// // This file is auto-generated. Please don't modify it! // #pragma once #ifdef __cplusplus //#import "opencv.hpp" #import "opencv2/ml.hpp" #else #define CV_EXPORTS #endif #import #import "StatModel.h" @class Mat; @class TermCriteria; // C++: enum ActivationFunctions (cv.ml.ANN_MLP.ActivationFunctions) typedef NS_ENUM(int, ActivationFunctions) { ANN_MLP_IDENTITY NS_SWIFT_NAME(IDENTITY) = 0, ANN_MLP_SIGMOID_SYM NS_SWIFT_NAME(SIGMOID_SYM) = 1, ANN_MLP_GAUSSIAN NS_SWIFT_NAME(GAUSSIAN) = 2, ANN_MLP_RELU NS_SWIFT_NAME(RELU) = 3, ANN_MLP_LEAKYRELU NS_SWIFT_NAME(LEAKYRELU) = 4 }; // C++: enum TrainFlags (cv.ml.ANN_MLP.TrainFlags) typedef NS_ENUM(int, TrainFlags) { ANN_MLP_UPDATE_WEIGHTS NS_SWIFT_NAME(UPDATE_WEIGHTS) = 1, ANN_MLP_NO_INPUT_SCALE NS_SWIFT_NAME(NO_INPUT_SCALE) = 2, ANN_MLP_NO_OUTPUT_SCALE NS_SWIFT_NAME(NO_OUTPUT_SCALE) = 4 }; // C++: enum TrainingMethods (cv.ml.ANN_MLP.TrainingMethods) typedef NS_ENUM(int, TrainingMethods) { ANN_MLP_BACKPROP NS_SWIFT_NAME(BACKPROP) = 0, ANN_MLP_RPROP NS_SWIFT_NAME(RPROP) = 1, ANN_MLP_ANNEAL NS_SWIFT_NAME(ANNEAL) = 2 }; NS_ASSUME_NONNULL_BEGIN // C++: class ANN_MLP /** * Artificial Neural Networks - Multi-Layer Perceptrons. * * Unlike many other models in ML that are constructed and trained at once, in the MLP model these * steps are separated. First, a network with the specified topology is created using the non-default * constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is * trained using a set of input and output vectors. The training procedure can be repeated more than * once, that is, the weights can be adjusted based on the new training data. * * Additional flags for StatModel::train are available: ANN_MLP::TrainFlags. * * @see REF: ml_intro_ann * * Member of `Ml` */ CV_EXPORTS @interface ANN_MLP : StatModel #ifdef __cplusplus @property(readonly)cv::Ptr nativePtrANN_MLP; #endif #ifdef __cplusplus - (instancetype)initWithNativePtr:(cv::Ptr)nativePtr; + (instancetype)fromNative:(cv::Ptr)nativePtr; #endif #pragma mark - Methods // // void cv::ml::ANN_MLP::setTrainMethod(int method, double param1 = 0, double param2 = 0) // /** * Sets training method and common parameters. * @param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods. * @param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL. * @param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL. */ - (void)setTrainMethod:(int)method param1:(double)param1 param2:(double)param2 NS_SWIFT_NAME(setTrainMethod(method:param1:param2:)); /** * Sets training method and common parameters. * @param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods. * @param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL. */ - (void)setTrainMethod:(int)method param1:(double)param1 NS_SWIFT_NAME(setTrainMethod(method:param1:)); /** * Sets training method and common parameters. * @param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods. */ - (void)setTrainMethod:(int)method NS_SWIFT_NAME(setTrainMethod(method:)); // // int cv::ml::ANN_MLP::getTrainMethod() // /** * Returns current training method */ - (int)getTrainMethod NS_SWIFT_NAME(getTrainMethod()); // // void cv::ml::ANN_MLP::setActivationFunction(int type, double param1 = 0, double param2 = 0) // /** * Initialize the activation function for each neuron. * Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM. * @param type The type of activation function. See ANN_MLP::ActivationFunctions. * @param