SkipjackEngine.cs 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. using System;
  3. using Org.BouncyCastle.Crypto.Parameters;
  4. using Org.BouncyCastle.Utilities;
  5. namespace Org.BouncyCastle.Crypto.Engines
  6. {
  7. /**
  8. * a class that provides a basic SKIPJACK engine.
  9. */
  10. public class SkipjackEngine
  11. : IBlockCipher
  12. {
  13. const int BLOCK_SIZE = 8;
  14. static readonly short [] ftable =
  15. {
  16. 0xa3, 0xd7, 0x09, 0x83, 0xf8, 0x48, 0xf6, 0xf4, 0xb3, 0x21, 0x15, 0x78, 0x99, 0xb1, 0xaf, 0xf9,
  17. 0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e, 0x52, 0x95, 0xd9, 0x1e, 0x4e, 0x38, 0x44, 0x28,
  18. 0x0a, 0xdf, 0x02, 0xa0, 0x17, 0xf1, 0x60, 0x68, 0x12, 0xb7, 0x7a, 0xc3, 0xe9, 0xfa, 0x3d, 0x53,
  19. 0x96, 0x84, 0x6b, 0xba, 0xf2, 0x63, 0x9a, 0x19, 0x7c, 0xae, 0xe5, 0xf5, 0xf7, 0x16, 0x6a, 0xa2,
  20. 0x39, 0xb6, 0x7b, 0x0f, 0xc1, 0x93, 0x81, 0x1b, 0xee, 0xb4, 0x1a, 0xea, 0xd0, 0x91, 0x2f, 0xb8,
  21. 0x55, 0xb9, 0xda, 0x85, 0x3f, 0x41, 0xbf, 0xe0, 0x5a, 0x58, 0x80, 0x5f, 0x66, 0x0b, 0xd8, 0x90,
  22. 0x35, 0xd5, 0xc0, 0xa7, 0x33, 0x06, 0x65, 0x69, 0x45, 0x00, 0x94, 0x56, 0x6d, 0x98, 0x9b, 0x76,
  23. 0x97, 0xfc, 0xb2, 0xc2, 0xb0, 0xfe, 0xdb, 0x20, 0xe1, 0xeb, 0xd6, 0xe4, 0xdd, 0x47, 0x4a, 0x1d,
  24. 0x42, 0xed, 0x9e, 0x6e, 0x49, 0x3c, 0xcd, 0x43, 0x27, 0xd2, 0x07, 0xd4, 0xde, 0xc7, 0x67, 0x18,
  25. 0x89, 0xcb, 0x30, 0x1f, 0x8d, 0xc6, 0x8f, 0xaa, 0xc8, 0x74, 0xdc, 0xc9, 0x5d, 0x5c, 0x31, 0xa4,
  26. 0x70, 0x88, 0x61, 0x2c, 0x9f, 0x0d, 0x2b, 0x87, 0x50, 0x82, 0x54, 0x64, 0x26, 0x7d, 0x03, 0x40,
  27. 0x34, 0x4b, 0x1c, 0x73, 0xd1, 0xc4, 0xfd, 0x3b, 0xcc, 0xfb, 0x7f, 0xab, 0xe6, 0x3e, 0x5b, 0xa5,
  28. 0xad, 0x04, 0x23, 0x9c, 0x14, 0x51, 0x22, 0xf0, 0x29, 0x79, 0x71, 0x7e, 0xff, 0x8c, 0x0e, 0xe2,
  29. 0x0c, 0xef, 0xbc, 0x72, 0x75, 0x6f, 0x37, 0xa1, 0xec, 0xd3, 0x8e, 0x62, 0x8b, 0x86, 0x10, 0xe8,
  30. 0x08, 0x77, 0x11, 0xbe, 0x92, 0x4f, 0x24, 0xc5, 0x32, 0x36, 0x9d, 0xcf, 0xf3, 0xa6, 0xbb, 0xac,
  31. 0x5e, 0x6c, 0xa9, 0x13, 0x57, 0x25, 0xb5, 0xe3, 0xbd, 0xa8, 0x3a, 0x01, 0x05, 0x59, 0x2a, 0x46
  32. };
  33. private int[] key0, key1, key2, key3;
  34. private bool encrypting;
  35. /**
  36. * initialise a SKIPJACK cipher.
