// // This file is auto-generated. Please don't modify it! // #pragma once #ifdef __cplusplus //#import "opencv.hpp" #import "opencv2/dnn.hpp" #import "opencv2/dnn/dnn.hpp" #else #define CV_EXPORTS #endif #import @class ByteVector; @class DictValue; @class DoubleVector; @class FloatVector; @class IntVector; @class Layer; @class Mat; @class Scalar; NS_ASSUME_NONNULL_BEGIN // C++: class Net /** * This class allows to create and manipulate comprehensive artificial neural networks. * * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, * and edges specify relationships between layers inputs and outputs. * * Each network layer has unique integer id and unique string name inside its network. * LayerId can store either layer name or layer id. * * This class supports reference counting of its instances, i. e. copies point to the same instance. * * Member of `Dnn` */ CV_EXPORTS @interface Net : NSObject #ifdef __cplusplus @property(readonly)cv::Ptr nativePtr; #endif #ifdef __cplusplus - (instancetype)initWithNativePtr:(cv::Ptr)nativePtr; + (instancetype)fromNative:(cv::Ptr)nativePtr; #endif #pragma mark - Methods // // cv::dnn::Net::Net() // - (instancetype)init; // // static Net cv::dnn::Net::readFromModelOptimizer(String xml, String bin) // /** * Create a network from Intel's Model Optimizer intermediate representation (IR). * @param xml XML configuration file with network's topology. * @param bin Binary file with trained weights. * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine * backend. */ + (Net*)readFromModelOptimizer:(NSString*)xml bin:(NSString*)bin NS_SWIFT_NAME(readFromModelOptimizer(xml:bin:)); // // static Net cv::dnn::Net::readFromModelOptimizer(vector_uchar bufferModelConfig, vector_uchar bufferWeights) // /** * Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR). * @param bufferModelConfig buffer with model's configuration. * @param bufferWeights buffer with model's trained weights. * @return Net object. */ + (Net*)readFromModelOptimizer:(ByteVector*)bufferModelConfig bufferWeights:(ByteVector*)bufferWeights NS_SWIFT_NAME(readFromModelOptimizer(bufferModelConfig:bufferWeights:)); // // bool cv::dnn::Net::empty() // /** * Returns true if there are no layers in the network. */ - (BOOL)empty NS_SWIFT_NAME(empty()); // // String cv::dnn::Net::dump() // /** * Dump net to String * @return String with structure, hyperparameters, backend, target and fusion * Call method after setInput(). To see correct backend, target and fusion run after forward(). */ - (NSString*)dump NS_SWIFT_NAME(dump()); // // void cv::dnn::Net::dumpToFile(String path) // /** * Dump net structure, hyperparameters, backend, target and fusion to dot file * @param path path to output file with .dot extension * @see `dump()` */ - (void)dumpToFile:(NSString*)path NS_SWIFT_NAME(dumpToFile(path:)); // // int cv::dnn::Net::getLayerId(String layer) // /** * Converts string name of the layer to the integer identifier. * @return id of the layer, or -1 if the layer wasn't found. */ - (int)getLayerId:(NSString*)layer NS_SWIFT_NAME(getLayerId(layer:)); // // vector_String cv::dnn::Net::getLayerNames() // - (NSArray*)getLayerNames NS_SWIFT_NAME(getLayerNames()); // // Ptr_Layer cv::dnn::Net::getLayer(int layerId) // /** * Returns pointer to layer with specified id or name which the network use. */ - (Layer*)getLayer:(int)layerId NS_SWIFT_NAME(getLayer(layerId:)); // // Ptr_Layer cv::dnn::Net::getLayer(String layerName) // /** * * @deprecated Use int getLayerId(const String &layer) */ - (Layer*)getLayerByName:(NSString*)layerName NS_SWIFT_NAME(getLayer(layerName:)) DEPRECATED_ATTRIBUTE; // // Ptr_Layer cv::dnn::Net::getLayer(LayerId layerId) // /** * * @deprecated to be removed */ - (Layer*)getLayerByDictValue:(DictValue*)layerId NS_SWIFT_NAME(getLayer(layerId:)) DEPRECATED_ATTRIBUTE; // // void cv::dnn::Net::connect(String outPin, String inpPin) // /** * Connects output of the first layer to input of the second layer. * @param outPin descriptor of the first layer output. * @param inpPin descriptor of the second layer input. * * Descriptors have the following template <layer_name>[.input_number]: * - the first