// // This file is auto-generated. Please don't modify it! // #pragma once #ifdef __cplusplus //#import "opencv.hpp" #import "opencv2/ml.hpp" #else #define CV_EXPORTS #endif #import #import "StatModel.h" @class Mat; // C++: enum DTreeFlags (cv.ml.DTrees.Flags) typedef NS_ENUM(int, DTreeFlags) { DTrees_PREDICT_AUTO NS_SWIFT_NAME(PREDICT_AUTO) = 0, DTrees_PREDICT_SUM NS_SWIFT_NAME(PREDICT_SUM) = (1<<8), DTrees_PREDICT_MAX_VOTE NS_SWIFT_NAME(PREDICT_MAX_VOTE) = (2<<8), DTrees_PREDICT_MASK NS_SWIFT_NAME(PREDICT_MASK) = (3<<8) }; NS_ASSUME_NONNULL_BEGIN // C++: class DTrees /** * The class represents a single decision tree or a collection of decision trees. * * The current public interface of the class allows user to train only a single decision tree, however * the class is capable of storing multiple decision trees and using them for prediction (by summing * responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost) * use this capability to implement decision tree ensembles. * * @see REF: ml_intro_trees * * Member of `Ml` */ CV_EXPORTS @interface DTrees : StatModel #ifdef __cplusplus @property(readonly)cv::Ptr nativePtrDTrees; #endif #ifdef __cplusplus - (instancetype)initWithNativePtr:(cv::Ptr)nativePtr; + (instancetype)fromNative:(cv::Ptr)nativePtr; #endif #pragma mark - Methods // // int cv::ml::DTrees::getMaxCategories() // /** * @see `-setMaxCategories:` */ - (int)getMaxCategories NS_SWIFT_NAME(getMaxCategories()); // // void cv::ml::DTrees::setMaxCategories(int val) // /** * getMaxCategories @see `-getMaxCategories:` */ - (void)setMaxCategories:(int)val NS_SWIFT_NAME(setMaxCategories(val:)); // // int cv::ml::DTrees::getMaxDepth() // /** * @see `-setMaxDepth:` */ - (int)getMaxDepth NS_SWIFT_NAME(getMaxDepth()); // // void cv::ml::DTrees::setMaxDepth(int val) // /** * getMaxDepth @see `-getMaxDepth:` */ - (void)setMaxDepth:(int)val NS_SWIFT_NAME(setMaxDepth(val:)); // // int cv::ml::DTrees::getMinSampleCount() // /** * @see `-setMinSampleCount:` */ - (int)getMinSampleCount NS_SWIFT_NAME(getMinSampleCount()); // // void cv::ml::DTrees::setMinSampleCount(int val) // /** * getMinSampleCount @see `-getMinSampleCount:` */ - (void)setMinSampleCount:(int)val NS_SWIFT_NAME(setMinSampleCount(val:)); // // int cv::ml::DTrees::getCVFolds() // /** * @see `-setCVFolds:` */ - (int)getCVFolds NS_SWIFT_NAME(getCVFolds()); // // void cv::ml::DTrees::setCVFolds(int val) // /** * getCVFolds @see `-getCVFolds:` */ - (void)setCVFolds:(int)val NS_SWIFT_NAME(setCVFolds(val:)); // // bool cv::ml::DTrees::getUseSurrogates() // /** * @see `-setUseSurrogates:` */ - (BOOL)getUseSurrogates NS_SWIFT_NAME(getUseSurrogates()); // // void cv::ml::DTrees::setUseSurrogates(bool val) // /** * getUseSurrogates @see `-getUseSurrogates:` */ - (void)setUseSurrogates:(BOOL)val NS_SWIFT_NAME(setUseSurrogates(val:)); // // bool cv::ml::DTrees::getUse1SERule() // /** * @see `-setUse1SERule:` */ - (BOOL)getUse1SERule NS_SWIFT_NAME(getUse1SERule()); // // void cv::ml::DTrees::setUse1SERule(bool val) // /** * getUse1SERule @see `-getUse1SERule:` */ - (void)setUse1SERule:(BOOL)val NS_SWIFT_NAME(setUse1SERule(val:)); // // bool cv::ml::DTrees::getTruncatePrunedTree() // /** * @see `-setTruncatePrunedTree:` */ - (BOOL)getTruncatePrunedTree NS_SWIFT_NAME(getTruncatePrunedTree()); // // void cv::ml::DTrees::setTruncatePrunedTree(bool val) // /** * getTruncatePrunedTree @see `-getTruncatePrunedTree:` */ - (void)setTruncatePrunedTree:(BOOL)val NS_SWIFT_NAME(setTruncatePrunedTree(val:)); // // float cv::ml::DTrees::getRegressionAccuracy() // /** * @see `-setRegressionAccuracy:` */ - (float)getRegressionAccuracy NS_SWIFT_NAME(getRegressionAccuracy()); // // void cv::ml::DTrees::setRegressionAccuracy(float val) // /** * getRegressionAccuracy @see `-getRegressionAccuracy:` */ - (void)setRegressionAccuracy:(float)val NS_SWIFT_NAME(setRegressionAccuracy(val:)); // // Mat cv::ml::DTrees::getPriors() // /** * @see `-setPriors:` */ - (Mat*)getPriors NS_SWIFT_NAME(getPriors()); // // void cv::ml::DTrees::setPriors(Mat val) // /** * getPriors @see `-getPriors:` */ - (void)setPriors:(Mat*)val NS_SWIFT_NAME(setPriors(val:)); // // static Ptr_DTrees cv::ml::DTrees::create() // /** * Creates the empty model * * The static method creates empty decision tree with the specified parameters. It should be then * trained using train method (see StatModel::train). Alternatively, you can load the model from * file using Algorithm::load\(filename). */ + (DTrees*)create NS_SWIFT_NAME(create()); // // static Ptr_DTrees cv::ml::DTrees::load(String filepath, String nodeName = String()) // /** * Loads and creates a serialized DTrees from a file * * Use DTree::save to serialize and store an DTree to disk. * Load the DTree from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized DTree * @param nodeName name of node containing the classifier */ + (DTrees*)load:(NSString*)filepath nodeName:(NSString*)nodeName NS_SWIFT_NAME(load(filepath:nodeName:)); /** * Loads and creates a serialized DTrees from a file * * Use DTree::save to serialize and store an DTree to disk. * Load the DTree from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized DTree */ + (DTrees*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:)); @end NS_ASSUME_NONNULL_END