SecP224R1FieldElement.cs 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. using System;
  3. using Org.BouncyCastle.Math.Raw;
  4. using Org.BouncyCastle.Utilities;
  5. namespace Org.BouncyCastle.Math.EC.Custom.Sec
  6. {
  7. internal class SecP224R1FieldElement
  8. : ECFieldElement
  9. {
  10. public static readonly BigInteger Q = SecP224R1Curve.q;
  11. protected internal readonly uint[] x;
  12. public SecP224R1FieldElement(BigInteger x)
  13. {
  14. if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
  15. throw new ArgumentException("value invalid for SecP224R1FieldElement", "x");
  16. this.x = SecP224R1Field.FromBigInteger(x);
  17. }
  18. public SecP224R1FieldElement()
  19. {
  20. this.x = Nat224.Create();
  21. }
  22. protected internal SecP224R1FieldElement(uint[] x)
  23. {
  24. this.x = x;
  25. }
  26. public override bool IsZero
  27. {
  28. get { return Nat224.IsZero(x); }
  29. }
  30. public override bool IsOne
  31. {
  32. get { return Nat224.IsOne(x); }
  33. }
  34. public override bool TestBitZero()
  35. {
  36. return Nat224.GetBit(x, 0) == 1;
  37. }
  38. public override BigInteger ToBigInteger()
  39. {
  40. return Nat224.ToBigInteger(x);
  41. }
  42. public override string FieldName
  43. {
  44. get { return "SecP224R1Field"; }
  45. }
  46. public override int FieldSize
  47. {
  48. get { return Q.BitLength; }
  49. }
  50. public override ECFieldElement Add(ECFieldElement b)
  51. {
  52. uint[] z = Nat224.Create();
  53. SecP224R1Field.Add(x, ((SecP224R1FieldElement)b).x, z);
  54. return new SecP224R1FieldElement(z);
  55. }
  56. public override ECFieldElement AddOne()
  57. {
  58. uint[] z = Nat224.Create();
  59. SecP224R1Field.AddOne(x, z);
  60. return new SecP224R1FieldElement(z);
  61. }
  62. public override ECFieldElement Subtract(ECFieldElement b)
  63. {
  64. uint[] z = Nat224.Create();
  65. SecP224R1Field.Subtract(x, ((SecP224R1FieldElement)b).x, z);
  66. return new SecP224R1FieldElement(z);
  67. }
  68. public override ECFieldElement Multiply(ECFieldElement b)
  69. {
  70. uint[] z = Nat224.Create();
  71. SecP224R1Field.Multiply(x, ((SecP224R1FieldElement)b).x, z);
  72. return new SecP224R1FieldElement(z);
  73. }
  74. public override ECFieldElement Divide(ECFieldElement b)
  75. {
  76. //return Multiply(b.Invert());
  77. uint[] z = Nat224.Create();
  78. Mod.Invert(SecP224R1Field.P, ((SecP224R1FieldElement)b).x, z);
  79. SecP224R1Field.Multiply(z, x, z);
  80. return new SecP224R1FieldElement(z);
  81. }
  82. public override ECFieldElement Negate()
  83. {
  84. uint[] z = Nat224.Create();
  85. SecP224R1Field.Negate(x, z);
  86. return new SecP224R1FieldElement(z);
  87. }
  88. public override ECFieldElement Square()
  89. {
  90. uint[] z = Nat224.Create();
  91. SecP224R1Field.Square(x, z);
  92. return new SecP224R1FieldElement(z);
  93. }
  94. public override ECFieldElement Invert()
  95. {
  96. //return new SecP224R1FieldElement(ToBigInteger().ModInverse(Q));
  97. uint[] z = Nat224.Create();
  98. Mod.Invert(SecP224R1Field.P, x, z);
  99. return new SecP224R1FieldElement(z);
  100. }
  101. /**
  102. * return a sqrt root - the routine verifies that the calculation returns the right value - if
  103. * none exists it returns null.