part of the template layer_name is string name of the added layer. * If this part is empty then the network input pseudo layer will be used; * - the second optional part of the template input_number * is either number of the layer input, either label one. * If this part is omitted then the first layer input will be used. * * @see `setNetInputs()`, `Layer::inputNameToIndex()`, `Layer::outputNameToIndex()` */ - (void)connect:(NSString*)outPin inpPin:(NSString*)inpPin NS_SWIFT_NAME(connect(outPin:inpPin:)); // // void cv::dnn::Net::setInputsNames(vector_String inputBlobNames) // /** * Sets outputs names of the network input pseudo layer. * * Each net always has special own the network input pseudo layer with id=0. * This layer stores the user blobs only and don't make any computations. * In fact, this layer provides the only way to pass user data into the network. * As any other layer, this layer can label its outputs and this function provides an easy way to do this. */ - (void)setInputsNames:(NSArray*)inputBlobNames NS_SWIFT_NAME(setInputsNames(inputBlobNames:)); // // void cv::dnn::Net::setInputShape(String inputName, MatShape shape) // /** * Specify shape of network input. */ - (void)setInputShape:(NSString*)inputName shape:(IntVector*)shape NS_SWIFT_NAME(setInputShape(inputName:shape:)); // // Mat cv::dnn::Net::forward(String outputName = String()) // /** * Runs forward pass to compute output of layer with name @p outputName. * @param outputName name for layer which output is needed to get * @return blob for first output of specified layer. * By default runs forward pass for the whole network. */ - (Mat*)forward:(NSString*)outputName NS_SWIFT_NAME(forward(outputName:)); /** * Runs forward pass to compute output of layer with name @p outputName. * @return blob for first output of specified layer. * By default runs forward pass for the whole network. */ - (Mat*)forward NS_SWIFT_NAME(forward()); // // AsyncArray cv::dnn::Net::forwardAsync(String outputName = String()) // // Return type 'AsyncArray' is not supported, skipping the function // // void cv::dnn::Net::forward(vector_Mat& outputBlobs, String outputName = String()) // /** * Runs forward pass to compute output of layer with name @p outputName. * @param outputBlobs contains all output blobs for specified layer. * @param outputName name for layer which output is needed to get * If @p outputName is empty, runs forward pass for the whole network. */ - (void)forwardOutputBlobs:(NSMutableArray*)outputBlobs outputName:(NSString*)outputName NS_SWIFT_NAME(forward(outputBlobs:outputName:)); /** * Runs forward pass to compute output of layer with name @p outputName. * @param outputBlobs contains all output blobs for specified layer. * If @p outputName is empty, runs forward pass for the whole network. */ - (void)forwardOutputBlobs:(NSMutableArray*)outputBlobs NS_SWIFT_NAME(forward(outputBlobs:)); // // void cv::dnn::Net::forward(vector_Mat& outputBlobs, vector_String outBlobNames) // /** * Runs forward pass to compute outputs of layers listed in @p outBlobNames. * @param outputBlobs contains blobs for first outputs of specified layers. * @param outBlobNames names for layers which outputs are needed to get */ - (void)forwardOutputBlobs:(NSMutableArray*)outputBlobs outBlobNames:(NSArray*)outBlobNames NS_SWIFT_NAME(forward(outputBlobs:outBlobNames:)); // // void cv::dnn::Net::forward(vector_vector_Mat& outputBlobs, vector_String outBlobNames) // /** * Runs forward pass to compute outputs of layers listed in @p outBlobNames. * @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames. * @param outBlobNames names for layers which outputs are needed to get */ - (void)forwardAndRetrieve:(NSMutableArray*>*)outputBlobs outBlobNames:(NSArray*)outBlobNames NS_SWIFT_NAME(forwardAndRetrieve(outputBlobs:outBlobNames:)); // // Net cv::dnn::Net::quantize(vector_Mat calibData, int inputsDtype, int outputsDtype, bool perChannel = true) // /** * Returns a quantized Net from a floating-point Net. * @param calibData Calibration data to compute the quantization parameters. * @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S. * @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S. * @param