123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
- using System;
- using System.Diagnostics;
- using Org.BouncyCastle.Math.Raw;
- namespace Org.BouncyCastle.Math.EC.Custom.Sec
- {
- internal class SecT239Field
- {
- private const ulong M47 = ulong.MaxValue >> 17;
- private const ulong M60 = ulong.MaxValue >> 4;
- public static void Add(ulong[] x, ulong[] y, ulong[] z)
- {
- z[0] = x[0] ^ y[0];
- z[1] = x[1] ^ y[1];
- z[2] = x[2] ^ y[2];
- z[3] = x[3] ^ y[3];
- }
- public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
- {
- zz[0] = xx[0] ^ yy[0];
- zz[1] = xx[1] ^ yy[1];
- zz[2] = xx[2] ^ yy[2];
- zz[3] = xx[3] ^ yy[3];
- zz[4] = xx[4] ^ yy[4];
- zz[5] = xx[5] ^ yy[5];
- zz[6] = xx[6] ^ yy[6];
- zz[7] = xx[7] ^ yy[7];
- }
- public static void AddOne(ulong[] x, ulong[] z)
- {
- z[0] = x[0] ^ 1UL;
- z[1] = x[1];
- z[2] = x[2];
- z[3] = x[3];
- }
- public static ulong[] FromBigInteger(BigInteger x)
- {
- ulong[] z = Nat256.FromBigInteger64(x);
- Reduce17(z, 0);
- return z;
- }
- public static void Invert(ulong[] x, ulong[] z)
- {
- if (Nat256.IsZero64(x))
- throw new InvalidOperationException();
- // Itoh-Tsujii inversion
- ulong[] t0 = Nat256.Create64();
- ulong[] t1 = Nat256.Create64();
- Square(x, t0);
- Multiply(t0, x, t0);
- Square(t0, t0);
- Multiply(t0, x, t0);
- SquareN(t0, 3, t1);
- Multiply(t1, t0, t1);
- Square(t1, t1);
- Multiply(t1, x, t1);
- SquareN(t1, 7, t0);
- Multiply(t0, t1, t0);
- SquareN(t0, 14, t1);
- Multiply(t1, t0, t1);
- Square(t1, t1);
- Multiply(t1, x, t1);
- SquareN(t1, 29, t0);
- Multiply(t0, t1, t0);
- Square(t0, t0);
- Multiply(t0, x, t0);
- SquareN(t0, 59, t1);
- Multiply(t1, t0, t1);
- Square(t1, t1);
- Multiply(t1, x, t1);
- SquareN(t1, 119, t0);
- Multiply(t0, t1, t0);
- Square(t0, z);
- }
- public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
- {
- ulong[] tt = Nat256.CreateExt64();
- ImplMultiply(x, y, tt);
- Reduce(tt, z);
- }
- public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
- {
- ulong[] tt = Nat256.CreateExt64();
- ImplMultiply(x, y, tt);
- AddExt(zz, tt, zz);
- }
- public static void Reduce(ulong[] xx, ulong[] z)
- {
- ulong x0 = xx[0], x1 = xx[1], x2 = xx[2], x3 = xx[3];
- ulong x4 = xx[4], x5 = xx[5], x6 = xx[6], x7 = xx[7];
- x3 ^= (x7 << 17);
- x4 ^= (x7 >> 47);
- x5 ^= (x7 << 47);
- x6 ^= (x7 >> 17);
- x2 ^= (x6 << 17);
- x3 ^= (x6 >> 47);
- x4 ^= (x6 << 47);
- x5 ^= (x6 >> 17);
- x1 ^= (x5 << 17);
- x2 ^= (x5 >> 47);
- x3 ^= (x5 << 47);
- x4 ^= (x5 >> 17);
- x0 ^= (x4 << 17);
- x1 ^= (x4 >> 47);
- x2 ^= (x4 << 47);
- x3 ^= (x4 >> 17);
- ulong t = x3 >> 47;
- z[0] = x0 ^ t;
- z[1] = x1;
- z[2] = x2 ^ (t << 30);
- z[3] = x3 & M47;
- }
- public static void Reduce17(ulong[] z, int zOff)
- {
- ulong z3 = z[zOff + 3], t = z3 >> 47;
- z[zOff ] ^= t;
- z[zOff + 2] ^= (t << 30);
- z[zOff + 3] = z3 & M47;
- }
- public static void Sqrt(ulong[] x, ulong[] z)
- {
- ulong u0, u1;
- u0 = Interleave.Unshuffle(x[0]); u1 = Interleave.Unshuffle(x[1]);
- ulong e0 = (u0 & 0x00000000FFFFFFFFUL) | (u1 << 32);
- ulong c0 = (u0 >> 32) | (u1 & 0xFFFFFFFF00000000UL);
- u0 = Interleave.Unshuffle(x[2]); u1 = Interleave.Unshuffle(x[3]);
- ulong e1 = (u0 & 0x00000000FFFFFFFFUL) | (u1 << 32);
- ulong c1 = (u0 >> 32) | (u1 & 0xFFFFFFFF00000000UL);
- ulong c2, c3;
- c3 = (c1 >> 49);
- c2 = (c0 >> 49) | (c1 << 15);
- c1 ^= (c0 << 15);
- ulong[] tt = Nat256.CreateExt64();
- int[] shifts = { 39, 120 };
- for (int i = 0; i < shifts.Length; ++i)
- {
- int w = shifts[i] >> 6, s = shifts[i] & 63;
- Debug.Assert(s != 0);
- tt[w ] ^= (c0 << s);
