using UnityEngine; using System.Collections; namespace RootMotion { /// /// Helper methods for dealing with 3-dimensional vectors. /// public static class V3Tools { /// /// Returns yaw angle (-180 - 180) of 'forward' vector. /// public static float GetYaw(Vector3 forward) { return Mathf.Atan2(forward.x, forward.z) * Mathf.Rad2Deg; } /// /// Returns pitch angle (-90 - 90) of 'forward' vector. /// public static float GetPitch(Vector3 forward) { forward = forward.normalized; // Asin range -1 - 1 return -Mathf.Asin(forward.y) * Mathf.Rad2Deg; } /// /// Returns bank angle (-180 - 180) of 'forward' and 'up' vectors. /// public static float GetBank(Vector3 forward, Vector3 up) { Quaternion q = Quaternion.Inverse(Quaternion.LookRotation(Vector3.up, forward)); up = q * up; return Mathf.Atan2(up.x, up.z) * Mathf.Rad2Deg; } /// /// Returns yaw angle (-180 - 180) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes. /// public static float GetYaw(Vector3 spaceForward, Vector3 spaceUp, Vector3 forward) { Quaternion space = Quaternion.Inverse(Quaternion.LookRotation(spaceForward, spaceUp)); Vector3 dirLocal = space * forward; return Mathf.Atan2(dirLocal.x, dirLocal.z) * Mathf.Rad2Deg; } /// /// Returns pitch angle (-90 - 90) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes. /// public static float GetPitch(Vector3 spaceForward, Vector3 spaceUp, Vector3 forward) { Quaternion space = Quaternion.Inverse(Quaternion.LookRotation(spaceForward, spaceUp)); Vector3 dirLocal = space * forward; return -Mathf.Asin(dirLocal.y) * Mathf.Rad2Deg; } /// /// Returns bank angle (-180 - 180) of 'forward' and 'up' vectors relative to rotation space defined by spaceForward and spaceUp axes. /// public static float GetBank(Vector3 spaceForward, Vector3 spaceUp, Vector3 forward, Vector3 up) { Quaternion space = Quaternion.Inverse(Quaternion.LookRotation(spaceForward, spaceUp)); forward = space * forward; up = space * up; Quaternion q = Quaternion.Inverse(Quaternion.LookRotation(spaceUp, forward)); up = q * up; return Mathf.Atan2(up.x, up.z) * Mathf.Rad2Deg; } /// /// Optimized Vector3.Lerp /// public static Vector3 Lerp(Vector3 fromVector, Vector3 toVector, float weight) { if (weight <= 0f) return fromVector; if (weight >= 1f) return toVector; return Vector3.Lerp(fromVector, toVector, weight); } /// /// Optimized Vector3.Slerp /// public static Vector3 Slerp(Vector3 fromVector, Vector3 toVector, float weight) { if (weight <= 0f) return fromVector; if (weight >= 1f) return toVector; return Vector3.Slerp(fromVector, toVector, weight); } /// /// Returns vector projection on axis multiplied by weight. /// public static Vector3 ExtractVertical(Vector3 v, Vector3 verticalAxis, float weight) { if (weight == 0f) return Vector3.zero; return Vector3.Project(v, verticalAxis) * weight; } /// /// Returns vector projected to a plane and multiplied by weight. /// public static Vector3 ExtractHorizontal(Vector3 v, Vector3 normal, float weight) { if (weight == 0f) return Vector3.zero; Vector3 tangent = v; Vector3.OrthoNormalize(ref normal, ref tangent); return Vector3.Project(v, tangent) * weight; } /// /// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result. /// public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing) { if (clampWeight <= 0) return direction; if (clampWeight >= 1f) return normalDirection; // Getting the angle between direction and normalDirection float angle = Vector3.Angle(normalDirection, direction); float dot = 1f - (angle / 180f); if (dot > clampWeight) return direction; // Clamping the target float targetClampMlp = clampWeight > 0 ? