactor = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = false, bool crop = false, int ddepth = CV_32F)
- //
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param scalefactor multiplier for @p images values.
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB crop:(BOOL)crop ddepth:(int)ddepth NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:mean:swapRB:crop:ddepth:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param scalefactor multiplier for @p images values.
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB crop:(BOOL)crop NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:mean:swapRB:crop:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param scalefactor multiplier for @p images values.
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:mean:swapRB:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param scalefactor multiplier for @p images values.
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:mean:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param scalefactor multiplier for @p images values.
- * @param size spatial size for output image
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param scalefactor multiplier for @p images values.
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor NS_SWIFT_NAME(blobFromImage(image:scalefactor:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImage:(Mat*)image NS_SWIFT_NAME(blobFromImage(image:));
- //
- // Mat cv::dnn::blobFromImages(vector_Mat images, double scalefactor = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = false, bool crop = false, int ddepth = CV_32F)
- //
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB crop:(BOOL)crop ddepth:(int)ddepth NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:mean:swapRB:crop:ddepth:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB crop:(BOOL)crop NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:mean:swapRB:crop:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:mean:swapRB:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:mean:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor NS_SWIFT_NAME(blobFromImages(images:scalefactor:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- *
- * NOTE:
- * The order and usage of `scalefactor` and `mean` are (input - mean) * scalefactor.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images NS_SWIFT_NAME(blobFromImages(images:));
- //
- // Mat cv::dnn::blobFromImageWithParams(Mat image, Image2BlobParams param = Image2BlobParams())
- //
- /**
- * Creates 4-dimensional blob from image with given params.
- *
- * This function is an extension of REF: blobFromImage to meet more image preprocess needs.
- * Given input image and preprocessing parameters, and function outputs the blob.
- *
- * @param image input image (all with 1-, 3- or 4-channels).
- * @param param struct of Image2BlobParams, contains all parameters needed by processing of image to blob.
- * @return 4-dimensional Mat.
- */
- + (Mat*)blobFromImageWithParams:(Mat*)image param:(Image2BlobParams*)param NS_SWIFT_NAME(blobFromImageWithParams(image:param:));
- /**
- * Creates 4-dimensional blob from image with given params.
- *
- * This function is an extension of REF: blobFromImage to meet more image preprocess needs.
- * Given input image and preprocessing parameters, and function outputs the blob.
- *
- * @param image input image (all with 1-, 3- or 4-channels).
- * @return 4-dimensional Mat.
- */
- + (Mat*)blobFromImageWithParams:(Mat*)image NS_SWIFT_NAME(blobFromImageWithParams(image:));
- //
- // void cv::dnn::blobFromImageWithParams(Mat image, Mat& blob, Image2BlobParams param = Image2BlobParams())
- //
- + (void)blobFromImageWithParams:(Mat*)image blob:(Mat*)blob param:(Image2BlobParams*)param NS_SWIFT_NAME(blobFromImageWithParams(image:blob:param:));
- + (void)blobFromImageWithParams:(Mat*)image blob:(Mat*)blob NS_SWIFT_NAME(blobFromImageWithParams(image:blob:));
- //
- // Mat cv::dnn::blobFromImagesWithParams(vector_Mat images, Image2BlobParams param = Image2BlobParams())
- //
- /**
- * Creates 4-dimensional blob from series of images with given params.
- *
- * This function is an extension of REF: blobFromImages to meet more image preprocess needs.
- * Given input image and preprocessing parameters, and function outputs the blob.
- *
- * @param images input image (all with 1-, 3- or 4-channels).
- * @param param struct of Image2BlobParams, contains all parameters needed by processing of image to blob.
- * @return 4-dimensional Mat.
- */
- + (Mat*)blobFromImagesWithParams:(NSArray<Mat*>*)images param:(Image2BlobParams*)param NS_SWIFT_NAME(blobFromImagesWithParams(images:param:));
- /**
- * Creates 4-dimensional blob from series of images with given params.
- *
- * This function is an extension of REF: blobFromImages to meet more image preprocess needs.
- * Given input image and preprocessing parameters, and function outputs the blob.
- *
- * @param images input image (all with 1-, 3- or 4-channels).
- * @return 4-dimensional Mat.
