SecT283Field.cs 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. using System;
  3. using System.Diagnostics;
  4. using Org.BouncyCastle.Math.Raw;
  5. namespace Org.BouncyCastle.Math.EC.Custom.Sec
  6. {
  7. internal class SecT283Field
  8. {
  9. private const ulong M27 = ulong.MaxValue >> 37;
  10. private const ulong M57 = ulong.MaxValue >> 7;
  11. private static readonly ulong[] ROOT_Z = new ulong[]{ 0x0C30C30C30C30808UL, 0x30C30C30C30C30C3UL, 0x820820820820830CUL, 0x0820820820820820UL, 0x2082082UL };
  12. public static void Add(ulong[] x, ulong[] y, ulong[] z)
  13. {
  14. z[0] = x[0] ^ y[0];
  15. z[1] = x[1] ^ y[1];
  16. z[2] = x[2] ^ y[2];
  17. z[3] = x[3] ^ y[3];
  18. z[4] = x[4] ^ y[4];
  19. }
  20. public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
  21. {
  22. zz[0] = xx[0] ^ yy[0];
  23. zz[1] = xx[1] ^ yy[1];
  24. zz[2] = xx[2] ^ yy[2];
  25. zz[3] = xx[3] ^ yy[3];
  26. zz[4] = xx[4] ^ yy[4];
  27. zz[5] = xx[5] ^ yy[5];
  28. zz[6] = xx[6] ^ yy[6];
  29. zz[7] = xx[7] ^ yy[7];
  30. zz[8] = xx[8] ^ yy[8];
  31. }
  32. public static void AddOne(ulong[] x, ulong[] z)
  33. {
  34. z[0] = x[0] ^ 1UL;
  35. z[1] = x[1];
  36. z[2] = x[2];
  37. z[3] = x[3];
  38. z[4] = x[4];
  39. }
  40. public static ulong[] FromBigInteger(BigInteger x)
  41. {
  42. ulong[] z = Nat320.FromBigInteger64(x);
  43. Reduce37(z, 0);
  44. return z;
  45. }
  46. public static void Invert(ulong[] x, ulong[] z)
  47. {
  48. if (Nat320.IsZero64(x))
  49. throw new InvalidOperationException();
  50. // Itoh-Tsujii inversion
  51. ulong[] t0 = Nat320.Create64();
  52. ulong[] t1 = Nat320.Create64();
  53. Square(x, t0);
  54. Multiply(t0, x, t0);
  55. SquareN(t0, 2, t1);
  56. Multiply(t1, t0, t1);
  57. SquareN(t1, 4, t0);
  58. Multiply(t0, t1, t0);
  59. SquareN(t0, 8, t1);
  60. Multiply(t1, t0, t1);
  61. Square(t1, t1);
  62. Multiply(t1, x, t1);
  63. SquareN(t1, 17, t0);
  64. Multiply(t0, t1, t0);
  65. Square(t0, t0);
  66. Multiply(t0, x, t0);
  67. SquareN(t0, 35, t1);
  68. Multiply(t1, t0, t1);
  69. SquareN(t1, 70, t0);
  70. Multiply(t0, t1, t0);
  71. Square(t0, t0);
  72. Multiply(t0, x, t0);
  73. SquareN(t0, 141, t1);
  74. Multiply(t1, t0, t1);
  75. Square(t1, z);
  76. }
  77. public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
  78. {
  79. ulong[] tt = Nat320.CreateExt64();
  80. ImplMultiply(x, y, tt);
  81. Reduce(tt, z);
  82. }
  83. public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
  84. {
  85. ulong[] tt = Nat320.CreateExt64();
  86. ImplMultiply(x, y, tt);
  87. AddExt(zz, tt, zz);
  88. }
  89. public static void Reduce(ulong[] xx, ulong[] z)
  90. {
  91. ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3], x4 = xx[4];
  92. ulong x5 = xx[5], x6 = xx[6], x7 = xx[7], x8 = xx[8];
  93. x3 ^= (x8 << 37) ^ (x8 << 42) ^ (x8 << 44) ^ (x8 << 49);