  37. *
  38. * @param forEncryption whether or not we are for encryption.
  39. * @param parameters the parameters required to set up the cipher.
  40. * @exception ArgumentException if the parameters argument is
  41. * inappropriate.
  42. */
  43. public virtual void Init(
  44. bool forEncryption,
  45. ICipherParameters parameters)
  46. {
  47. if (!(parameters is KeyParameter))
  48. throw new ArgumentException("invalid parameter passed to SKIPJACK init - " + Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters));
  49. byte[] keyBytes = ((KeyParameter)parameters).GetKey();
  50. this.encrypting = forEncryption;
  51. this.key0 = new int[32];
  52. this.key1 = new int[32];
  53. this.key2 = new int[32];
  54. this.key3 = new int[32];
  55. //
  56. // expand the key to 128 bytes in 4 parts (saving us a modulo, multiply
  57. // and an addition).
  58. //
  59. for (int i = 0; i < 32; i ++)
  60. {
  61. key0[i] = keyBytes[(i * 4) % 10] & 0xff;
  62. key1[i] = keyBytes[(i * 4 + 1) % 10] & 0xff;
  63. key2[i] = keyBytes[(i * 4 + 2) % 10] & 0xff;
  64. key3[i] = keyBytes[(i * 4 + 3) % 10] & 0xff;
  65. }
  66. }
  67. public virtual string AlgorithmName
  68. {
  69. get { return "SKIPJACK"; }
  70. }
  71. public virtual bool IsPartialBlockOkay
  72. {
  73. get { return false; }
  74. }
  75. public virtual int GetBlockSize()
  76. {
  77. return BLOCK_SIZE;
  78. }
  79. public virtual int ProcessBlock(
  80. byte[] input,
  81. int inOff,
  82. byte[] output,
  83. int outOff)
  84. {
  85. if (key1 == null)
  86. throw new InvalidOperationException("SKIPJACK engine not initialised");
  87. Check.DataLength(input, inOff, BLOCK_SIZE, "input buffer too short");
  88. Check.OutputLength(output, outOff, BLOCK_SIZE, "output buffer too short");
  89. if (encrypting)
  90. {
  91. EncryptBlock(input, inOff, output, outOff);
  92. }
  93. else
  94. {
  95. DecryptBlock(input, inOff, output, outOff);
  96. }
  97. return BLOCK_SIZE;
  98. }
  99. public virtual void Reset()
  100. {
  101. }
  102. /**
  103. * The G permutation
  104. */
  105. private int G(
  106. int k,
  107. int w)
  108. {
  109. int g1, g2, g3, g4, g5, g6;
  110. g1 = (w >> 8) & 0xff;
  111. g2 = w & 0xff;
  112. g3 = ftable[g2 ^ key0[k]] ^ g1;
  113. g4 = ftable[g3 ^ key1[k]] ^ g2;
  114. g5 = ftable[g4 ^ key2[k]] ^ g3;
  115. g6 = ftable[g5 ^ key3[k]] ^ g4;
  116. return ((g5 << 8) + g6);
  117. }
  118. public virtual int EncryptBlock(
  119. byte[] input,
  120. int inOff,
  121. byte[] outBytes,
  122. int outOff)
  123. {
  124. int w1 = (input[inOff + 0] << 8) + (input[inOff + 1] & 0xff);