- */
- + (Mat*)blobFromImagesWithParams:(NSArray<Mat*>*)images NS_SWIFT_NAME(blobFromImagesWithParams(images:));
- //
- // void cv::dnn::blobFromImagesWithParams(vector_Mat images, Mat& blob, Image2BlobParams param = Image2BlobParams())
- //
- + (void)blobFromImagesWithParams:(NSArray<Mat*>*)images blob:(Mat*)blob param:(Image2BlobParams*)param NS_SWIFT_NAME(blobFromImagesWithParams(images:blob:param:));
- + (void)blobFromImagesWithParams:(NSArray<Mat*>*)images blob:(Mat*)blob NS_SWIFT_NAME(blobFromImagesWithParams(images:blob:));
- //
- // void cv::dnn::imagesFromBlob(Mat blob_, vector_Mat& images_)
- //
- /**
- * Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
- * (std::vector<cv::Mat>).
- * @param blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
- * which you would like to extract the images.
- * @param images_ array of 2D Mat containing the images extracted from the blob in floating point precision
- * (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
- * of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
- */
- + (void)imagesFromBlob:(Mat*)blob_ images_:(NSMutableArray<Mat*>*)images_ NS_SWIFT_NAME(imagesFromBlob(blob_:images_:));
- //
- // void cv::dnn::shrinkCaffeModel(String src, String dst, vector_String layersTypes = std::vector<String>())
- //
- /**
- * Convert all weights of Caffe network to half precision floating point.
- * @param src Path to origin model from Caffe framework contains single
- * precision floating point weights (usually has `.caffemodel` extension).
- * @param dst Path to destination model with updated weights.
- * @param layersTypes Set of layers types which parameters will be converted.
- * By default, converts only Convolutional and Fully-Connected layers'
- * weights.
- *
- * NOTE: Shrinked model has no origin float32 weights so it can't be used
- * in origin Caffe framework anymore. However the structure of data
- * is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
- * So the resulting model may be used there.
- */
- + (void)shrinkCaffeModel:(NSString*)src dst:(NSString*)dst layersTypes:(NSArray<NSString*>*)layersTypes NS_SWIFT_NAME(shrinkCaffeModel(src:dst:layersTypes:));
- /**
- * Convert all weights of Caffe network to half precision floating point.
- * @param src Path to origin model from Caffe framework contains single
- * precision floating point weights (usually has `.caffemodel` extension).
- * @param dst Path to destination model with updated weights.
- * By default, converts only Convolutional and Fully-Connected layers'
- * weights.
- *
- * NOTE: Shrinked model has no origin float32 weights so it can't be used
- * in origin Caffe framework anymore. However the structure of data
- * is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
- * So the resulting model may be used there.
- */
- + (void)shrinkCaffeModel:(NSString*)src dst:(NSString*)dst NS_SWIFT_NAME(shrinkCaffeModel(src:dst:));
- //
- // void cv::dnn::writeTextGraph(String model, String output)
- //
- /**
- * Create a text representation for a binary network stored in protocol buffer format.
- * @param model A path to binary network.
- * @param output A path to output text file to be created.
- *
- * NOTE: To reduce output file size, trained weights are not included.
- */
- + (void)writeTextGraph:(NSString*)model output:(NSString*)output NS_SWIFT_NAME(writeTextGraph(model:output:));
- //
- // void cv::dnn::NMSBoxes(vector_Rect2d bboxes, vector_float scores, float score_threshold, float nms_threshold, vector_int& indices, float eta = 1.f, int top_k = 0)
- //
- /**
- * Performs non maximum suppression given boxes and corresponding scores.
- *
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param eta a coefficient in adaptive threshold formula: `$$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i$$`.
- * @param top_k if `>0`, keep at most @p top_k picked indices.
- */
- + (void)NMSBoxes:(NSArray<Rect2d*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta top_k:(int)top_k NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:eta:top_k:));
- /**
- * Performs non maximum suppression given boxes and corresponding scores.
- *
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param eta a coefficient in adaptive threshold formula: `$$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i$$`.
- */
- + (void)NMSBoxes:(NSArray<Rect2d*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:eta:));
- /**
- * Performs non maximum suppression given boxes and corresponding scores.