  94. x4 ^= (x8 >> 27) ^ (x8 >> 22) ^ (x8 >> 20) ^ (x8 >> 15);
  95. x2 ^= (x7 << 37) ^ (x7 << 42) ^ (x7 << 44) ^ (x7 << 49);
  96. x3 ^= (x7 >> 27) ^ (x7 >> 22) ^ (x7 >> 20) ^ (x7 >> 15);
  97. x1 ^= (x6 << 37) ^ (x6 << 42) ^ (x6 << 44) ^ (x6 << 49);
  98. x2 ^= (x6 >> 27) ^ (x6 >> 22) ^ (x6 >> 20) ^ (x6 >> 15);
  99. x0 ^= (x5 << 37) ^ (x5 << 42) ^ (x5 << 44) ^ (x5 << 49);
  100. x1 ^= (x5 >> 27) ^ (x5 >> 22) ^ (x5 >> 20) ^ (x5 >> 15);
  101. ulong t = x4 >> 27;
  102. z[0] = x0 ^ t ^ (t << 5) ^ (t << 7) ^ (t << 12);
  103. z[1] = x1;
  104. z[2] = x2;
  105. z[3] = x3;
  106. z[4] = x4 & M27;
  107. }
  108. public static void Reduce37(ulong[] z, int zOff)
  109. {
  110. ulong z4 = z[zOff + 4], t = z4 >> 27;
  111. z[zOff ] ^= t ^ (t << 5) ^ (t << 7) ^ (t << 12);
  112. z[zOff + 4] = z4 & M27;
  113. }
  114. public static void Sqrt(ulong[] x, ulong[] z)
  115. {
  116. ulong[] odd = Nat320.Create64();
  117. ulong u0, u1;
  118. u0 = Interleave.Unshuffle(x[0]); u1 = Interleave.Unshuffle(x[1]);
  119. ulong e0 = (u0 & 0x00000000FFFFFFFFUL) | (u1 << 32);
  120. odd[0] = (u0 >> 32) | (u1 & 0xFFFFFFFF00000000UL);
  121. u0 = Interleave.Unshuffle(x[2]); u1 = Interleave.Unshuffle(x[3]);
  122. ulong e1 = (u0 & 0x00000000FFFFFFFFUL) | (u1 << 32);
  123. odd[1] = (u0 >> 32) | (u1 & 0xFFFFFFFF00000000UL);
  124. u0 = Interleave.Unshuffle(x[4]);
  125. ulong e2 = (u0 & 0x00000000FFFFFFFFUL);
  126. odd[2] = (u0 >> 32);
  127. Multiply(odd, ROOT_Z, z);
  128. z[0] ^= e0;
  129. z[1] ^= e1;
  130. z[2] ^= e2;
  131. }
  132. public static void Square(ulong[] x, ulong[] z)
  133. {
  134. ulong[] tt = Nat.Create64(9);
  135. ImplSquare(x, tt);
  136. Reduce(tt, z);
  137. }
  138. public static void SquareAddToExt(ulong[] x, ulong[] zz)
  139. {
  140. ulong[] tt = Nat.Create64(9);
  141. ImplSquare(x, tt);
  142. AddExt(zz, tt, zz);
  143. }
  144. public static void SquareN(ulong[] x, int n, ulong[] z)
  145. {
  146. Debug.Assert(n > 0);
  147. ulong[] tt = Nat.Create64(9);
  148. ImplSquare(x, tt);
  149. Reduce(tt, z);
  150. while (--n > 0)
  151. {
  152. ImplSquare(z, tt);
  153. Reduce(tt, z);
  154. }
  155. }
  156. public static uint Trace(ulong[] x)
  157. {
  158. // Non-zero-trace bits: 0, 271
  159. return (uint)(x[0] ^ (x[4] >> 15)) & 1U;
  160. }
  161. protected static void ImplCompactExt(ulong[] zz)
  162. {
  163. ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4];
  164. ulong z5 = zz[5], z6 = zz[6], z7 = zz[7], z8 = zz[8], z9 = zz[9];
  165. zz[0] = z0 ^ (z1 << 57);
  166. zz[1] = (z1 >> 7) ^ (z2 << 50);
  167. zz[2] = (z2 >> 14) ^ (z3 << 43);
  168. zz[3] = (z3 >> 21) ^ (z4 << 36);
  169. zz[4] = (z4 >> 28) ^ (z5 << 29);
  170. zz[5] = (z5 >> 35) ^ (z6 << 22);
  171. zz[6] = (z6 >> 42) ^ (z7 << 15);
  172. zz[7] = (z7 >> 49) ^ (z8 << 8);
  173. zz[8] = (z8 >> 56) ^ (z9 << 1);
  174. zz[9] = (z9 >> 63); // Zero!