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f) : 1f; // Calculating the clamp multiplier float clampMlp = clampWeight > 0 ? Mathf.Clamp(dot / clampWeight, 0f, 1f) : 1f; // Sine smoothing iterations for (int i = 0; i < clampSmoothing; i++) { float sinF = clampMlp * Mathf.PI * 0.5f; clampMlp = Mathf.Sin(sinF); } // Slerping the direction (don't use Lerp here, it breaks it) return Vector3.Slerp(normalDirection, direction, clampMlp * targetClampMlp); } /// /// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result. /// public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing, out bool changed) { changed = false; if (clampWeight <= 0) return direction; if (clampWeight >= 1f) { changed = true; return normalDirection; } // Getting the angle between direction and normalDirection float angle = Vector3.Angle(normalDirection, direction); float dot = 1f - (angle / 180f); if (dot > clampWeight) return direction; changed = true; // Clamping the target float targetClampMlp = clampWeight > 0? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f): 1f; // Calculating the clamp multiplier float clampMlp = clampWeight > 0? Mathf.Clamp(dot / clampWeight, 0f, 1f): 1f; // Sine smoothing iterations for (int i = 0; i < clampSmoothing; i++) { float sinF = clampMlp * Mathf.PI * 0.5f; clampMlp = Mathf.Sin(sinF); } // Slerping the direction (don't use Lerp here, it breaks it) return Vector3.Slerp(normalDirection, direction, clampMlp * targetClampMlp); } /// /// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result. /// public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing, out float clampValue) { clampValue = 1f; if (clampWeight <= 0) return direction; if (clampWeight >= 1f) { return normalDirection; } // Getting the angle between direction and normalDirection float angle = Vector3.Angle(normalDirection, direction); float dot = 1f - (angle / 180f); if (dot > clampWeight) { clampValue = 0f; return direction; } // Clamping the target float targetClampMlp = clampWeight > 0? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f): 1f; // Calculating the clamp multiplier float clampMlp = clampWeight > 0? Mathf.Clamp(dot / clampWeight, 0f, 1f): 1f; // Sine smoothing iterations for (int i = 0; i < clampSmoothing; i++) { float sinF = clampMlp * Mathf.PI * 0.5f; clampMlp = Mathf.Sin(sinF); } // Slerping the direction (don't use Lerp here, it breaks it) float slerp = clampMlp * targetClampMlp; clampValue = 1f - slerp; return Vector3.Slerp(normalDirection, direction, slerp); } /// /// Get the intersection point of line and plane /// public static Vector3 LineToPlane(Vector3 origin, Vector3 direction, Vector3 planeNormal, Vector3 planePoint) { float dot = Vector3.Dot(planePoint - origin, planeNormal); float normalDot = Vector3.Dot(direction, planeNormal); if (normalDot == 0.0f) return Vector3.zero; float dist = dot / normalDot; return origin + direction.normalized * dist; } /// /// Projects a point to a plane. /// public static Vector3 PointToPlane(Vector3 point, Vector3 planePosition, Vector3 planeNormal) { if (planeNormal == Vector3.up) { return new Vector3(point.x, planePosition.y, point.z); } Vector3 tangent = point - planePosition; Vector3 normal = planeNormal; Vector3.OrthoNormalize(ref normal, ref tangent); return planePosition + Vector3.Project(point - planePosition, tangent); } /// /// Same as Transform.TransformPoint(), but not using scale. /// public static Vector3 TransformPointUnscaled(Transform t, Vector3 point) { return t.position + t.rotation * point; } /// /// Same as Transform.InverseTransformPoint(), but not using scale. /// public static Vector3 InverseTransformPointUnscaled(Transform t, Vector3 point) { return Quaternion.Inverse(t.rotation) * (point - t.position); } /// /// Same as Transform.InverseTransformPoint(); /// public static Vector3 InverseTransformPoint(Vector3 tPos, Quaternion tRot, Vector3 tScale, Vector3 point) { return Div(Quaternion.Inverse(tRot) * (point - tPos), tScale); } /// /// Same as Transform.TransformPoint() /// public static Vector3 TransformPoint(Vector3 tPos, Quaternion tRot, Vector3 tScale, Vector3 point) { return tPos + Vector3.Scale(tRot * point, tScale); } /// /// Divides the values of v1 by the values of v2. /// public static Vector3 Div(Vector3 v1, Vector3 v2) { return new Vector3(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z); } } }