// // This file is auto-generated. Please don't modify it! // #pragma once #ifdef __cplusplus //#import "opencv.hpp" #import "opencv2/ml.hpp" #else #define CV_EXPORTS #endif #import #import "StatModel.h" @class Mat; @class ParamGrid; @class TermCriteria; // C++: enum KernelTypes (cv.ml.SVM.KernelTypes) typedef NS_ENUM(int, KernelTypes) { SVM_CUSTOM NS_SWIFT_NAME(CUSTOM) = -1, SVM_LINEAR NS_SWIFT_NAME(LINEAR) = 0, SVM_POLY NS_SWIFT_NAME(POLY) = 1, SVM_RBF NS_SWIFT_NAME(RBF) = 2, SVM_SIGMOID NS_SWIFT_NAME(SIGMOID) = 3, SVM_CHI2 NS_SWIFT_NAME(CHI2) = 4, SVM_INTER NS_SWIFT_NAME(INTER) = 5 }; // C++: enum ParamTypes (cv.ml.SVM.ParamTypes) typedef NS_ENUM(int, ParamTypes) { SVM_C NS_SWIFT_NAME(C) = 0, SVM_GAMMA NS_SWIFT_NAME(GAMMA) = 1, SVM_P NS_SWIFT_NAME(P) = 2, SVM_NU NS_SWIFT_NAME(NU) = 3, SVM_COEF NS_SWIFT_NAME(COEF) = 4, SVM_DEGREE NS_SWIFT_NAME(DEGREE) = 5 }; // C++: enum SVMTypes (cv.ml.SVM.Types) typedef NS_ENUM(int, SVMTypes) { SVM_C_SVC NS_SWIFT_NAME(C_SVC) = 100, SVM_NU_SVC NS_SWIFT_NAME(NU_SVC) = 101, SVM_ONE_CLASS NS_SWIFT_NAME(ONE_CLASS) = 102, SVM_EPS_SVR NS_SWIFT_NAME(EPS_SVR) = 103, SVM_NU_SVR NS_SWIFT_NAME(NU_SVR) = 104 }; NS_ASSUME_NONNULL_BEGIN // C++: class SVM /** * Support Vector Machines. * * @see REF: ml_intro_svm * * Member of `Ml` */ CV_EXPORTS @interface SVM : StatModel #ifdef __cplusplus @property(readonly)cv::Ptr nativePtrSVM; #endif #ifdef __cplusplus - (instancetype)initWithNativePtr:(cv::Ptr)nativePtr; + (instancetype)fromNative:(cv::Ptr)nativePtr; #endif #pragma mark - Methods // // int cv::ml::SVM::getType() // /** * @see `-setType:` */ - (int)getType NS_SWIFT_NAME(getType()); // // void cv::ml::SVM::setType(int val) // /** * getType @see `-getType:` */ - (void)setType:(int)val NS_SWIFT_NAME(setType(val:)); // // double cv::ml::SVM::getGamma() // /** * @see `-setGamma:` */ - (double)getGamma NS_SWIFT_NAME(getGamma()); // // void cv::ml::SVM::setGamma(double val) // /** * getGamma @see `-getGamma:` */ - (void)setGamma:(double)val NS_SWIFT_NAME(setGamma(val:)); // // double cv::ml::SVM::getCoef0() // /** * @see `-setCoef0:` */ - (double)getCoef0 NS_SWIFT_NAME(getCoef0()); // // void cv::ml::SVM::setCoef0(double val) // /** * getCoef0 @see `-getCoef0:` */ - (void)setCoef0:(double)val NS_SWIFT_NAME(setCoef0(val:)); // // double cv::ml::SVM::getDegree() // /** * @see `-setDegree:` */ - (double)getDegree NS_SWIFT_NAME(getDegree()); // // void cv::ml::SVM::setDegree(double val) // /** * getDegree @see `-getDegree:` */ - (void)setDegree:(double)val NS_SWIFT_NAME(setDegree(val:)); // // double cv::ml::SVM::getC() // /** * @see `-setC:` */ - (double)getC NS_SWIFT_NAME(getC()); // // void cv::ml::SVM::setC(double val) // /** * getC @see `-getC:` */ - (void)setC:(double)val NS_SWIFT_NAME(setC(val:)); // // double cv::ml::SVM::getNu() // /** * @see `-setNu:` */ - (double)getNu NS_SWIFT_NAME(getNu()); // // void cv::ml::SVM::setNu(double val) // /** * getNu @see `-getNu:` */ - (void)setNu:(double)val NS_SWIFT_NAME(setNu(val:)); // // double cv::ml::SVM::getP() // /** * @see `-setP:` */ - (double)getP NS_SWIFT_NAME(getP()); // // void cv::ml::SVM::setP(double val) // /** * getP @see `-getP:` */ - (void)setP:(double)val NS_SWIFT_NAME(setP(val:)); // // Mat cv::ml::SVM::getClassWeights() // /** * @see `-setClassWeights:` */ - (Mat*)getClassWeights NS_SWIFT_NAME(getClassWeights()); // // void cv::ml::SVM::setClassWeights(Mat val) // /** * getClassWeights @see `-getClassWeights:` */ - (void)setClassWeights:(Mat*)val NS_SWIFT_NAME(setClassWeights(val:)); // // TermCriteria cv::ml::SVM::getTermCriteria() // /** * @see `-setTermCriteria:` */ - (TermCriteria*)getTermCriteria NS_SWIFT_NAME(getTermCriteria()); // // void cv::ml::SVM::setTermCriteria(TermCriteria val) // /** * getTermCriteria @see `-getTermCriteria:` */ - (void)setTermCriteria:(TermCriteria*)val