123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
- using System;
- using System.Diagnostics;
- using Org.BouncyCastle.Math.Raw;
- using Org.BouncyCastle.Utilities;
- namespace Org.BouncyCastle.Math.EC.Custom.Sec
- {
- internal class SecP224K1FieldElement
- : ECFieldElement
- {
- public static readonly BigInteger Q = SecP224K1Curve.q;
- // Calculated as BigInteger.Two.ModPow(Q.ShiftRight(2), Q)
- private static readonly uint[] PRECOMP_POW2 = new uint[]{ 0x33bfd202, 0xdcfad133, 0x2287624a, 0xc3811ba8,
- 0xa85558fc, 0x1eaef5d7, 0x8edf154c };
- protected internal readonly uint[] x;
- public SecP224K1FieldElement(BigInteger x)
- {
- if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
- throw new ArgumentException("value invalid for SecP224K1FieldElement", "x");
- this.x = SecP224K1Field.FromBigInteger(x);
- }
- public SecP224K1FieldElement()
- {
- this.x = Nat224.Create();
- }
- protected internal SecP224K1FieldElement(uint[] x)
- {
- this.x = x;
- }
- public override bool IsZero
- {
- get { return Nat224.IsZero(x); }
- }
- public override bool IsOne
- {
- get { return Nat224.IsOne(x); }
- }
- public override bool TestBitZero()
- {
- return Nat224.GetBit(x, 0) == 1;
- }
- public override BigInteger ToBigInteger()
- {
- return Nat224.ToBigInteger(x);
- }
- public override string FieldName
- {
- get { return "SecP224K1Field"; }
- }
- public override int FieldSize
- {
- get { return Q.BitLength; }
- }
- public override ECFieldElement Add(ECFieldElement b)
- {
- uint[] z = Nat224.Create();
- SecP224K1Field.Add(x, ((SecP224K1FieldElement)b).x, z);
- return new SecP224K1FieldElement(z);
- }
- public override ECFieldElement AddOne()
- {
- uint[] z = Nat224.Create();
- SecP224K1Field.AddOne(x, z);
- return new SecP224K1FieldElement(z);
- }
- public override ECFieldElement Subtract(ECFieldElement b)
- {
- uint[] z = Nat224.Create();
- SecP224K1Field.Subtract(x, ((SecP224K1FieldElement)b).x, z);
- return new SecP224K1FieldElement(z);
- }
- public override ECFieldElement Multiply(ECFieldElement b)
- {
- uint[] z = Nat224.Create();
- SecP224K1Field.Multiply(x, ((SecP224K1FieldElement)b).x, z);
- return new SecP224K1FieldElement(z);
- }
- public override ECFieldElement Divide(ECFieldElement b)
- {
- //return Multiply(b.Invert());
- uint[] z = Nat224.Create();
- Mod.Invert(SecP224K1Field.P, ((SecP224K1FieldElement)b).x, z);
- SecP224K1Field.Multiply(z, x, z);
- return new SecP224K1FieldElement(z);
- }
- public override ECFieldElement Negate()
- {
- uint[] z = Nat224.Create();
- SecP224K1Field.Negate(x, z);
- return new SecP224K1FieldElement(z);
- }
- public override ECFieldElement Square()
- {
- uint[] z = Nat224.Create();
- SecP224K1Field.Square(x, z);
- return new SecP224K1FieldElement(z);
- }
- public override ECFieldElement Invert()
- {
- //return new SecP224K1FieldElement(ToBigInteger().ModInverse(Q));
- uint[] z = Nat224.Create();
- Mod.Invert(SecP224K1Field.P, x, z);
- return new SecP224K1FieldElement(z);
- }
- /**
- * return a sqrt root - the routine verifies that the calculation returns the right value - if
- * none exists it returns null.
- */
- public override ECFieldElement Sqrt()
- {
- /*
- * Q == 8m + 5, so we use Pocklington's method for this case.
