using UnityEngine;
using System.Collections;
namespace RootMotion {
///
/// Helper methods for dealing with 3-dimensional vectors.
///
public static class V3Tools {
///
/// Returns yaw angle (-180 - 180) of 'forward' vector.
///
public static float GetYaw(Vector3 forward)
{
return Mathf.Atan2(forward.x, forward.z) * Mathf.Rad2Deg;
}
///
/// Returns pitch angle (-90 - 90) of 'forward' vector.
///
public static float GetPitch(Vector3 forward)
{
forward = forward.normalized; // Asin range -1 - 1
return -Mathf.Asin(forward.y) * Mathf.Rad2Deg;
}
///
/// Returns bank angle (-180 - 180) of 'forward' and 'up' vectors.
///
public static float GetBank(Vector3 forward, Vector3 up)
{
Quaternion q = Quaternion.Inverse(Quaternion.LookRotation(Vector3.up, forward));
up = q * up;
return Mathf.Atan2(up.x, up.z) * Mathf.Rad2Deg;
}
///
/// Returns yaw angle (-180 - 180) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes.
///
public static float GetYaw(Vector3 spaceForward, Vector3 spaceUp, Vector3 forward)
{
Quaternion space = Quaternion.Inverse(Quaternion.LookRotation(spaceForward, spaceUp));
Vector3 dirLocal = space * forward;
return Mathf.Atan2(dirLocal.x, dirLocal.z) * Mathf.Rad2Deg;
}
///
/// Returns pitch angle (-90 - 90) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes.
///
public static float GetPitch(Vector3 spaceForward, Vector3 spaceUp, Vector3 forward)
{
Quaternion space = Quaternion.Inverse(Quaternion.LookRotation(spaceForward, spaceUp));
Vector3 dirLocal = space * forward;
return -Mathf.Asin(dirLocal.y) * Mathf.Rad2Deg;
}
///
/// Returns bank angle (-180 - 180) of 'forward' and 'up' vectors relative to rotation space defined by spaceForward and spaceUp axes.
///
public static float GetBank(Vector3 spaceForward, Vector3 spaceUp, Vector3 forward, Vector3 up)
{
Quaternion space = Quaternion.Inverse(Quaternion.LookRotation(spaceForward, spaceUp));
forward = space * forward;
up = space * up;
Quaternion q = Quaternion.Inverse(Quaternion.LookRotation(spaceUp, forward));
up = q * up;
return Mathf.Atan2(up.x, up.z) * Mathf.Rad2Deg;
}
///
/// Optimized Vector3.Lerp
///
public static Vector3 Lerp(Vector3 fromVector, Vector3 toVector, float weight) {
if (weight <= 0f) return fromVector;
if (weight >= 1f) return toVector;
return Vector3.Lerp(fromVector, toVector, weight);
}
///
/// Optimized Vector3.Slerp
///
public static Vector3 Slerp(Vector3 fromVector, Vector3 toVector, float weight) {
if (weight <= 0f) return fromVector;
if (weight >= 1f) return toVector;
return Vector3.Slerp(fromVector, toVector, weight);
}
///
/// Returns vector projection on axis multiplied by weight.
///
public static Vector3 ExtractVertical(Vector3 v, Vector3 verticalAxis, float weight) {
if (weight == 0f) return Vector3.zero;
return Vector3.Project(v, verticalAxis) * weight;
}
///
/// Returns vector projected to a plane and multiplied by weight.
///
public static Vector3 ExtractHorizontal(Vector3 v, Vector3 normal, float weight) {
if (weight == 0f) return Vector3.zero;
Vector3 tangent = v;
Vector3.OrthoNormalize(ref normal, ref tangent);
return Vector3.Project(v, tangent) * weight;
}
///
/// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result.
///
public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing)
{
if (clampWeight <= 0) return direction;
if (clampWeight >= 1f) return normalDirection;
// Getting the angle between direction and normalDirection
float angle = Vector3.Angle(normalDirection, direction);
float dot = 1f - (angle / 180f);
if (dot > clampWeight) return direction;
// Clamping the target
float targetClampMlp = clampWeight > 0 ? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f) : 1f;
// Calculating the clamp multiplier
float clampMlp = clampWeight > 0 ? Mathf.Clamp(dot / clampWeight, 0f, 1f) : 1f;
// Sine smoothing iterations
for (int i = 0; i < clampSmoothing; i++)
{
float sinF = clampMlp * Mathf.PI * 0.5f;
clampMlp = Mathf.Sin(sinF);
}
// Slerping the direction (don't use Lerp here, it breaks it)
return Vector3.Slerp(normalDirection, direction, clampMlp * targetClampMlp);
}
///
/// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result.
