// // This file is auto-generated. Please don't modify it! // #pragma once #ifdef __cplusplus //#import "opencv.hpp" #import "opencv2/ml.hpp" #else #define CV_EXPORTS #endif #import #import "Algorithm.h" @class Mat; @class TrainData; // C++: enum StatModelFlags (cv.ml.StatModel.Flags) typedef NS_ENUM(int, StatModelFlags) { StatModel_UPDATE_MODEL NS_SWIFT_NAME(UPDATE_MODEL) = 1, StatModel_RAW_OUTPUT NS_SWIFT_NAME(RAW_OUTPUT) = 1, StatModel_COMPRESSED_INPUT NS_SWIFT_NAME(COMPRESSED_INPUT) = 2, StatModel_PREPROCESSED_INPUT NS_SWIFT_NAME(PREPROCESSED_INPUT) = 4 }; NS_ASSUME_NONNULL_BEGIN // C++: class StatModel /** * Base class for statistical models in OpenCV ML. * * Member of `Ml` */ CV_EXPORTS @interface StatModel : Algorithm #ifdef __cplusplus @property(readonly)cv::Ptr nativePtrStatModel; #endif #ifdef __cplusplus - (instancetype)initWithNativePtr:(cv::Ptr)nativePtr; + (instancetype)fromNative:(cv::Ptr)nativePtr; #endif #pragma mark - Methods // // int cv::ml::StatModel::getVarCount() // /** * Returns the number of variables in training samples */ - (int)getVarCount NS_SWIFT_NAME(getVarCount()); // // bool cv::ml::StatModel::empty() // - (BOOL)empty NS_SWIFT_NAME(empty()); // // bool cv::ml::StatModel::isTrained() // /** * Returns true if the model is trained */ - (BOOL)isTrained NS_SWIFT_NAME(isTrained()); // // bool cv::ml::StatModel::isClassifier() // /** * Returns true if the model is classifier */ - (BOOL)isClassifier NS_SWIFT_NAME(isClassifier()); // // bool cv::ml::StatModel::train(Ptr_TrainData trainData, int flags = 0) // /** * Trains the statistical model * * @param trainData training data that can be loaded from file using TrainData::loadFromCSV or * created with TrainData::create. * @param flags optional flags, depending on the model. Some of the models can be updated with the * new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). */ - (BOOL)train:(TrainData*)trainData flags:(int)flags NS_SWIFT_NAME(train(trainData:flags:)); /** * Trains the statistical model * * @param trainData training data that can be loaded from file using TrainData::loadFromCSV or * created with TrainData::create. * new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). */ - (BOOL)train:(TrainData*)trainData NS_SWIFT_NAME(train(trainData:)); // // bool cv::ml::StatModel::train(Mat samples, int layout, Mat responses) // /** * Trains the statistical model * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. */ - (BOOL)train:(Mat*)samples layout:(int)layout responses:(Mat*)responses NS_SWIFT_NAME(train(samples:layout:responses:)); // // float cv::ml::StatModel::calcError(Ptr_TrainData data, bool test, Mat& resp) // /** * Computes error on the training or test dataset * * @param data the training data * @param test if true, the error is computed over the test subset of the data, otherwise it's * computed over the training subset of the data. Please note that if you loaded a completely * different dataset to evaluate already trained classifier, you will probably want not to set * the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so * that the error is computed for the whole new set. Yes, this sounds a bit confusing. * @param resp the optional output responses. * * The method uses StatModel::predict to compute the error. For regression models the error is * computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%). */ - (float)calcError:(TrainData*)data test:(BOOL)test resp:(Mat*)resp NS_SWIFT_NAME(calcError(data:test:resp:)); // // float cv::ml::StatModel::predict(Mat samples, Mat& results = Mat(), int flags = 0) // /** * Predicts response(s) for the provided sample(s) * * @param samples The input samples, floating-point matrix * @param results The optional output matrix of results. * @param flags The optional flags, model-dependent. See cv::ml::StatModel::Flags. */ - (float)predict:(Mat*)samples results:(Mat*)results flags:(int)flags NS_SWIFT_NAME(predict(samples:results:flags:)); /** * Predicts response(s) for the provided sample(s) * * @param samples The input samples, floating-point matrix * @param results The optional output matrix of results. */ - (float)predict:(Mat*)samples results:(Mat*)results NS_SWIFT_NAME(predict(samples:results:)); /** * Predicts response(s) for the provided sample(s) * * @param samples The input samples, floating-point matrix */ - (float)predict:(Mat*)samples NS_SWIFT_NAME(predict(samples:)); @end NS_ASSUME_NONNULL_END