NS_SWIFT_NAME(setTermCriteria(val:)); // // int cv::ml::SVM::getKernelType() // /** * Type of a %SVM kernel. * See SVM::KernelTypes. Default value is SVM::RBF. */ - (int)getKernelType NS_SWIFT_NAME(getKernelType()); // // void cv::ml::SVM::setKernel(int kernelType) // /** * Initialize with one of predefined kernels. * See SVM::KernelTypes. */ - (void)setKernel:(int)kernelType NS_SWIFT_NAME(setKernel(kernelType:)); // // bool cv::ml::SVM::trainAuto(Mat samples, int layout, Mat responses, int kFold = 10, Ptr_ParamGrid Cgrid = SVM::getDefaultGridPtr(SVM::C), Ptr_ParamGrid gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA), Ptr_ParamGrid pGrid = SVM::getDefaultGridPtr(SVM::P), Ptr_ParamGrid nuGrid = SVM::getDefaultGridPtr(SVM::NU), Ptr_ParamGrid coeffGrid = SVM::getDefaultGridPtr(SVM::COEF), Ptr_ParamGrid degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE), bool balanced = false) // /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * @param nuGrid grid for nu * @param coeffGrid grid for coeff * @param degreeGrid grid for degree * @param balanced If true and the problem is 2-class classification then the method creates more * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. */ - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid nuGrid:(ParamGrid*)nuGrid coeffGrid:(ParamGrid*)coeffGrid degreeGrid:(ParamGrid*)degreeGrid balanced:(BOOL)balanced NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:nuGrid:coeffGrid:degreeGrid:balanced:)); /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * @param nuGrid grid for nu * @param coeffGrid grid for coeff * @param degreeGrid grid for degree * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. */ - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid nuGrid:(ParamGrid*)nuGrid coeffGrid:(ParamGrid*)coeffGrid degreeGrid:(ParamGrid*)degreeGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:nuGrid:coeffGrid:degreeGrid:)); /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * @param nuGrid grid for nu * @param coeffGrid grid for coeff * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. */ - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid nuGrid:(ParamGrid*)nuGrid coeffGrid:(ParamGrid*)coeffGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:nuGrid:coeffGrid:)); /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * @param nuGrid grid for nu * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. */ - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid nuGrid:(ParamGrid*)nuGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:nuGrid:)); /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * @param pGrid grid for p * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. */ - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid pGrid:(ParamGrid*)pGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:pGrid:)); /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * @param gammaGrid grid for gamma * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. */ - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid gammaGrid:(ParamGrid*)gammaGrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:gammaGrid:)); /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * @param Cgrid grid for C * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. */ - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold Cgrid:(ParamGrid*)Cgrid NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:Cgrid:)); /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. */ - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses kFold:(int)kFold NS_SWIFT_NAME(trainAuto(samples:layout:responses:kFold:)); /** * Trains an %SVM with optimal parameters * * @param samples training samples * @param layout See ml::SampleTypes. * @param responses vector of responses associated with the training samples. * subset