perChannel Quantization granularity of quantized Net. The default is true, that means quantize model * in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise). */ - (Net*)quantize:(NSArray*)calibData inputsDtype:(int)inputsDtype outputsDtype:(int)outputsDtype perChannel:(BOOL)perChannel NS_SWIFT_NAME(quantize(calibData:inputsDtype:outputsDtype:perChannel:)); /** * Returns a quantized Net from a floating-point Net. * @param calibData Calibration data to compute the quantization parameters. * @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S. * @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S. * in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise). */ - (Net*)quantize:(NSArray*)calibData inputsDtype:(int)inputsDtype outputsDtype:(int)outputsDtype NS_SWIFT_NAME(quantize(calibData:inputsDtype:outputsDtype:)); // // void cv::dnn::Net::getInputDetails(vector_float& scales, vector_int& zeropoints) // /** * Returns input scale and zeropoint for a quantized Net. * @param scales output parameter for returning input scales. * @param zeropoints output parameter for returning input zeropoints. */ - (void)getInputDetails:(FloatVector*)scales zeropoints:(IntVector*)zeropoints NS_SWIFT_NAME(getInputDetails(scales:zeropoints:)); // // void cv::dnn::Net::getOutputDetails(vector_float& scales, vector_int& zeropoints) // /** * Returns output scale and zeropoint for a quantized Net. * @param scales output parameter for returning output scales. * @param zeropoints output parameter for returning output zeropoints. */ - (void)getOutputDetails:(FloatVector*)scales zeropoints:(IntVector*)zeropoints NS_SWIFT_NAME(getOutputDetails(scales:zeropoints:)); // // void cv::dnn::Net::setHalideScheduler(String scheduler) // /** * Compile Halide layers. * @param scheduler Path to YAML file with scheduling directives. * @see `-setPreferableBackend:` * * Schedule layers that support Halide backend. Then compile them for * specific target. For layers that not represented in scheduling file * or if no manual scheduling used at all, automatic scheduling will be applied. */ - (void)setHalideScheduler:(NSString*)scheduler NS_SWIFT_NAME(setHalideScheduler(scheduler:)); // // void cv::dnn::Net::setPreferableBackend(int backendId) // /** * Ask network to use specific computation backend where it supported. * @param backendId backend identifier. * @see `Backend` * * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV. */ - (void)setPreferableBackend:(int)backendId NS_SWIFT_NAME(setPreferableBackend(backendId:)); // // void cv::dnn::Net::setPreferableTarget(int targetId) // /** * Ask network to make computations on specific target device. * @param targetId target identifier. * @see `Target` * * List of supported combinations backend / target: * | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | DNN_BACKEND_CUDA | * |------------------------|--------------------|------------------------------|--------------------|-------------------| * | DNN_TARGET_CPU | + | + | + | | * | DNN_TARGET_OPENCL | + | + | + | | * | DNN_TARGET_OPENCL_FP16 | + | + | | | * | DNN_TARGET_MYRIAD | | + | | | * | DNN_TARGET_FPGA | | + | | | * | DNN_TARGET_CUDA | | | | + | * | DNN_TARGET_CUDA_FP16 | | | | + | * | DNN_TARGET_HDDL | | + | | | */ - (void)setPreferableTarget:(int)targetId NS_SWIFT_NAME(setPreferableTarget(targetId:)); // // void cv::dnn::Net::setInput(Mat blob, String name = "", double scalefactor = 1.0, Scalar mean = Scalar()) // /** * Sets the new input value for the network * @param blob A new blob. Should have CV_32F or CV_8U depth. * @param name A name of input layer. * @param scalefactor An optional normalization scale. * @param mean An optional mean subtraction values. * @see `connect(String`, `String) to know format of the descriptor.` * * If scale or mean values are specified, a final input blob is computed * as: * `$$input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)$$` */ - (void)setInput:(Mat*)blob name:(NSString*)name scalefactor:(double)scalefactor mean:(Scalar*)mean NS_SWIFT_NAME(setInput(blob:name:scalefactor:mean:)); /** * Sets the new input value for the network * @param blob A new blob. Should have CV_32F or CV_8U depth. * @param name A name of input layer. * @param scalefactor An optional normalization scale. * @see `connect(String`, `String) to know format of the descriptor.