using System.Collections.Generic; using UnityEngine; public class NxrTriangulator { private List m_points = new List(); public NxrTriangulator(Vector2[] points) { m_points = new List(points); } public int[] Triangulate() { List indices = new List(); int n = m_points.Count; if (n < 3) return indices.ToArray(); int[] V = new int[n]; if (Area() > 0) { for (int v = 0; v < n; v++) V[v] = v; } else { for (int v = 0; v < n; v++) V[v] = (n - 1) - v; } int nv = n; int count = 2 * nv; for (int m = 0, v = nv - 1; nv > 2;) { if ((count--) <= 0) { if (!IsClockwise(indices[0], indices[1], indices[2])) { indices.Reverse(); } return indices.ToArray(); } int u = v; if (nv <= u) u = 0; v = u + 1; if (nv <= v) v = 0; int w = v + 1; if (nv <= w) w = 0; if (Snip(u, v, w, nv, V)) { int a, b, c, s, t; a = V[u]; b = V[v]; c = V[w]; indices.Add(a); indices.Add(b); indices.Add(c); m++; for (s = v, t = v + 1; t < nv; s++, t++) V[s] = V[t]; nv--; count = 2 * nv; } } // 统一转换为顺时针的顺序 // triangles=0,9,8,8,7,6,3,2,1,1,0,8,3,1,8,3,8,6, // triangles=0,8,7,7,6,5,5,4,3,3,2,1,1,0,7,7,5,3,3,1,7, // indices.Reverse(); if(!IsClockwise(indices[0], indices[1], indices[2])) { indices.Reverse(); } return indices.ToArray(); } bool IsClockwise(int p0, int p1, int p2) { // Vector2 p1Vec = m_points[p1] - m_points[p0]; Vector2 p2Vec = m_points[p2] - m_points[p0]; //V1(x1, y1) X V2(x2, y2) = x1y2 – y1x2 // 结果为正时,p0 - p1 - p2 逆时针, // 结果为负时,p0 - p1 - p2 走向为顺时针, float res = p1Vec.x * p2Vec.y - p1Vec.y * p2Vec.x; return res < 0; } private float Area() { int n = m_points.Count; float A = 0.0f; for (int p = n - 1, q = 0; q < n; p = q++) { Vector2 pval = m_points[p]; Vector2 qval = m_points[q]; A += pval.x * qval.y - qval.x * pval.y; } return (A * 0.5f); } private bool Snip(int u, int v, int w, int n, int[] V) { int p; Vector2 A = m_points[V[u]]; Vector2 B = m_points[V[v]]; Vector2 C = m_points[V[w]]; if (Mathf.Epsilon > (((B.x - A.x) * (C.y - A.y)) - ((B.y - A.y) * (C.x - A.x)))) return false; for (p = 0; p < n; p++) { if ((p == u) || (p == v) || (p == w)) continue; Vector2 P = m_points[V[p]]; if (InsideTriangle(A, B, C, P)) return false; } return true; } private bool InsideTriangle(Vector2 A, Vector2 B, Vector2 C, Vector2 P) { float ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy; float cCROSSap, bCROSScp, aCROSSbp; ax = C.x - B.x; ay = C.y - B.y; bx = A.x - C.x; by = A.y - C.y; cx = B.x - A.x; cy = B.y - A.y; apx = P.x - A.x; apy = P.y - A.y; bpx = P.x - B.x; bpy = P.y - B.y; cpx = P.x - C.x; cpy = P.y - C.y; aCROSSbp = ax * bpy - ay * bpx; cCROSSap = cx * apy - cy * apx; bCROSScp = bx * cpy - by * cpx; return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f)); } }