- *
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- */
- + (void)NMSBoxes:(NSArray<Rect2d*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:));
- //
- // void cv::dnn::NMSBoxes(vector_RotatedRect bboxes, vector_float scores, float score_threshold, float nms_threshold, vector_int& indices, float eta = 1.f, int top_k = 0)
- //
- + (void)NMSBoxesRotated:(NSArray<RotatedRect*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta top_k:(int)top_k NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:eta:top_k:));
- + (void)NMSBoxesRotated:(NSArray<RotatedRect*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:eta:));
- + (void)NMSBoxesRotated:(NSArray<RotatedRect*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:));
- //
- // void cv::dnn::NMSBoxesBatched(vector_Rect2d bboxes, vector_float scores, vector_int class_ids, float score_threshold, float nms_threshold, vector_int& indices, float eta = 1.f, int top_k = 0)
- //
- /**
- * Performs batched non maximum suppression on given boxes and corresponding scores across different classes.
- *
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param class_ids a set of corresponding class ids. Ids are integer and usually start from 0.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param eta a coefficient in adaptive threshold formula: `$$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i$$`.
- * @param top_k if `>0`, keep at most @p top_k picked indices.
- */
- + (void)NMSBoxesBatched:(NSArray<Rect2d*>*)bboxes scores:(FloatVector*)scores class_ids:(IntVector*)class_ids score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta top_k:(int)top_k NS_SWIFT_NAME(NMSBoxesBatched(bboxes:scores:class_ids:score_threshold:nms_threshold:indices:eta:top_k:));
- /**
- * Performs batched non maximum suppression on given boxes and corresponding scores across different classes.
- *
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param class_ids a set of corresponding class ids. Ids are integer and usually start from 0.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param eta a coefficient in adaptive threshold formula: `$$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i$$`.
- */
- + (void)NMSBoxesBatched:(NSArray<Rect2d*>*)bboxes scores:(FloatVector*)scores class_ids:(IntVector*)class_ids score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta NS_SWIFT_NAME(NMSBoxesBatched(bboxes:scores:class_ids:score_threshold:nms_threshold:indices:eta:));
- /**
- * Performs batched non maximum suppression on given boxes and corresponding scores across different classes.
- *
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param class_ids a set of corresponding class ids. Ids are integer and usually start from 0.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- */
- + (void)NMSBoxesBatched:(NSArray<Rect2d*>*)bboxes scores:(FloatVector*)scores class_ids:(IntVector*)class_ids score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices NS_SWIFT_NAME(NMSBoxesBatched(bboxes:scores:class_ids:score_threshold:nms_threshold:indices:));
- //
- // void cv::dnn::softNMSBoxes(vector_Rect bboxes, vector_float scores, vector_float& updated_scores, float score_threshold, float nms_threshold, vector_int& indices, size_t top_k = 0, float sigma = 0.5, SoftNMSMethod method = SoftNMSMethod::SOFTNMS_GAUSSIAN)
- //
- /**
- * Performs soft non maximum suppression given boxes and corresponding scores.
- * Reference: https://arxiv.org/abs/1704.04503
- * @param bboxes a set of bounding boxes to apply Soft NMS.
- * @param scores a set of corresponding confidences.
- * @param updated_scores a set of corresponding updated confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param top_k keep at most @p top_k picked indices.
- * @param sigma parameter of Gaussian weighting.
- * @param method Gaussian or linear.
- * @see `SoftNMSMethod`
- */
- + (void)softNMSBoxes:(NSArray<Rect2i*>*)bboxes scores:(FloatVector*)scores updated_scores:(FloatVector*)updated_scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices top_k:(size_t)top_k sigma:(float)sigma method:(SoftNMSMethod)method NS_SWIFT_NAME(softNMSBoxes(bboxes:scores:updated_scores:score_threshold:nms_threshold:indices:top_k:sigma:method:));
- /**
- * Performs soft non maximum suppression given boxes and corresponding scores.
- * Reference: https://arxiv.org/abs/1704.04503
- * @param bboxes a set of bounding boxes to apply Soft NMS.
- * @param scores a set of corresponding confidences.
- * @param updated_scores a set of corresponding updated confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param top_k keep at most @p top_k picked indices.
- * @param sigma parameter of Gaussian weighting.