` * * If scale or mean values are specified, a final input blob is computed * as: * `$$input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)$$` */ - (void)setInput:(Mat*)blob name:(NSString*)name scalefactor:(double)scalefactor NS_SWIFT_NAME(setInput(blob:name:scalefactor:)); /** * Sets the new input value for the network * @param blob A new blob. Should have CV_32F or CV_8U depth. * @param name A name of input layer. * @see `connect(String`, `String) to know format of the descriptor.` * * If scale or mean values are specified, a final input blob is computed * as: * `$$input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)$$` */ - (void)setInput:(Mat*)blob name:(NSString*)name NS_SWIFT_NAME(setInput(blob:name:)); /** * Sets the new input value for the network * @param blob A new blob. Should have CV_32F or CV_8U depth. * @see `connect(String`, `String) to know format of the descriptor.` * * If scale or mean values are specified, a final input blob is computed * as: * `$$input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)$$` */ - (void)setInput:(Mat*)blob NS_SWIFT_NAME(setInput(blob:)); // // void cv::dnn::Net::setParam(int layer, int numParam, Mat blob) // /** * Sets the new value for the learned param of the layer. * @param layer name or id of the layer. * @param numParam index of the layer parameter in the Layer::blobs array. * @param blob the new value. * @see `Layer::blobs` * NOTE: If shape of the new blob differs from the previous shape, * then the following forward pass may fail. */ - (void)setParam:(int)layer numParam:(int)numParam blob:(Mat*)blob NS_SWIFT_NAME(setParam(layer:numParam:blob:)); // // void cv::dnn::Net::setParam(String layerName, int numParam, Mat blob) // - (void)setParamByName:(NSString*)layerName numParam:(int)numParam blob:(Mat*)blob NS_SWIFT_NAME(setParam(layerName:numParam:blob:)); // // Mat cv::dnn::Net::getParam(int layer, int numParam = 0) // /** * Returns parameter blob of the layer. * @param layer name or id of the layer. * @param numParam index of the layer parameter in the Layer::blobs array. * @see `Layer::blobs` */ - (Mat*)getParam:(int)layer numParam:(int)numParam NS_SWIFT_NAME(getParam(layer:numParam:)); /** * Returns parameter blob of the layer. * @param layer name or id of the layer. * @see `Layer::blobs` */ - (Mat*)getParam:(int)layer NS_SWIFT_NAME(getParam(layer:)); // // Mat cv::dnn::Net::getParam(String layerName, int numParam = 0) // - (Mat*)getParamByName:(NSString*)layerName numParam:(int)numParam NS_SWIFT_NAME(getParam(layerName:numParam:)); - (Mat*)getParamByName:(NSString*)layerName NS_SWIFT_NAME(getParam(layerName:)); // // vector_int cv::dnn::Net::getUnconnectedOutLayers() // /** * Returns indexes of layers with unconnected outputs. * * FIXIT: Rework API to registerOutput() approach, deprecate this call */ - (IntVector*)getUnconnectedOutLayers NS_SWIFT_NAME(getUnconnectedOutLayers()); // // vector_String cv::dnn::Net::getUnconnectedOutLayersNames() // /** * Returns names of layers with unconnected outputs. * * FIXIT: Rework API to registerOutput() approach, deprecate this call */ - (NSArray*)getUnconnectedOutLayersNames NS_SWIFT_NAME(getUnconnectedOutLayersNames()); // // void cv::dnn::Net::getLayersShapes(vector_MatShape netInputShapes, vector_int& layersIds, vector_vector_MatShape& inLayersShapes, vector_vector_MatShape& outLayersShapes) // /** * Returns input and output shapes for all layers in loaded model; * preliminary inferencing isn't necessary. * @param netInputShapes shapes for all input blobs in net input layer. * @param layersIds output parameter for layer IDs. * @param inLayersShapes output parameter for input layers shapes; * order is the same as in layersIds * @param outLayersShapes output parameter for output layers shapes; * order is the same as in layersIds */ - (void)getLayersShapesWithNetInputShapes:(NSArray*)netInputShapes layersIds:(IntVector*)layersIds