  175. }
  176. protected static void ImplExpand(ulong[] x, ulong[] z)
  177. {
  178. ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4];
  179. z[0] = x0 & M57;
  180. z[1] = ((x0 >> 57) ^ (x1 << 7)) & M57;
  181. z[2] = ((x1 >> 50) ^ (x2 << 14)) & M57;
  182. z[3] = ((x2 >> 43) ^ (x3 << 21)) & M57;
  183. z[4] = ((x3 >> 36) ^ (x4 << 28));
  184. }
  185. //protected static void AddMs(ulong[] zz, int zOff, ulong[] p, params int[] ms)
  186. //{
  187. // ulong t0 = 0, t1 = 0;
  188. // foreach (int m in ms)
  189. // {
  190. // int i = (m - 1) << 1;
  191. // t0 ^= p[i ];
  192. // t1 ^= p[i + 1];
  193. // }
  194. // zz[zOff ] ^= t0;
  195. // zz[zOff + 1] ^= t1;
  196. //}
  197. protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
  198. {
  199. /*
  200. * Formula (17) from "Some New Results on Binary Polynomial Multiplication",
  201. * Murat Cenk and M. Anwar Hasan.
  202. *
  203. * The formula as given contained an error in the term t25, as noted below
  204. */
  205. ulong[] a = new ulong[5], b = new ulong[5];
  206. ImplExpand(x, a);
  207. ImplExpand(y, b);
  208. ulong[] p = new ulong[26];
  209. ImplMulw(a[0], b[0], p, 0); // m1
  210. ImplMulw(a[1], b[1], p, 2); // m2
  211. ImplMulw(a[2], b[2], p, 4); // m3
  212. ImplMulw(a[3], b[3], p, 6); // m4
  213. ImplMulw(a[4], b[4], p, 8); // m5
  214. ulong u0 = a[0] ^ a[1], v0 = b[0] ^ b[1];
  215. ulong u1 = a[0] ^ a[2], v1 = b[0] ^ b[2];
  216. ulong u2 = a[2] ^ a[4], v2 = b[2] ^ b[4];
  217. ulong u3 = a[3] ^ a[4], v3 = b[3] ^ b[4];
  218. ImplMulw(u1 ^ a[3], v1 ^ b[3], p, 18); // m10
  219. ImplMulw(u2 ^ a[1], v2 ^ b[1], p, 20); // m11
  220. ulong A4 = u0 ^ u3 , B4 = v0 ^ v3;
  221. ulong A5 = A4 ^ a[2], B5 = B4 ^ b[2];
  222. ImplMulw(A4, B4, p, 22); // m12
  223. ImplMulw(A5, B5, p, 24); // m13
  224. ImplMulw(u0, v0, p, 10); // m6
  225. ImplMulw(u1, v1, p, 12); // m7
  226. ImplMulw(u2, v2, p, 14); // m8
  227. ImplMulw(u3, v3, p, 16); // m9
  228. // Original method, corresponding to formula (16)
  229. //AddMs(zz, 0, p, 1);
  230. //AddMs(zz, 1, p, 1, 2, 6);
  231. //AddMs(zz, 2, p, 1, 2, 3, 7);
  232. //AddMs(zz, 3, p, 1, 3, 4, 5, 8, 10, 12, 13);
  233. //AddMs(zz, 4, p, 1, 2, 4, 5, 6, 9, 10, 11, 13);
  234. //AddMs(zz, 5, p, 1, 2, 3, 5, 7, 11, 12, 13);
  235. //AddMs(zz, 6, p, 3, 4, 5, 8);
  236. //AddMs(zz, 7, p, 4, 5, 9);
  237. //AddMs(zz, 8, p, 5);
  238. // Improved method factors out common single-word terms
  239. // NOTE: p1,...,p26 in the paper maps to p[0],...,p[25] here
  240. zz[0] = p[ 0];
  241. zz[9] = p[ 9];
  242. ulong t1 = p[ 0] ^ p[ 1];