param1 The first parameter of the activation function, `$$\alpha$$`. Default value is 0. * @param param2 The second parameter of the activation function, `$$\beta$$`. Default value is 0. */ - (void)setActivationFunction:(int)type param1:(double)param1 param2:(double)param2 NS_SWIFT_NAME(setActivationFunction(type:param1:param2:)); /** * Initialize the activation function for each neuron. * Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM. * @param type The type of activation function. See ANN_MLP::ActivationFunctions. * @param param1 The first parameter of the activation function, `$$\alpha$$`. Default value is 0. */ - (void)setActivationFunction:(int)type param1:(double)param1 NS_SWIFT_NAME(setActivationFunction(type:param1:)); /** * Initialize the activation function for each neuron. * Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM. * @param type The type of activation function. See ANN_MLP::ActivationFunctions. */ - (void)setActivationFunction:(int)type NS_SWIFT_NAME(setActivationFunction(type:)); // // void cv::ml::ANN_MLP::setLayerSizes(Mat _layer_sizes) // /** * Integer vector specifying the number of neurons in each layer including the input and output layers. * The very first element specifies the number of elements in the input layer. * The last element - number of elements in the output layer. Default value is empty Mat. * @see `-getLayerSizes:` */ - (void)setLayerSizes:(Mat*)_layer_sizes NS_SWIFT_NAME(setLayerSizes(_layer_sizes:)); // // Mat cv::ml::ANN_MLP::getLayerSizes() // /** * Integer vector specifying the number of neurons in each layer including the input and output layers. * The very first element specifies the number of elements in the input layer. * The last element - number of elements in the output layer. * @see `-setLayerSizes:` */ - (Mat*)getLayerSizes NS_SWIFT_NAME(getLayerSizes()); // // TermCriteria cv::ml::ANN_MLP::getTermCriteria() // /** * @see `-setTermCriteria:` */ - (TermCriteria*)getTermCriteria NS_SWIFT_NAME(getTermCriteria()); // // void cv::ml::ANN_MLP::setTermCriteria(TermCriteria val) // /** * getTermCriteria @see `-getTermCriteria:` */ - (void)setTermCriteria:(TermCriteria*)val NS_SWIFT_NAME(setTermCriteria(val:)); // // double cv::ml::ANN_MLP::getBackpropWeightScale() // /** * @see `-setBackpropWeightScale:` */ - (double)getBackpropWeightScale NS_SWIFT_NAME(getBackpropWeightScale()); // // void cv::ml::ANN_MLP::setBackpropWeightScale(double val) // /** * getBackpropWeightScale @see `-getBackpropWeightScale:` */ - (void)setBackpropWeightScale:(double)val NS_SWIFT_NAME(setBackpropWeightScale(val:)); // // double cv::ml::ANN_MLP::getBackpropMomentumScale() // /** * @see `-setBackpropMomentumScale:` */ - (double)getBackpropMomentumScale NS_SWIFT_NAME(getBackpropMomentumScale()); // // void cv::ml::ANN_MLP::setBackpropMomentumScale(double val) // /** * getBackpropMomentumScale @see `-getBackpropMomentumScale:` */ - (void)setBackpropMomentumScale:(double)val NS_SWIFT_NAME(setBackpropMomentumScale(val:)); // // double cv::ml::ANN_MLP::getRpropDW0() // /** * @see `-setRpropDW0:` */ - (double)getRpropDW0 NS_SWIFT_NAME(getRpropDW0()); // // void cv::ml::ANN_MLP::setRpropDW0(double val) // /** * getRpropDW0 @see `-getRpropDW0:` */ - (void)setRpropDW0:(double)val NS_SWIFT_NAME(setRpropDW0(val:)); // // double cv::ml::ANN_MLP::getRpropDWPlus() // /** * @see `-setRpropDWPlus:` */ - (double)getRpropDWPlus