  125. int w2 = (input[inOff + 2] << 8) + (input[inOff + 3] & 0xff);
  126. int w3 = (input[inOff + 4] << 8) + (input[inOff + 5] & 0xff);
  127. int w4 = (input[inOff + 6] << 8) + (input[inOff + 7] & 0xff);
  128. int k = 0;
  129. for (int t = 0; t < 2; t++)
  130. {
  131. for(int i = 0; i < 8; i++)
  132. {
  133. int tmp = w4;
  134. w4 = w3;
  135. w3 = w2;
  136. w2 = G(k, w1);
  137. w1 = w2 ^ tmp ^ (k + 1);
  138. k++;
  139. }
  140. for(int i = 0; i < 8; i++)
  141. {
  142. int tmp = w4;
  143. w4 = w3;
  144. w3 = w1 ^ w2 ^ (k + 1);
  145. w2 = G(k, w1);
  146. w1 = tmp;
  147. k++;
  148. }
  149. }
  150. outBytes[outOff + 0] = (byte)((w1 >> 8));
  151. outBytes[outOff + 1] = (byte)(w1);
  152. outBytes[outOff + 2] = (byte)((w2 >> 8));
  153. outBytes[outOff + 3] = (byte)(w2);
  154. outBytes[outOff + 4] = (byte)((w3 >> 8));
  155. outBytes[outOff + 5] = (byte)(w3);
  156. outBytes[outOff + 6] = (byte)((w4 >> 8));
  157. outBytes[outOff + 7] = (byte)(w4);
  158. return BLOCK_SIZE;
  159. }
  160. /**
  161. * the inverse of the G permutation.
  162. */
  163. private int H(
  164. int k,
  165. int w)
  166. {
  167. int h1, h2, h3, h4, h5, h6;
  168. h1 = w & 0xff;
  169. h2 = (w >> 8) & 0xff;
  170. h3 = ftable[h2 ^ key3[k]] ^ h1;
  171. h4 = ftable[h3 ^ key2[k]] ^ h2;
  172. h5 = ftable[h4 ^ key1[k]] ^ h3;
  173. h6 = ftable[h5 ^ key0[k]] ^ h4;
  174. return ((h6 << 8) + h5);
  175. }
  176. public virtual int DecryptBlock(
  177. byte[] input,
  178. int inOff,
  179. byte[] outBytes,
  180. int outOff)
  181. {
  182. int w2 = (input[inOff + 0] << 8) + (input[inOff + 1] & 0xff);
  183. int w1 = (input[inOff + 2] << 8) + (input[inOff + 3] & 0xff);
  184. int w4 = (input[inOff + 4] << 8) + (input[inOff + 5] & 0xff);
  185. int w3 = (input[inOff + 6] << 8) + (input[inOff + 7] & 0xff);
  186. int k = 31;
  187. for (int t = 0; t < 2; t++)
  188. {
  189. for(int i = 0; i < 8; i++)
  190. {
  191. int tmp = w4;
  192. w4 = w3;
  193. w3 = w2;
  194. w2 = H(k, w1);
  195. w1 = w2 ^ tmp ^ (k + 1);
  196. k--;
  197. }
  198. for(int i = 0; i < 8; i++)
  199. {
  200. int tmp = w4;
  201. w4 = w3;
  202. w3 = w1 ^ w2 ^ (k + 1);
  203. w2 = H(k, w1);
  204. w1 = tmp;
  205. k--;
  206. }
  207. }
  208. outBytes[outOff + 0] = (byte)((w2 >> 8));
  209. outBytes[outOff + 1] = (byte)(w2);
  210. outBytes[outOff + 2] = (byte)((w1 >> 8));
  211. outBytes[outOff + 3] = (byte)(w1);
  212. outBytes[outOff + 4] = (byte)((w4 >> 8));
  213. outBytes[outOff + 5] = (byte)(w4);
  214. outBytes[outOff + 6] = (byte)((w3 >> 8));
  215. outBytes[outOff + 7] = (byte)(w3);
  216. return BLOCK_SIZE;
  217. }
  218. }
  219. }
  220. #endif