  243. ulong t2 = t1 ^ p[ 2];
  244. ulong t3 = t2 ^ p[10];
  245. zz[1] = t3;
  246. ulong t4 = p[ 3] ^ p[ 4];
  247. ulong t5 = p[11] ^ p[12];
  248. ulong t6 = t4 ^ t5;
  249. ulong t7 = t2 ^ t6;
  250. zz[2] = t7;
  251. ulong t8 = t1 ^ t4;
  252. ulong t9 = p[ 5] ^ p[ 6];
  253. ulong t10 = t8 ^ t9;
  254. ulong t11 = t10 ^ p[ 8];
  255. ulong t12 = p[13] ^ p[14];
  256. ulong t13 = t11 ^ t12;
  257. ulong t14 = p[18] ^ p[22];
  258. ulong t15 = t14 ^ p[24];
  259. ulong t16 = t13 ^ t15;
  260. zz[3] = t16;
  261. ulong t17 = p[ 7] ^ p[ 8];
  262. ulong t18 = t17 ^ p[ 9];
  263. ulong t19 = t18 ^ p[17];
  264. zz[8] = t19;
  265. ulong t20 = t18 ^ t9;
  266. ulong t21 = p[15] ^ p[16];
  267. ulong t22 = t20 ^ t21;
  268. zz[7] = t22;
  269. ulong t23 = t22 ^ t3;
  270. ulong t24 = p[19] ^ p[20];
  271. // ulong t25 = p[23] ^ p[24];
  272. ulong t25 = p[25] ^ p[24]; // Fixes an error in the paper: p[23] -> p{25]
  273. ulong t26 = p[18] ^ p[23];
  274. ulong t27 = t24 ^ t25;
  275. ulong t28 = t27 ^ t26;
  276. ulong t29 = t28 ^ t23;
  277. zz[4] = t29;
  278. ulong t30 = t7 ^ t19;
  279. ulong t31 = t27 ^ t30;
  280. ulong t32 = p[21] ^ p[22];
  281. ulong t33 = t31 ^ t32;
  282. zz[5] = t33;
  283. ulong t34 = t11 ^ p[0];
  284. ulong t35 = t34 ^ p[9];
  285. ulong t36 = t35 ^ t12;
  286. ulong t37 = t36 ^ p[21];
  287. ulong t38 = t37 ^ p[23];
  288. ulong t39 = t38 ^ p[25];
  289. zz[6] = t39;
  290. ImplCompactExt(zz);
  291. }
  292. protected static void ImplMulw(ulong x, ulong y, ulong[] z, int zOff)
  293. {
  294. Debug.Assert(x >> 57 == 0);
  295. Debug.Assert(y >> 57 == 0);
  296. ulong[] u = new ulong[8];
  297. //u[0] = 0;
  298. u[1] = y;
  299. u[2] = u[1] << 1;
  300. u[3] = u[2] ^ y;
  301. u[4] = u[2] << 1;
  302. u[5] = u[4] ^ y;
  303. u[6] = u[3] << 1;
  304. u[7] = u[6] ^ y;
  305. uint j = (uint)x;
  306. ulong g, h = 0, l = u[j & 7];
  307. int k = 48;
  308. do
  309. {
  310. j = (uint)(x >> k);
  311. g = u[j & 7]
  312. ^ u[(j >> 3) & 7] << 3
  313. ^ u[(j >> 6) & 7] << 6;
  314. l ^= (g << k);
  315. h ^= (g >> -k);
  316. }
  317. while ((k -= 9) > 0);
  318. h ^= ((x & 0x0100804020100800L) & (ulong)(((long)y << 7) >> 63)) >> 8;
  319. Debug.Assert(h >> 49 == 0);
  320. z[zOff ] = l & M57;
  321. z[zOff + 1] = (l >> 57) ^ (h << 7);
  322. }
  323. protected static void ImplSquare(ulong[] x, ulong[] zz)
  324. {
  325. for (int i = 0; i < 4; ++i)
  326. {
  327. Interleave.Expand64To128(x[i], zz, i << 1);
  328. }
  329. zz[8] = Interleave.Expand32to64((uint)x[4]);
  330. }
  331. }
  332. }
  333. #endif