- tt[w + 1] ^= (c1 << s) | (c0 >> -s);
- tt[w + 2] ^= (c2 << s) | (c1 >> -s);
- tt[w + 3] ^= (c3 << s) | (c2 >> -s);
- tt[w + 4] ^= (c3 >> -s);
- }
- Reduce(tt, z);
- z[0] ^= e0;
- z[1] ^= e1;
- }
- public static void Square(ulong[] x, ulong[] z)
- {
- ulong[] tt = Nat256.CreateExt64();
- ImplSquare(x, tt);
- Reduce(tt, z);
- }
- public static void SquareAddToExt(ulong[] x, ulong[] zz)
- {
- ulong[] tt = Nat256.CreateExt64();
- ImplSquare(x, tt);
- AddExt(zz, tt, zz);
- }
- public static void SquareN(ulong[] x, int n, ulong[] z)
- {
- Debug.Assert(n > 0);
- ulong[] tt = Nat256.CreateExt64();
- ImplSquare(x, tt);
- Reduce(tt, z);
- while (--n > 0)
- {
- ImplSquare(z, tt);
- Reduce(tt, z);
- }
- }
- public static uint Trace(ulong[] x)
- {
- // Non-zero-trace bits: 0, 81, 162
- return (uint)(x[0] ^ (x[1] >> 17) ^ (x[2] >> 34)) & 1U;
- }
- protected static void ImplCompactExt(ulong[] zz)
- {
- ulong z0 = zz[0], z1 = zz[1], z2 = zz[2], z3 = zz[3], z4 = zz[4], z5 = zz[5], z6 = zz[6], z7 = zz[7];
- zz[0] = z0 ^ (z1 << 60);
- zz[1] = (z1 >> 4) ^ (z2 << 56);
- zz[2] = (z2 >> 8) ^ (z3 << 52);
- zz[3] = (z3 >> 12) ^ (z4 << 48);
- zz[4] = (z4 >> 16) ^ (z5 << 44);
- zz[5] = (z5 >> 20) ^ (z6 << 40);
- zz[6] = (z6 >> 24) ^ (z7 << 36);
- zz[7] = (z7 >> 28);
- }
- protected static void ImplExpand(ulong[] x, ulong[] z)
- {
- ulong x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3];
- z[0] = x0 & M60;
- z[1] = ((x0 >> 60) ^ (x1 << 4)) & M60;
- z[2] = ((x1 >> 56) ^ (x2 << 8)) & M60;
- z[3] = ((x2 >> 52) ^ (x3 << 12));
- }
- protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
- {
- /*
- * "Two-level seven-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
- */
- ulong[] f = new ulong[4], g = new ulong[4];
- ImplExpand(x, f);
- ImplExpand(y, g);
- ImplMulwAcc(f[0], g[0], zz, 0);
- ImplMulwAcc(f[1], g[1], zz, 1);
- ImplMulwAcc(f[2], g[2], zz, 2);
- ImplMulwAcc(f[3], g[3], zz, 3);
- // U *= (1 - t^n)
- for (int i = 5; i > 0; --i)
- {
- zz[i] ^= zz[i - 1];
- }
- ImplMulwAcc(f[0] ^ f[1], g[0] ^ g[1], zz, 1);
- ImplMulwAcc(f[2] ^ f[3], g[2] ^ g[3], zz, 3);
- // V *= (1 - t^2n)
- for (int i = 7; i > 1; --i)
- {
- zz[i] ^= zz[i - 2];
- }
- // Double-length recursion
- {
- ulong c0 = f[0] ^ f[2], c1 = f[1] ^ f[3];
- ulong d0 = g[0] ^ g[2], d1 = g[1] ^ g[3];
- ImplMulwAcc(c0 ^ c1, d0 ^ d1, zz, 3);
- ulong[] t = new ulong[3];
- ImplMulwAcc(c0, d0, t, 0);
- ImplMulwAcc(c1, d1, t, 1);
- ulong t0 = t[0], t1 = t[1], t2 = t[2];
- zz[2] ^= t0;
- zz[3] ^= t0 ^ t1;
- zz[4] ^= t2 ^ t1;
- zz[5] ^= t2;
- }
- ImplCompactExt(zz);
- }
- protected static void ImplMulwAcc(ulong x, ulong y, ulong[] z, int zOff)
- {
- Debug.Assert(x >> 60 == 0);
- Debug.Assert(y >> 60 == 0);
- ulong[] u = new ulong[8];
- //u[0] = 0;
- u[1] = y;
- u[2] = u[1] << 1;
- u[3] = u[2] ^ y;
- u[4] = u[2] << 1;
- u[5] = u[4] ^ y;
- u[6] = u[3] << 1;
- u[7] = u[6] ^ y;
- uint j = (uint)x;
- ulong g, h = 0, l = u[j & 7]
- ^ (u[(j >> 3) & 7] << 3);
- int k = 54;
- do
- {
- j = (uint)(x >> k);
- g = u[j & 7]
- ^ u[(j >> 3) & 7] << 3;
- l ^= (g << k);
- h ^= (g >> -k);
- }
- while ((k -= 6) > 0);
- h ^= ((x & 0x0820820820820820L) & (ulong)(((long)y << 4) >> 63)) >> 5;
- Debug.Assert(h >> 55 == 0);
- z[zOff ] ^= l & M60;
- z[zOff + 1] ^= (l >> 60) ^ (h << 4);
- }
- protected static void ImplSquare(ulong[] x, ulong[] zz)
- {
- Interleave.Expand64To128(x[0], zz, 0);
- Interleave.Expand64To128(x[1], zz, 2);
- Interleave.Expand64To128(x[2], zz, 4);
- ulong x3 = x[3];
- zz[6] = Interleave.Expand32to64((uint)x3);
- zz[7] = Interleave.Expand16to32((uint)(x3 >> 32));
- }
- }
- }
- #endif
|