NS_SWIFT_NAME(getRpropDWPlus()); // // void cv::ml::ANN_MLP::setRpropDWPlus(double val) // /** * getRpropDWPlus @see `-getRpropDWPlus:` */ - (void)setRpropDWPlus:(double)val NS_SWIFT_NAME(setRpropDWPlus(val:)); // // double cv::ml::ANN_MLP::getRpropDWMinus() // /** * @see `-setRpropDWMinus:` */ - (double)getRpropDWMinus NS_SWIFT_NAME(getRpropDWMinus()); // // void cv::ml::ANN_MLP::setRpropDWMinus(double val) // /** * getRpropDWMinus @see `-getRpropDWMinus:` */ - (void)setRpropDWMinus:(double)val NS_SWIFT_NAME(setRpropDWMinus(val:)); // // double cv::ml::ANN_MLP::getRpropDWMin() // /** * @see `-setRpropDWMin:` */ - (double)getRpropDWMin NS_SWIFT_NAME(getRpropDWMin()); // // void cv::ml::ANN_MLP::setRpropDWMin(double val) // /** * getRpropDWMin @see `-getRpropDWMin:` */ - (void)setRpropDWMin:(double)val NS_SWIFT_NAME(setRpropDWMin(val:)); // // double cv::ml::ANN_MLP::getRpropDWMax() // /** * @see `-setRpropDWMax:` */ - (double)getRpropDWMax NS_SWIFT_NAME(getRpropDWMax()); // // void cv::ml::ANN_MLP::setRpropDWMax(double val) // /** * getRpropDWMax @see `-getRpropDWMax:` */ - (void)setRpropDWMax:(double)val NS_SWIFT_NAME(setRpropDWMax(val:)); // // double cv::ml::ANN_MLP::getAnnealInitialT() // /** * @see `-setAnnealInitialT:` */ - (double)getAnnealInitialT NS_SWIFT_NAME(getAnnealInitialT()); // // void cv::ml::ANN_MLP::setAnnealInitialT(double val) // /** * getAnnealInitialT @see `-getAnnealInitialT:` */ - (void)setAnnealInitialT:(double)val NS_SWIFT_NAME(setAnnealInitialT(val:)); // // double cv::ml::ANN_MLP::getAnnealFinalT() // /** * @see `-setAnnealFinalT:` */ - (double)getAnnealFinalT NS_SWIFT_NAME(getAnnealFinalT()); // // void cv::ml::ANN_MLP::setAnnealFinalT(double val) // /** * getAnnealFinalT @see `-getAnnealFinalT:` */ - (void)setAnnealFinalT:(double)val NS_SWIFT_NAME(setAnnealFinalT(val:)); // // double cv::ml::ANN_MLP::getAnnealCoolingRatio() // /** * @see `-setAnnealCoolingRatio:` */ - (double)getAnnealCoolingRatio NS_SWIFT_NAME(getAnnealCoolingRatio()); // // void cv::ml::ANN_MLP::setAnnealCoolingRatio(double val) // /** * getAnnealCoolingRatio @see `-getAnnealCoolingRatio:` */ - (void)setAnnealCoolingRatio:(double)val NS_SWIFT_NAME(setAnnealCoolingRatio(val:)); // // int cv::ml::ANN_MLP::getAnnealItePerStep() // /** * @see `-setAnnealItePerStep:` */ - (int)getAnnealItePerStep NS_SWIFT_NAME(getAnnealItePerStep()); // // void cv::ml::ANN_MLP::setAnnealItePerStep(int val) // /** * getAnnealItePerStep @see `-getAnnealItePerStep:` */ - (void)setAnnealItePerStep:(int)val NS_SWIFT_NAME(setAnnealItePerStep(val:)); // // Mat cv::ml::ANN_MLP::getWeights(int layerIdx) // - (Mat*)getWeights:(int)layerIdx NS_SWIFT_NAME(getWeights(layerIdx:)); // // static Ptr_ANN_MLP cv::ml::ANN_MLP::create() // /** * Creates empty model * * Use StatModel::train to train the model, Algorithm::load\(filename) to load the pre-trained model. * Note that the train method has optional flags: ANN_MLP::TrainFlags. */ + (ANN_MLP*)create NS_SWIFT_NAME(create()); // // static Ptr_ANN_MLP cv::ml::ANN_MLP::load(String filepath) // /** * Loads and creates a serialized ANN from a file * * Use ANN::save to serialize and store an ANN to disk. * Load the ANN from this file again, by calling this function with the path to the file. * * @param filepath path to serialized ANN */ + (ANN_MLP*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:)); @end NS_ASSUME_NONNULL_END