///
public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing, out bool changed) {
changed = false;
if (clampWeight <= 0) return direction;
if (clampWeight >= 1f) {
changed = true;
return normalDirection;
}
// Getting the angle between direction and normalDirection
float angle = Vector3.Angle(normalDirection, direction);
float dot = 1f - (angle / 180f);
if (dot > clampWeight) return direction;
changed = true;
// Clamping the target
float targetClampMlp = clampWeight > 0? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f): 1f;
// Calculating the clamp multiplier
float clampMlp = clampWeight > 0? Mathf.Clamp(dot / clampWeight, 0f, 1f): 1f;
// Sine smoothing iterations
for (int i = 0; i < clampSmoothing; i++) {
float sinF = clampMlp * Mathf.PI * 0.5f;
clampMlp = Mathf.Sin(sinF);
}
// Slerping the direction (don't use Lerp here, it breaks it)
return Vector3.Slerp(normalDirection, direction, clampMlp * targetClampMlp);
}
///
/// Clamps the direction to clampWeight from normalDirection, clampSmoothing is the number of sine smoothing iterations applied on the result.
///
public static Vector3 ClampDirection(Vector3 direction, Vector3 normalDirection, float clampWeight, int clampSmoothing, out float clampValue) {
clampValue = 1f;
if (clampWeight <= 0) return direction;
if (clampWeight >= 1f) {
return normalDirection;
}
// Getting the angle between direction and normalDirection
float angle = Vector3.Angle(normalDirection, direction);
float dot = 1f - (angle / 180f);
if (dot > clampWeight) {
clampValue = 0f;
return direction;
}
// Clamping the target
float targetClampMlp = clampWeight > 0? Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f): 1f;
// Calculating the clamp multiplier
float clampMlp = clampWeight > 0? Mathf.Clamp(dot / clampWeight, 0f, 1f): 1f;
// Sine smoothing iterations
for (int i = 0; i < clampSmoothing; i++) {
float sinF = clampMlp * Mathf.PI * 0.5f;
clampMlp = Mathf.Sin(sinF);
}
// Slerping the direction (don't use Lerp here, it breaks it)
float slerp = clampMlp * targetClampMlp;
clampValue = 1f - slerp;
return Vector3.Slerp(normalDirection, direction, slerp);
}
///
/// Get the intersection point of line and plane
///
public static Vector3 LineToPlane(Vector3 origin, Vector3 direction, Vector3 planeNormal, Vector3 planePoint) {
float dot = Vector3.Dot(planePoint - origin, planeNormal);
float normalDot = Vector3.Dot(direction, planeNormal);
if (normalDot == 0.0f) return Vector3.zero;
float dist = dot / normalDot;
return origin + direction.normalized * dist;
}
///
/// Projects a point to a plane.
///
public static Vector3 PointToPlane(Vector3 point, Vector3 planePosition, Vector3 planeNormal) {
if (planeNormal == Vector3.up) {
return new Vector3(point.x, planePosition.y, point.z);
}
Vector3 tangent = point - planePosition;
Vector3 normal = planeNormal;
Vector3.OrthoNormalize(ref normal, ref tangent);
return planePosition + Vector3.Project(point - planePosition, tangent);
}
///
/// Same as Transform.TransformPoint(), but not using scale.
///
public static Vector3 TransformPointUnscaled(Transform t, Vector3 point)
{
return t.position + t.rotation * point;
}
///
/// Same as Transform.InverseTransformPoint(), but not using scale.
///
public static Vector3 InverseTransformPointUnscaled(Transform t, Vector3 point)
{
return Quaternion.Inverse(t.rotation) * (point - t.position);
}
///
/// Same as Transform.InverseTransformPoint();
///
public static Vector3 InverseTransformPoint(Vector3 tPos, Quaternion tRot, Vector3 tScale, Vector3 point)
{
return Div(Quaternion.Inverse(tRot) * (point - tPos), tScale);
}
///
/// Same as Transform.TransformPoint()
///
public static Vector3 TransformPoint(Vector3 tPos, Quaternion tRot, Vector3 tScale, Vector3 point)
{
return tPos + Vector3.Scale(tRot * point, tScale);
}
///
/// Divides the values of v1 by the values of v2.
///
public static Vector3 Div(Vector3 v1, Vector3 v2)
{
return new Vector3(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z);
}
}
}