- *
- * First, raise this element to the exponent 2^221 - 2^29 - 2^9 - 2^8 - 2^6 - 2^4 - 2^1 (i.e. m + 1)
- *
- * Breaking up the exponent's binary representation into "repunits", we get:
- * { 191 1s } { 1 0s } { 19 1s } { 2 0s } { 1 1s } { 1 0s} { 1 1s } { 1 0s} { 3 1s } { 1 0s}
- *
- * Therefore we need an addition chain containing 1, 3, 19, 191 (the lengths of the repunits)
- * We use: [1], 2, [3], 4, 8, 11, [19], 23, 42, 84, 107, [191]
- */
- uint[] x1 = this.x;
- if (Nat224.IsZero(x1) || Nat224.IsOne(x1))
- return this;
- uint[] x2 = Nat224.Create();
- SecP224K1Field.Square(x1, x2);
- SecP224K1Field.Multiply(x2, x1, x2);
- uint[] x3 = x2;
- SecP224K1Field.Square(x2, x3);
- SecP224K1Field.Multiply(x3, x1, x3);
- uint[] x4 = Nat224.Create();
- SecP224K1Field.Square(x3, x4);
- SecP224K1Field.Multiply(x4, x1, x4);
- uint[] x8 = Nat224.Create();
- SecP224K1Field.SquareN(x4, 4, x8);
- SecP224K1Field.Multiply(x8, x4, x8);
- uint[] x11 = Nat224.Create();
- SecP224K1Field.SquareN(x8, 3, x11);
- SecP224K1Field.Multiply(x11, x3, x11);
- uint[] x19 = x11;
- SecP224K1Field.SquareN(x11, 8, x19);
- SecP224K1Field.Multiply(x19, x8, x19);
- uint[] x23 = x8;
- SecP224K1Field.SquareN(x19, 4, x23);
- SecP224K1Field.Multiply(x23, x4, x23);
- uint[] x42 = x4;
- SecP224K1Field.SquareN(x23, 19, x42);
- SecP224K1Field.Multiply(x42, x19, x42);
- uint[] x84 = Nat224.Create();
- SecP224K1Field.SquareN(x42, 42, x84);
- SecP224K1Field.Multiply(x84, x42, x84);
- uint[] x107 = x42;
- SecP224K1Field.SquareN(x84, 23, x107);
- SecP224K1Field.Multiply(x107, x23, x107);
- uint[] x191 = x23;
- SecP224K1Field.SquareN(x107, 84, x191);
- SecP224K1Field.Multiply(x191, x84, x191);
- uint[] t1 = x191;
- SecP224K1Field.SquareN(t1, 20, t1);
- SecP224K1Field.Multiply(t1, x19, t1);
- SecP224K1Field.SquareN(t1, 3, t1);
- SecP224K1Field.Multiply(t1, x1, t1);
- SecP224K1Field.SquareN(t1, 2, t1);
- SecP224K1Field.Multiply(t1, x1, t1);
- SecP224K1Field.SquareN(t1, 4, t1);
- SecP224K1Field.Multiply(t1, x3, t1);
- SecP224K1Field.Square(t1, t1);
- uint[] t2 = x84;
- SecP224K1Field.Square(t1, t2);
- if (Nat224.Eq(x1, t2))
- {
- return new SecP224K1FieldElement(t1);
- }
- /*
- * If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess,
- * which is ((4x)^(m + 1))/2 mod Q
- */
- SecP224K1Field.Multiply(t1, PRECOMP_POW2, t1);
- SecP224K1Field.Square(t1, t2);
- if (Nat224.Eq(x1, t2))
- {
- return new SecP224K1FieldElement(t1);
- }
- return null;
- }
- public override bool Equals(object obj)
- {
- return Equals(obj as SecP224K1FieldElement);
- }
- public override bool Equals(ECFieldElement other)
- {
- return Equals(other as SecP224K1FieldElement);
- }
- public virtual bool Equals(SecP224K1FieldElement other)
- {
- if (this == other)
- return true;
- if (null == other)
- return false;
- return Nat224.Eq(x, other.x);
- }
- public override int GetHashCode()
- {
- return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 7);
- }
- }
- }
- #endif
|