SecT193R1Point.cs 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. using System;
  3. namespace Org.BouncyCastle.Math.EC.Custom.Sec
  4. {
  5. internal class SecT193R1Point
  6. : AbstractF2mPoint
  7. {
  8. /**
  9. * @deprecated Use ECCurve.createPoint to construct points
  10. */
  11. public SecT193R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
  12. : this(curve, x, y, false)
  13. {
  14. }
  15. /**
  16. * @deprecated per-point compression property will be removed, refer {@link #getEncoded(bool)}
  17. */
  18. public SecT193R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
  19. : base(curve, x, y, withCompression)
  20. {
  21. if ((x == null) != (y == null))
  22. throw new ArgumentException("Exactly one of the field elements is null");
  23. }
  24. internal SecT193R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
  25. : base(curve, x, y, zs, withCompression)
  26. {
  27. }
  28. protected override ECPoint Detach()
  29. {
  30. return new SecT193R1Point(null, AffineXCoord, AffineYCoord);
  31. }
  32. public override ECFieldElement YCoord
  33. {
  34. get
  35. {
  36. ECFieldElement X = RawXCoord, L = RawYCoord;
  37. if (this.IsInfinity || X.IsZero)
  38. return L;
  39. // Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
  40. ECFieldElement Y = L.Add(X).Multiply(X);
  41. ECFieldElement Z = RawZCoords[0];
  42. if (!Z.IsOne)
  43. {
  44. Y = Y.Divide(Z);
  45. }
  46. return Y;
  47. }
  48. }
  49. protected internal override bool CompressionYTilde
  50. {
  51. get
  52. {
  53. ECFieldElement X = this.RawXCoord;
  54. if (X.IsZero)
  55. return false;
  56. ECFieldElement Y = this.RawYCoord;
  57. // Y is actually Lambda (X + Y/X) here
  58. return Y.TestBitZero() != X.TestBitZero();
  59. }
  60. }
  61. public override ECPoint Add(ECPoint b)
  62. {
  63. if (this.IsInfinity)
  64. return b;
  65. if (b.IsInfinity)
  66. return this;
  67. ECCurve curve = this.Curve;
  68. ECFieldElement X1 = this.RawXCoord;
  69. ECFieldElement X2 = b.RawXCoord;
  70. if (X1.IsZero)
  71. {
  72. if (X2.IsZero)
  73. return curve.Infinity;
  74. return b.Add(this);
  75. }
  76. ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
  77. ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
  78. bool Z1IsOne = Z1.IsOne;
  79. ECFieldElement U2 = X2, S2 = L2;
  80. if (!Z1IsOne)
  81. {
  82. U2 = U2.Multiply(Z1);
  83. S2 = S2.Multiply(Z1);
  84. }
  85. bool Z2IsOne = Z2.IsOne;
  86. ECFieldElement U1 = X1, S1 = L1;
  87. if (!Z2IsOne)
  88. {
  89. U1 = U1.Multiply(Z2);
  90. S1 = S1.Multiply(Z2);
  91. }
  92. ECFieldElement A = S1.Add(S2);
  93. ECFieldElement B = U1.Add(U2);
  94. if (B.IsZero)
  95. {
  96. if (A.IsZero)
  97. return Twice();
  98. return curve.Infinity;
  99. }
  100. ECFieldElement X3, L3, Z3;
  101. if (X2.IsZero)
  102. {
  103. // TODO This can probably be optimized quite a bit
  104. ECPoint p = this.Normalize();
  105. X1 = p.XCoord;
  106. ECFieldElement Y1 = p.YCoord;
  107. ECFieldElement Y2 = L2;
  108. ECFieldElement L = Y1.Add(Y2).Divide(X1);
  109. X3 = L.Square().Add(L).Add(X1).Add(curve.A);
  110. if (X3.IsZero)
  111. {
  112. return new SecT193R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
  113. }
  114. ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
  115. L3 = Y3.Divide(X3).Add(X3);
  116. Z3 = curve.FromBigInteger(BigInteger.One);
  117. }
  118. else
  119. {
  120. B = B.Square();
  121. ECFieldElement AU1 = A.Multiply(U1);
  122. ECFieldElement AU2 = A.Multiply(U2);
  123. X3 = AU1.Multiply(AU2);
  124. if (X3.IsZero)
  125. {
  126. return new SecT193R1Point(curve, X3, curve.B.Sqrt(), IsCompressed);
  127. }
  128. ECFieldElement ABZ2 = A.Multiply(B);
  129. if (!Z2IsOne)
  130. {
  131. ABZ2 = ABZ2.Multiply(Z2);
  132. }
  133. L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
  134. Z3 = ABZ2;
  135. if (!Z1IsOne)
  136. {
  137. Z3 = Z3.Multiply(Z1);
  138. }
  139. }
  140. return new SecT193R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
  141. }
  142. public override ECPoint Twice()
  143. {
  144. if (this.IsInfinity)
  145. {
  146. return this;
  147. }
  148. ECCurve curve = this.Curve;
  149. ECFieldElement X1 = this.RawXCoord;
  150. if (X1.IsZero)
  151. {
  152. // A point with X == 0 is it's own Additive inverse
  153. return curve.Infinity;
  154. }
  155. ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
  156. bool Z1IsOne = Z1.IsOne;
  157. ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
  158. ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
  159. ECFieldElement a = curve.A;
  160. ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
  161. ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
  162. if (T.IsZero)
  163. {
  164. return new SecT193R1Point(curve, T, curve.B.Sqrt(), IsCompressed);
  165. }
  166. ECFieldElement X3 = T.Square();
  167. ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
  168. ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
  169. ECFieldElement L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
  170. return new SecT193R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
  171. }
  172. public override ECPoint TwicePlus(ECPoint b)
  173. {
  174. if (this.IsInfinity)
  175. return b;
  176. if (b.IsInfinity)
  177. return Twice();
  178. ECCurve curve = this.Curve;
  179. ECFieldElement X1 = this.RawXCoord;
  180. if (X1.IsZero)
  181. {
  182. // A point with X == 0 is it's own Additive inverse
  183. return b;
  184. }
  185. ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
  186. if (X2.IsZero || !Z2.IsOne)
  187. {
  188. return Twice().Add(b);
  189. }
  190. ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
  191. ECFieldElement L2 = b.RawYCoord;
  192. ECFieldElement X1Sq = X1.Square();
  193. ECFieldElement L1Sq = L1.Square();
  194. ECFieldElement Z1Sq = Z1.Square();
  195. ECFieldElement L1Z1 = L1.Multiply(Z1);
  196. ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
  197. ECFieldElement L2plus1 = L2.AddOne();
  198. ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
  199. ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
  200. ECFieldElement B = X2Z1Sq.Add(T).Square();
  201. if (B.IsZero)
  202. {
  203. if (A.IsZero)
  204. return b.Twice();
  205. return curve.Infinity;
  206. }
  207. if (A.IsZero)
  208. {
  209. return new SecT193R1Point(curve, A, curve.B.Sqrt(), IsCompressed);
  210. }
  211. ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
  212. ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
  213. ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
  214. return new SecT193R1Point(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
  215. }
  216. public override ECPoint Negate()
  217. {
  218. if (this.IsInfinity)
  219. return this;
  220. ECFieldElement X = this.RawXCoord;
  221. if (X.IsZero)
  222. return this;
  223. // L is actually Lambda (X + Y/X) here
  224. ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
  225. return new SecT193R1Point(Curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
  226. }
  227. }
  228. }
  229. #endif