is used to test the model, the others form the train set. So, the %SVM algorithm is * balanced cross-validation subsets that is proportions between classes in subsets are close * to such proportion in the whole train dataset. * * The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, * nu, coef0, degree. Parameters are considered optimal when the cross-validation * estimate of the test set error is minimal. * * This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only * offers rudimentary parameter options. * * This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the * regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and * the usual %SVM with parameters specified in params is executed. */ - (BOOL)trainAuto:(Mat*)samples layout:(int)layout responses:(Mat*)responses NS_SWIFT_NAME(trainAuto(samples:layout:responses:)); // // Mat cv::ml::SVM::getSupportVectors() // /** * Retrieves all the support vectors * * The method returns all the support vectors as a floating-point matrix, where support vectors are * stored as matrix rows. */ - (Mat*)getSupportVectors NS_SWIFT_NAME(getSupportVectors()); // // Mat cv::ml::SVM::getUncompressedSupportVectors() // /** * Retrieves all the uncompressed support vectors of a linear %SVM * * The method returns all the uncompressed support vectors of a linear %SVM that the compressed * support vector, used for prediction, was derived from. They are returned in a floating-point * matrix, where the support vectors are stored as matrix rows. */ - (Mat*)getUncompressedSupportVectors NS_SWIFT_NAME(getUncompressedSupportVectors()); // // double cv::ml::SVM::getDecisionFunction(int i, Mat& alpha, Mat& svidx) // /** * Retrieves the decision function * * @param i the index of the decision function. If the problem solved is regression, 1-class or * 2-class classification, then there will be just one decision function and the index should * always be 0. Otherwise, in the case of N-class classification, there will be `$$N(N-1)/2$$` * decision functions. * @param alpha the optional output vector for weights, corresponding to different support vectors. * In the case of linear %SVM all the alpha's will be 1's. * @param svidx the optional output vector of indices of support vectors within the matrix of * support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear * %SVM each decision function consists of a single "compressed" support vector. * * The method returns rho parameter of the decision function, a scalar subtracted from the weighted * sum of kernel responses. */ - (double)getDecisionFunction:(int)i alpha:(Mat*)alpha svidx:(Mat*)svidx NS_SWIFT_NAME(getDecisionFunction(i:alpha:svidx:)); // // static Ptr_ParamGrid cv::ml::SVM::getDefaultGridPtr(int param_id) // /** * Generates a grid for %SVM parameters. * * @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is * generated for the parameter with this ID. * * The function generates a grid pointer for the specified parameter of the %SVM algorithm. * The grid may be passed to the function SVM::trainAuto. */ + (ParamGrid*)getDefaultGridPtr:(int)param_id NS_SWIFT_NAME(getDefaultGridPtr(param_id:)); // // static Ptr_SVM cv::ml::SVM::create() // /** * Creates empty model. * Use StatModel::train to train the model. Since %SVM has several parameters, you may want to * find the best parameters for your problem, it can be done with SVM::trainAuto. */ + (SVM*)create NS_SWIFT_NAME(create()); // // static Ptr_SVM cv::ml::SVM::load(String filepath) // /** * Loads and creates a serialized svm from a file * * Use SVM::save to serialize and store an SVM to disk. * Load the SVM from this file again, by calling this function with the path to the file. * * @param filepath path to serialized svm */ + (SVM*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:)); @end NS_ASSUME_NONNULL_END