  104. */
  105. public override ECFieldElement Sqrt()
  106. {
  107. uint[] c = this.x;
  108. if (Nat224.IsZero(c) || Nat224.IsOne(c))
  109. return this;
  110. uint[] nc = Nat224.Create();
  111. SecP224R1Field.Negate(c, nc);
  112. uint[] r = Mod.Random(SecP224R1Field.P);
  113. uint[] t = Nat224.Create();
  114. if (!IsSquare(c))
  115. return null;
  116. while (!TrySqrt(nc, r, t))
  117. {
  118. SecP224R1Field.AddOne(r, r);
  119. }
  120. SecP224R1Field.Square(t, r);
  121. return Nat224.Eq(c, r) ? new SecP224R1FieldElement(t) : null;
  122. }
  123. public override bool Equals(object obj)
  124. {
  125. return Equals(obj as SecP224R1FieldElement);
  126. }
  127. public override bool Equals(ECFieldElement other)
  128. {
  129. return Equals(other as SecP224R1FieldElement);
  130. }
  131. public virtual bool Equals(SecP224R1FieldElement other)
  132. {
  133. if (this == other)
  134. return true;
  135. if (null == other)
  136. return false;
  137. return Nat224.Eq(x, other.x);
  138. }
  139. public override int GetHashCode()
  140. {
  141. return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 7);
  142. }
  143. private static bool IsSquare(uint[] x)
  144. {
  145. uint[] t1 = Nat224.Create();
  146. uint[] t2 = Nat224.Create();
  147. Nat224.Copy(x, t1);
  148. for (int i = 0; i < 7; ++i)
  149. {
  150. Nat224.Copy(t1, t2);
  151. SecP224R1Field.SquareN(t1, 1 << i, t1);
  152. SecP224R1Field.Multiply(t1, t2, t1);
  153. }
  154. SecP224R1Field.SquareN(t1, 95, t1);
  155. return Nat224.IsOne(t1);
  156. }
  157. private static void RM(uint[] nc, uint[] d0, uint[] e0, uint[] d1, uint[] e1, uint[] f1, uint[] t)
  158. {
  159. SecP224R1Field.Multiply(e1, e0, t);
  160. SecP224R1Field.Multiply(t, nc, t);
  161. SecP224R1Field.Multiply(d1, d0, f1);
  162. SecP224R1Field.Add(f1, t, f1);
  163. SecP224R1Field.Multiply(d1, e0, t);
  164. Nat224.Copy(f1, d1);
  165. SecP224R1Field.Multiply(e1, d0, e1);
  166. SecP224R1Field.Add(e1, t, e1);
  167. SecP224R1Field.Square(e1, f1);
  168. SecP224R1Field.Multiply(f1, nc, f1);
  169. }
  170. private static void RP(uint[] nc, uint[] d1, uint[] e1, uint[] f1, uint[] t)
  171. {
  172. Nat224.Copy(nc, f1);
  173. uint[] d0 = Nat224.Create();
  174. uint[] e0 = Nat224.Create();
  175. for (int i = 0; i < 7; ++i)
  176. {
  177. Nat224.Copy(d1, d0);
  178. Nat224.Copy(e1, e0);
  179. int j = 1 << i;
  180. while (--j >= 0)
  181. {
  182. RS(d1, e1, f1, t);
  183. }
  184. RM(nc, d0, e0, d1, e1, f1, t);
  185. }
  186. }
  187. private static void RS(uint[] d, uint[] e, uint[] f, uint[] t)
  188. {
  189. SecP224R1Field.Multiply(e, d, e);
  190. SecP224R1Field.Twice(e, e);
  191. SecP224R1Field.Square(d, t);
  192. SecP224R1Field.Add(f, t, d);
  193. SecP224R1Field.Multiply(f, t, f);
  194. uint c = Nat.ShiftUpBits(7, f, 2, 0);
  195. SecP224R1Field.Reduce32(c, f);
  196. }
  197. private static bool TrySqrt(uint[] nc, uint[] r, uint[] t)
  198. {
  199. uint[] d1 = Nat224.Create();
  200. Nat224.Copy(r, d1);
  201. uint[] e1 = Nat224.Create();
  202. e1[0] = 1;
  203. uint[] f1 = Nat224.Create();
  204. RP(nc, d1, e1, f1, t);
  205. uint[] d0 = Nat224.Create();
  206. uint[] e0 = Nat224.Create();
  207. for (int k = 1; k < 96; ++k)
  208. {
  209. Nat224.Copy(d1, d0);
  210. Nat224.Copy(e1, e0);
  211. RS(d1, e1, f1, t);
  212. if (Nat224.IsZero(d1))
  213. {
  214. Mod.Invert(SecP224R1Field.P, e0, t);
  215. SecP224R1Field.Multiply(t, d0, t);
  216. return true;
  217. }
  218. }
  219. return false;
  220. }
  221. }
  222. }
  223. #endif