- * @see `SoftNMSMethod`
- */
- + (void)softNMSBoxes:(NSArray<Rect2i*>*)bboxes scores:(FloatVector*)scores updated_scores:(FloatVector*)updated_scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices top_k:(size_t)top_k sigma:(float)sigma NS_SWIFT_NAME(softNMSBoxes(bboxes:scores:updated_scores:score_threshold:nms_threshold:indices:top_k:sigma:));
- /**
- * Performs soft non maximum suppression given boxes and corresponding scores.
- * Reference: https://arxiv.org/abs/1704.04503
- * @param bboxes a set of bounding boxes to apply Soft NMS.
- * @param scores a set of corresponding confidences.
- * @param updated_scores a set of corresponding updated confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param top_k keep at most @p top_k picked indices.
- * @see `SoftNMSMethod`
- */
- + (void)softNMSBoxes:(NSArray<Rect2i*>*)bboxes scores:(FloatVector*)scores updated_scores:(FloatVector*)updated_scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices top_k:(size_t)top_k NS_SWIFT_NAME(softNMSBoxes(bboxes:scores:updated_scores:score_threshold:nms_threshold:indices:top_k:));
- /**
- * Performs soft non maximum suppression given boxes and corresponding scores.
- * Reference: https://arxiv.org/abs/1704.04503
- * @param bboxes a set of bounding boxes to apply Soft NMS.
- * @param scores a set of corresponding confidences.
- * @param updated_scores a set of corresponding updated confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @see `SoftNMSMethod`
- */
- + (void)softNMSBoxes:(NSArray<Rect2i*>*)bboxes scores:(FloatVector*)scores updated_scores:(FloatVector*)updated_scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices NS_SWIFT_NAME(softNMSBoxes(bboxes:scores:updated_scores:score_threshold:nms_threshold:indices:));
- //
- // String cv::dnn::getInferenceEngineBackendType()
- //
- /**
- * Returns Inference Engine internal backend API.
- *
- * See values of `CV_DNN_BACKEND_INFERENCE_ENGINE_*` macros.
- *
- * `OPENCV_DNN_BACKEND_INFERENCE_ENGINE_TYPE` runtime parameter (environment variable) is ignored since 4.6.0.
- *
- * @deprecated
- */
- + (NSString*)getInferenceEngineBackendType NS_SWIFT_NAME(getInferenceEngineBackendType()) DEPRECATED_ATTRIBUTE;
- //
- // String cv::dnn::setInferenceEngineBackendType(String newBackendType)
- //
- /**
- * Specify Inference Engine internal backend API.
- *
- * See values of `CV_DNN_BACKEND_INFERENCE_ENGINE_*` macros.
- *
- * @return previous value of internal backend API
- *
- * @deprecated
- */
- + (NSString*)setInferenceEngineBackendType:(NSString*)newBackendType NS_SWIFT_NAME(setInferenceEngineBackendType(newBackendType:)) DEPRECATED_ATTRIBUTE;
- //
- // void cv::dnn::resetMyriadDevice()
- //
- /**
- * Release a Myriad device (binded by OpenCV).
- *
- * Single Myriad device cannot be shared across multiple processes which uses
- * Inference Engine's Myriad plugin.
- */
- + (void)resetMyriadDevice NS_SWIFT_NAME(resetMyriadDevice());
- //
- // String cv::dnn::getInferenceEngineVPUType()
- //
- /**
- * Returns Inference Engine VPU type.
- *
- * See values of `CV_DNN_INFERENCE_ENGINE_VPU_TYPE_*` macros.
- */
- + (NSString*)getInferenceEngineVPUType NS_SWIFT_NAME(getInferenceEngineVPUType());
- //
- // String cv::dnn::getInferenceEngineCPUType()
- //
- /**
- * Returns Inference Engine CPU type.
- *
- * Specify OpenVINO plugin: CPU or ARM.
- */
- + (NSString*)getInferenceEngineCPUType NS_SWIFT_NAME(getInferenceEngineCPUType());
- //
- // void cv::dnn::releaseHDDLPlugin()
- //
- /**
- * Release a HDDL plugin.
- */
- + (void)releaseHDDLPlugin NS_SWIFT_NAME(releaseHDDLPlugin());
- @end
- NS_ASSUME_NONNULL_END
|