// // This file is auto-generated. Please don't modify it! // #pragma once #ifdef __cplusplus //#import "opencv.hpp" #import "opencv2/xfeatures2d.hpp" #else #define CV_EXPORTS #endif #import #import "Feature2D.h" // C++: enum TeblidSize (cv.xfeatures2d.TEBLID.TeblidSize) typedef NS_ENUM(int, TeblidSize) { TEBLID_SIZE_256_BITS NS_SWIFT_NAME(SIZE_256_BITS) = 102, TEBLID_SIZE_512_BITS NS_SWIFT_NAME(SIZE_512_BITS) = 103 }; NS_ASSUME_NONNULL_BEGIN // C++: class TEBLID /** * Class implementing TEBLID (Triplet-based Efficient Binary Local Image Descriptor), * described in CITE: Suarez2021TEBLID. * * TEBLID stands for Triplet-based Efficient Binary Local Image Descriptor, although originally it was called BAD * \cite Suarez2021TEBLID. It is an improvement over BEBLID \cite Suarez2020BEBLID, that uses triplet loss, * hard negative mining, and anchor swap to improve the image matching results. * It is able to describe keypoints from any detector just by changing the scale_factor parameter. * TEBLID is as efficient as ORB, BEBLID or BRISK, but the triplet-based training objective selected more * discriminative features that explain the accuracy gain. It is also more compact than BEBLID, * when running the [AKAZE example](https://github.com/opencv/opencv/blob/4.x/samples/cpp/tutorial_code/features2D/AKAZE_match.cpp) * with 10000 keypoints detected by ORB, BEBLID obtains 561 inliers (75%) with 512 bits, whereas * TEBLID obtains 621 (75.2%) with 256 bits. ORB obtains only 493 inliers (63%). * * If you find this code useful, please add a reference to the following paper: *
Iago Suárez, José M. Buenaposada, and Luis Baumela. * Revisiting Binary Local Image Description for Resource Limited Devices. * IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8317-8324, Oct. 2021.
* * The descriptor was trained in Liberty split of the UBC datasets \cite winder2007learning . * * Member of `Xfeatures2d` */ CV_EXPORTS @interface TEBLID : Feature2D #ifdef __cplusplus @property(readonly)cv::Ptr nativePtrTEBLID; #endif #ifdef __cplusplus - (instancetype)initWithNativePtr:(cv::Ptr)nativePtr; + (instancetype)fromNative:(cv::Ptr)nativePtr; #endif #pragma mark - Methods // // static Ptr_TEBLID cv::xfeatures2d::TEBLID::create(float scale_factor, int n_bits = TEBLID::SIZE_256_BITS) // /** * Creates the TEBLID descriptor. * @param scale_factor Adjust the sampling window around detected keypoints: * - 1.00f should be the scale for ORB keypoints * - 6.75f should be the scale for SIFT detected keypoints * - 6.25f is default and fits for KAZE, SURF detected keypoints * - 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints * @param n_bits Determine the number of bits in the descriptor. Should be either * TEBLID::SIZE_256_BITS or TEBLID::SIZE_512_BITS. */ + (TEBLID*)create:(float)scale_factor n_bits:(int)n_bits NS_SWIFT_NAME(create(scale_factor:n_bits:)); /** * Creates the TEBLID descriptor. * @param scale_factor Adjust the sampling window around detected keypoints: * - 1.00f should be the scale for ORB keypoints * - 6.75f should be the scale for SIFT detected keypoints * - 6.25f is default and fits for KAZE, SURF detected keypoints * - 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints * TEBLID::SIZE_256_BITS or TEBLID::SIZE_512_BITS. */ + (TEBLID*)create:(float)scale_factor NS_SWIFT_NAME(create(scale_factor:)); // // String cv::xfeatures2d::TEBLID::getDefaultName() // - (NSString*)getDefaultName NS_SWIFT_NAME(getDefaultName()); @end NS_ASSUME_NONNULL_END