// // This file is auto-generated. Please don't modify it! // #pragma once #ifdef __cplusplus //#import "opencv.hpp" #import "opencv2/dnn.hpp" #import "opencv2/dnn/dnn.hpp" #else #define CV_EXPORTS #endif #import #import "Dnn.h" @class Mat; @class Net; @class Scalar; @class Size2i; NS_ASSUME_NONNULL_BEGIN // C++: class Model /** * This class is presented high-level API for neural networks. * * Model allows to set params for preprocessing input image. * Model creates net from file with trained weights and config, * sets preprocessing input and runs forward pass. * * Member of `Dnn` */ CV_EXPORTS @interface Model : NSObject #ifdef __cplusplus @property(readonly)cv::Ptr nativePtr; #endif #ifdef __cplusplus - (instancetype)initWithNativePtr:(cv::Ptr)nativePtr; + (instancetype)fromNative:(cv::Ptr)nativePtr; #endif #pragma mark - Methods // // cv::dnn::Model::Model(String model, String config = "") // /** * Create model from deep learning network represented in one of the supported formats. * An order of @p model and @p config arguments does not matter. * @param model Binary file contains trained weights. * @param config Text file contains network configuration. */ - (instancetype)initWithModel:(NSString*)model config:(NSString*)config; /** * Create model from deep learning network represented in one of the supported formats. * An order of @p model and @p config arguments does not matter. * @param model Binary file contains trained weights. */ - (instancetype)initWithModel:(NSString*)model; // // cv::dnn::Model::Model(Net network) // /** * Create model from deep learning network. * @param network Net object. */ - (instancetype)initWithNetwork:(Net*)network; // // Model cv::dnn::Model::setInputSize(Size size) // /** * Set input size for frame. * @param size New input size. * NOTE: If shape of the new blob less than 0, then frame size not change. */ - (Model*)setInputSize:(Size2i*)size NS_SWIFT_NAME(setInputSize(size:)); // // Model cv::dnn::Model::setInputSize(int width, int height) // /** * * @param width New input width. * @param height New input height. */ - (Model*)setInputSize:(int)width height:(int)height NS_SWIFT_NAME(setInputSize(width:height:)); // // Model cv::dnn::Model::setInputMean(Scalar mean) // /** * Set mean value for frame. * @param mean Scalar with mean values which are subtracted from channels. */ - (Model*)setInputMean:(Scalar*)mean NS_SWIFT_NAME(setInputMean(mean:)); // // Model cv::dnn::Model::setInputScale(Scalar scale) // /** * Set scalefactor value for frame. * @param scale Multiplier for frame values. */ - (Model*)setInputScale:(Scalar*)scale NS_SWIFT_NAME(setInputScale(scale:)); // // Model cv::dnn::Model::setInputCrop(bool crop) // /** * Set flag crop for frame. * @param crop Flag which indicates whether image will be cropped after resize or not. */ - (Model*)setInputCrop:(BOOL)crop NS_SWIFT_NAME(setInputCrop(crop:)); // // Model cv::dnn::Model::setInputSwapRB(bool swapRB) // /** * Set flag swapRB for frame. * @param swapRB Flag which indicates that swap first and last channels. */ - (Model*)setInputSwapRB:(BOOL)swapRB NS_SWIFT_NAME(setInputSwapRB(swapRB:)); // // void cv::dnn::Model::setInputParams(double scale = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = false, bool crop = false) // /** * Set preprocessing parameters for frame. * @param size New input size. * @param mean Scalar with mean values which are subtracted from channels. * @param scale Multiplier for frame values. * @param swapRB Flag which indicates that swap first and last channels. * @param crop Flag which indicates whether image will be cropped after resize or not. * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) ) */ - (void)setInputParams:(double)scale size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB crop:(BOOL)crop NS_SWIFT_NAME(setInputParams(scale:size:mean:swapRB:crop:)); /** * Set preprocessing parameters for frame. * @param size New input size. * @param mean Scalar with mean values which are subtracted from channels. * @param scale Multiplier for frame values. * @param swapRB Flag which indicates that swap first and last channels. * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) ) */ - (void)setInputParams:(double)scale size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB NS_SWIFT_NAME(setInputParams(scale:size:mean:swapRB:)); /** * Set preprocessing parameters for frame. * @param size New input size. * @param mean Scalar with mean values which are subtracted from channels. * @param scale Multiplier for frame values. * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) ) */ - (void)setInputParams:(double)scale size:(Size2i*)size mean:(Scalar*)mean NS_SWIFT_NAME(setInputParams(scale:size:mean:)); /** * Set preprocessing parameters for frame. * @param size New input size. * @param scale Multiplier for frame values. * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) ) */ - (void)setInputParams:(double)scale size:(Size2i*)size NS_SWIFT_NAME(setInputParams(scale:size:)); /** * Set preprocessing parameters for frame. * @param scale Multiplier for frame values. * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) ) */ - (void)setInputParams:(double)scale NS_SWIFT_NAME(setInputParams(scale:)); /** * Set preprocessing parameters for frame. * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) ) */ - (void)setInputParams NS_SWIFT_NAME(setInputParams()); // // void cv::dnn::Model::predict(Mat frame, vector_Mat& outs) // /** * Given the @p input frame, create input blob, run net and return the output @p blobs. * @param outs Allocated output blobs, which will store results of the computation. */ - (void)predict:(Mat*)frame outs:(NSMutableArray*)outs NS_SWIFT_NAME(predict(frame:outs:)); // // Model cv::dnn::Model::setPreferableBackend(dnn_Backend backendId) // - (Model*)setPreferableBackend:(Backend)backendId NS_SWIFT_NAME(setPreferableBackend(backendId:)); // // Model cv::dnn::Model::setPreferableTarget(dnn_Target targetId) // - (Model*)setPreferableTarget:(Target)targetId NS_SWIFT_NAME(setPreferableTarget(targetId:)); @end NS_ASSUME_NONNULL_END