inLayersShapes:(NSMutableArray*>*)inLayersShapes outLayersShapes:(NSMutableArray*>*)outLayersShapes NS_SWIFT_NAME(getLayersShapes(netInputShapes:layersIds:inLayersShapes:outLayersShapes:)); // // void cv::dnn::Net::getLayersShapes(MatShape netInputShape, vector_int& layersIds, vector_vector_MatShape& inLayersShapes, vector_vector_MatShape& outLayersShapes) // - (void)getLayersShapesWithNetInputShape:(IntVector*)netInputShape layersIds:(IntVector*)layersIds inLayersShapes:(NSMutableArray*>*)inLayersShapes outLayersShapes:(NSMutableArray*>*)outLayersShapes NS_SWIFT_NAME(getLayersShapes(netInputShape:layersIds:inLayersShapes:outLayersShapes:)); // // int64 cv::dnn::Net::getFLOPS(vector_MatShape netInputShapes) // /** * Computes FLOP for whole loaded model with specified input shapes. * @param netInputShapes vector of shapes for all net inputs. * @return computed FLOP. */ - (long)getFLOPSWithNetInputShapes:(NSArray*)netInputShapes NS_SWIFT_NAME(getFLOPS(netInputShapes:)); // // int64 cv::dnn::Net::getFLOPS(MatShape netInputShape) // - (long)getFLOPSWithNetInputShape:(IntVector*)netInputShape NS_SWIFT_NAME(getFLOPS(netInputShape:)); // // int64 cv::dnn::Net::getFLOPS(int layerId, vector_MatShape netInputShapes) // - (long)getFLOPSWithLayerId:(int)layerId netInputShapes:(NSArray*)netInputShapes NS_SWIFT_NAME(getFLOPS(layerId:netInputShapes:)); // // int64 cv::dnn::Net::getFLOPS(int layerId, MatShape netInputShape) // - (long)getFLOPSWithLayerId:(int)layerId netInputShape:(IntVector*)netInputShape NS_SWIFT_NAME(getFLOPS(layerId:netInputShape:)); // // void cv::dnn::Net::getLayerTypes(vector_String& layersTypes) // /** * Returns list of types for layer used in model. * @param layersTypes output parameter for returning types. */ - (void)getLayerTypes:(NSMutableArray*)layersTypes NS_SWIFT_NAME(getLayerTypes(layersTypes:)); // // int cv::dnn::Net::getLayersCount(String layerType) // /** * Returns count of layers of specified type. * @param layerType type. * @return count of layers */ - (int)getLayersCount:(NSString*)layerType NS_SWIFT_NAME(getLayersCount(layerType:)); // // void cv::dnn::Net::getMemoryConsumption(MatShape netInputShape, size_t& weights, size_t& blobs) // - (void)getMemoryConsumption:(IntVector*)netInputShape weights:(size_t)weights blobs:(size_t)blobs NS_SWIFT_NAME(getMemoryConsumption(netInputShape:weights:blobs:)); // // void cv::dnn::Net::getMemoryConsumption(int layerId, vector_MatShape netInputShapes, size_t& weights, size_t& blobs) // - (void)getMemoryConsumption:(int)layerId netInputShapes:(NSArray*)netInputShapes weights:(size_t)weights blobs:(size_t)blobs NS_SWIFT_NAME(getMemoryConsumption(layerId:netInputShapes:weights:blobs:)); // // void cv::dnn::Net::getMemoryConsumption(int layerId, MatShape netInputShape, size_t& weights, size_t& blobs) // - (void)getMemoryConsumption:(int)layerId netInputShape:(IntVector*)netInputShape weights:(size_t)weights blobs:(size_t)blobs NS_SWIFT_NAME(getMemoryConsumption(layerId:netInputShape:weights:blobs:)); // // void cv::dnn::Net::enableFusion(bool fusion) // /** * Enables or disables layer fusion in the network. * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default. */ - (void)enableFusion:(BOOL)fusion NS_SWIFT_NAME(enableFusion(fusion:)); // // void cv::dnn::Net::enableWinograd(bool useWinograd) // /** * Enables or disables the Winograd compute branch. The Winograd compute branch can speed up * 3x3 Convolution at a small loss of accuracy. * @param useWinograd true to enable the Winograd compute branch. The default is true. */ - (void)enableWinograd:(BOOL)useWinograd NS_SWIFT_NAME(enableWinograd(useWinograd:)); // // int64 cv::dnn::Net::getPerfProfile(vector_double& timings) // /** * Returns overall time for inference and timings (in ticks) for layers. * * Indexes in returned vector correspond to layers ids. Some layers can be fused with others, * in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only. * * @param timings vector for tick timings for all layers. * @return overall ticks for model inference. */ - (long)getPerfProfile:(DoubleVector*)timings NS_SWIFT_NAME(getPerfProfile(timings:)); @end NS_ASSUME_NONNULL_END