/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_XFEATURES2D_CUDA_HPP__ #define __OPENCV_XFEATURES2D_CUDA_HPP__ #include "opencv2/core/cuda.hpp" namespace cv { namespace cuda { //! @addtogroup xfeatures2d_nonfree //! @{ /** @brief Class used for extracting Speeded Up Robust Features (SURF) from an image. : The class SURF_CUDA implements Speeded Up Robust Features descriptor. There is a fast multi-scale Hessian keypoint detector that can be used to find the keypoints (which is the default option). But the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images are supported. The class SURF_CUDA can store results in the GPU and CPU memory. It provides functions to convert results between CPU and GPU version ( uploadKeypoints, downloadKeypoints, downloadDescriptors ). The format of CPU results is the same as SURF results. GPU results are stored in GpuMat. The keypoints matrix is \f$\texttt{nFeatures} \times 7\f$ matrix with the CV_32FC1 type. - keypoints.ptr\(X_ROW)[i] contains x coordinate of the i-th feature. - keypoints.ptr\(Y_ROW)[i] contains y coordinate of the i-th feature. - keypoints.ptr\(LAPLACIAN_ROW)[i] contains the laplacian sign of the i-th feature. - keypoints.ptr\(OCTAVE_ROW)[i] contains the octave of the i-th feature. - keypoints.ptr\(SIZE_ROW)[i] contains the size of the i-th feature. - keypoints.ptr\(ANGLE_ROW)[i] contain orientation of the i-th feature. - keypoints.ptr\(HESSIAN_ROW)[i] contains the response of the i-th feature. The descriptors matrix is \f$\texttt{nFeatures} \times \texttt{descriptorSize}\f$ matrix with the CV_32FC1 type. The class SURF_CUDA uses some buffers and provides access to it. All buffers can be safely released between function calls. @sa SURF @note - An example for using the SURF keypoint matcher on GPU can be found at opencv_source_code/samples/gpu/surf_keypoint_matcher.cpp */ class CV_EXPORTS_W SURF_CUDA { public: enum KeypointLayout { X_ROW = 0, Y_ROW, LAPLACIAN_ROW, OCTAVE_ROW, SIZE_ROW, ANGLE_ROW, HESSIAN_ROW, ROWS_COUNT }; //! the default constructor SURF_CUDA(); //! the full constructor taking all the necessary parameters explicit SURF_CUDA(double _hessianThreshold, int _nOctaves=4, int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false); /** @param _hessianThreshold Threshold for hessian keypoint detector used in SURF. @param _nOctaves Number of pyramid octaves the keypoint detector will use. @param _nOctaveLayers Number of octave layers within each octave. @param _extended Extended descriptor flag (true - use extended 128-element descriptors; false - use 64-element descriptors). @param _keypointsRatio Limits a maximum number of features @param _upright Up-right or rotated features flag (true - do not compute orientation of features; false - compute orientation). */ CV_WRAP static Ptr create(double _hessianThreshold, int _nOctaves = 4, int _nOctaveLayers = 2, bool _extended = false, float _keypointsRatio = 0.01f, bool _upright = false); //! returns the descriptor size in float's (64 or 128) CV_WRAP int descriptorSize() const; //! returns the default norm type CV_WRAP int defaultNorm() const; //! upload host keypoints to device memory void uploadKeypoints(const std::vector& keypoints, GpuMat& keypointsGPU); //! download keypoints from device to host memory CV_WRAP void downloadKeypoints(const GpuMat& keypointsGPU, CV_OUT std::vector& keypoints); //! download descriptors from device to host memory void downloadDescriptors(const GpuMat& descriptorsGPU, std::vector& descriptors); //! finds the keypoints using fast hessian detector used in SURF //! supports CV_8UC1 images //! keypoints will have nFeature cols and 6 rows //! keypoints.ptr(X_ROW)[i] will contain x coordinate of i'th feature //! keypoints.ptr(Y_ROW)[i] will contain y coordinate of i'th feature //! keypoints.ptr(LAPLACIAN_ROW)[i] will contain laplacian sign of i'th feature //! keypoints.ptr(OCTAVE_ROW)[i] will contain octave of i'th feature //! keypoints.ptr(SIZE_ROW)[i] will contain size of i'th feature //! keypoints.ptr(ANGLE_ROW)[i] will contain orientation of i'th feature //! keypoints.ptr(HESSIAN_ROW)[i] will contain response of i'th feature void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints); //! finds the keypoints and computes their descriptors. //! Optionally it can compute descriptors for the user-provided keypoints and recompute keypoints direction void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors, bool useProvidedKeypoints = false); /** @brief Finds the keypoints using fast hessian detector used in SURF @param img Source image, currently supports only CV_8UC1 images. @param mask A mask image same size as src and of type CV_8UC1. @param keypoints Detected keypoints. */ CV_WRAP inline void detect(const GpuMat& img, const GpuMat& mask, CV_OUT GpuMat& keypoints) { (*this)(img, mask, keypoints); } void operator()(const GpuMat& img, const GpuMat& mask, std::vector& keypoints); void operator()(const GpuMat& img, const GpuMat& mask, std::vector& keypoints, GpuMat& descriptors, bool useProvidedKeypoints = false); /** @brief Finds the keypoints and computes their descriptors using fast hessian detector used in SURF @param img Source image, currently supports only CV_8UC1 images. @param mask A mask image same size as src and of type CV_8UC1. @param keypoints Detected keypoints. @param descriptors Keypoint descriptors. @param useProvidedKeypoints Compute descriptors for the user-provided keypoints and recompute keypoints direction. */ CV_WRAP inline void detectWithDescriptors(const GpuMat& img, const GpuMat& mask, CV_OUT GpuMat& keypoints, CV_OUT GpuMat& descriptors, bool useProvidedKeypoints = false) { (*this)(img, mask, keypoints, descriptors, useProvidedKeypoints); } void operator()(const GpuMat& img, const GpuMat& mask, std::vector& keypoints, std::vector& descriptors, bool useProvidedKeypoints = false); void releaseMemory(); // SURF parameters CV_PROP double hessianThreshold; CV_PROP int nOctaves; CV_PROP int nOctaveLayers; CV_PROP bool extended; CV_PROP bool upright; //! max keypoints = min(keypointsRatio * img.size().area(), 65535) CV_PROP float keypointsRatio; GpuMat sum, mask1, maskSum; GpuMat det, trace; GpuMat maxPosBuffer; }; //! @} }} // namespace cv { namespace cuda { #endif // __OPENCV_XFEATURES2D_CUDA_HPP__