// // This file is auto-generated. Please don't modify it! // #pragma once #ifdef __cplusplus //#import "opencv.hpp" #import "opencv2/ximgproc.hpp" #import "opencv2/ximgproc/scansegment.hpp" #else #define CV_EXPORTS #endif #import #import "Algorithm.h" @class Mat; NS_ASSUME_NONNULL_BEGIN // C++: class ScanSegment /** * Class implementing the F-DBSCAN (Accelerated superpixel image segmentation with a parallelized DBSCAN algorithm) superpixels * algorithm by Loke SC, et al. CITE: loke2021accelerated for original paper. * * The algorithm uses a parallelised DBSCAN cluster search that is resistant to noise, competitive in segmentation quality, and faster than * existing superpixel segmentation methods. When tested on the Berkeley Segmentation Dataset, the average processing speed is 175 frames/s * with a Boundary Recall of 0.797 and an Achievable Segmentation Accuracy of 0.944. The computational complexity is quadratic O(n2) and * more suited to smaller images, but can still process a 2MP colour image faster than the SEEDS algorithm in OpenCV. The output is deterministic * when the number of processing threads is fixed, and requires the source image to be in Lab colour format. * * Member of `Ximgproc` */ CV_EXPORTS @interface ScanSegment : Algorithm #ifdef __cplusplus @property(readonly)cv::Ptr nativePtrScanSegment; #endif #ifdef __cplusplus - (instancetype)initWithNativePtr:(cv::Ptr)nativePtr; + (instancetype)fromNative:(cv::Ptr)nativePtr; #endif #pragma mark - Methods // // int cv::ximgproc::ScanSegment::getNumberOfSuperpixels() // /** * Returns the actual superpixel segmentation from the last image processed using iterate. * * Returns zero if no image has been processed. */ - (int)getNumberOfSuperpixels NS_SWIFT_NAME(getNumberOfSuperpixels()); // // void cv::ximgproc::ScanSegment::iterate(Mat img) // /** * Calculates the superpixel segmentation on a given image with the initialized * parameters in the ScanSegment object. * * This function can be called again for other images without the need of initializing the algorithm with createScanSegment(). * This save the computational cost of allocating memory for all the structures of the algorithm. * * @param img Input image. Supported format: CV_8UC3. Image size must match with the initialized * image size with the function createScanSegment(). It MUST be in Lab color space. */ - (void)iterate:(Mat*)img NS_SWIFT_NAME(iterate(img:)); // // void cv::ximgproc::ScanSegment::getLabels(Mat& labels_out) // /** * Returns the segmentation labeling of the image. * * Each label represents a superpixel, and each pixel is assigned to one superpixel label. * * @param labels_out Return: A CV_32UC1 integer array containing the labels of the superpixel * segmentation. The labels are in the range [0, getNumberOfSuperpixels()]. */ - (void)getLabels:(Mat*)labels_out NS_SWIFT_NAME(getLabels(labels_out:)); // // void cv::ximgproc::ScanSegment::getLabelContourMask(Mat& image, bool thick_line = false) // /** * Returns the mask of the superpixel segmentation stored in the ScanSegment object. * * The function return the boundaries of the superpixel segmentation. * * @param image Return: CV_8UC1 image mask where -1 indicates that the pixel is a superpixel border, and 0 otherwise. * @param thick_line If false, the border is only one pixel wide, otherwise all pixels at the border are masked. */ - (void)getLabelContourMask:(Mat*)image thick_line:(BOOL)thick_line NS_SWIFT_NAME(getLabelContourMask(image:thick_line:)); /** * Returns the mask of the superpixel segmentation stored in the ScanSegment object. * * The function return the boundaries of the superpixel segmentation. * * @param image Return: CV_8UC1 image mask where -1 indicates that the pixel is a superpixel border, and 0 otherwise. */ - (void)getLabelContourMask:(Mat*)image NS_SWIFT_NAME(getLabelContourMask(image:)); @end NS_ASSUME_NONNULL_END