using UnityEngine;
using System.Collections;
namespace RootMotion {
///
/// Helper methods for dealing with Quaternions.
///
public static class QuaTools {
///
/// Returns yaw angle (-180 - 180) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes.
///
public static float GetYaw(Quaternion space, Vector3 forward)
{
Vector3 dirLocal = Quaternion.Inverse(space) * forward;
return Mathf.Atan2(dirLocal.x, dirLocal.z) * Mathf.Rad2Deg;
}
///
/// Returns pitch angle (-90 - 90) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes.
///
public static float GetPitch(Quaternion space, Vector3 forward)
{
forward = forward.normalized;
Vector3 dirLocal = Quaternion.Inverse(space) * forward;
return -Mathf.Asin(dirLocal.y) * Mathf.Rad2Deg;
}
///
/// Returns bank angle (-180 - 180) of 'forward' and 'up' vectors relative to rotation space defined by spaceForward and spaceUp axes.
///
public static float GetBank(Quaternion space, Vector3 forward, Vector3 up)
{
Vector3 spaceUp = space * Vector3.up;
Quaternion invSpace = Quaternion.Inverse(space);
forward = invSpace * forward;
up = invSpace * up;
Quaternion q = Quaternion.Inverse(Quaternion.LookRotation(spaceUp, forward));
up = q * up;
return Mathf.Atan2(up.x, up.z) * Mathf.Rad2Deg;
}
///
/// Returns yaw angle (-180 - 180) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes.
///
public static float GetYaw(Quaternion space, Quaternion rotation)
{
Vector3 dirLocal = Quaternion.Inverse(space) * (rotation * Vector3.forward);
return Mathf.Atan2(dirLocal.x, dirLocal.z) * Mathf.Rad2Deg;
}
///
/// Returns pitch angle (-90 - 90) of 'forward' vector relative to rotation space defined by spaceForward and spaceUp axes.
///
public static float GetPitch(Quaternion space, Quaternion rotation)
{
Vector3 dirLocal = Quaternion.Inverse(space) * (rotation * Vector3.forward);
return -Mathf.Asin(dirLocal.y) * Mathf.Rad2Deg;
}
///
/// Returns bank angle (-180 - 180) of 'forward' and 'up' vectors relative to rotation space defined by spaceForward and spaceUp axes.
///
public static float GetBank(Quaternion space, Quaternion rotation)
{
Vector3 spaceUp = space * Vector3.up;
Quaternion invSpace = Quaternion.Inverse(space);
Vector3 forward = invSpace * (rotation * Vector3.forward);
Vector3 up = invSpace * (rotation * Vector3.up);
Quaternion q = Quaternion.Inverse(Quaternion.LookRotation(spaceUp, forward));
up = q * up;
return Mathf.Atan2(up.x, up.z) * Mathf.Rad2Deg;
}
///
/// Optimized Quaternion.Lerp
///
public static Quaternion Lerp(Quaternion fromRotation, Quaternion toRotation, float weight) {
if (weight <= 0f) return fromRotation;
if (weight >= 1f) return toRotation;
return Quaternion.Lerp(fromRotation, toRotation, weight);
}
///
/// Optimized Quaternion.Slerp
///
public static Quaternion Slerp(Quaternion fromRotation, Quaternion toRotation, float weight) {
if (weight <= 0f) return fromRotation;
if (weight >= 1f) return toRotation;
return Quaternion.Slerp(fromRotation, toRotation, weight);
}
///
/// Returns the rotation from identity Quaternion to "q", interpolated linearily by "weight".
///
public static Quaternion LinearBlend(Quaternion q, float weight) {
if (weight <= 0f) return Quaternion.identity;
if (weight >= 1f) return q;
return Quaternion.Lerp(Quaternion.identity, q, weight);
}
///
/// Returns the rotation from identity Quaternion to "q", interpolated spherically by "weight".
///
public static Quaternion SphericalBlend(Quaternion q, float weight) {
if (weight <= 0f) return Quaternion.identity;
if (weight >= 1f) return q;
return Quaternion.Slerp(Quaternion.identity, q, weight);
}
///
/// Creates a FromToRotation, but makes sure it's axis remains fixed near to the Quaternion singularity point.
///
///
/// The from to rotation around an axis.
///
///
/// From direction.
///
///
/// To direction.
///
///
/// Axis. Should be normalized before passing into this method.
///
public static Quaternion FromToAroundAxis(Vector3 fromDirection, Vector3 toDirection, Vector3 axis) {
Quaternion fromTo = Quaternion.FromToRotation(fromDirection, toDirection);
float angle = 0;
Vector3 freeAxis = Vector3.zero;
fromTo.ToAngleAxis(out angle, out freeAxis);
float dot = Vector3.Dot(freeAxis, axis);
if (dot < 0) angle = -angle;
return Quaternion.AngleAxis(angle, axis);
}
///
/// Gets the rotation that can be used to convert a rotation from one axis space to another.
///
public static Quaternion RotationToLocalSpace(Quaternion space, Quaternion rotation) {
return Quaternion.Inverse(Quaternion.Inverse(space) * rotation);
}
///
/// Gets the Quaternion from rotation "from" to rotation "to".
///
public static Quaternion FromToRotation(Quaternion from, Quaternion to) {
if (to == from) return Quaternion.identity;
return to * Quaternion.Inverse(from);
}
///
/// Gets the closest direction axis to a vector. Input vector must be normalized!
///
public static Vector3 GetAxis(Vector3 v) {
Vector3 closest = Vector3.right;
bool neg = false;
float x = Vector3.Dot(v, Vector3.right);
float maxAbsDot = Mathf.Abs(x);
if (x < 0f) neg = true;
float y = Vector3.Dot(v, Vector3.up);
float absDot = Mathf.Abs(y);
if (absDot > maxAbsDot) {
maxAbsDot = absDot;
closest = Vector3.up;
neg = y < 0f;
}
float z = Vector3.Dot(v, Vector3.forward);
absDot = Mathf.Abs(z);
if (absDot > maxAbsDot) {
closest = Vector3.forward;
neg = z < 0f;
}
if (neg) closest = -closest;
return closest;
}
///
/// Clamps the rotation similar to V3Tools.ClampDirection.
///
public static Quaternion ClampRotation(Quaternion rotation, float clampWeight, int clampSmoothing) {
if (clampWeight >= 1f) return Quaternion.identity;
if (clampWeight <= 0f) return rotation;
float angle = Quaternion.Angle(Quaternion.identity, rotation);
float dot = 1f - (angle / 180f);
float targetClampMlp = Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f);
float clampMlp = Mathf.Clamp(dot / clampWeight, 0f, 1f);
// Sine smoothing iterations
for (int i = 0; i < clampSmoothing; i++) {
float sinF = clampMlp * Mathf.PI * 0.5f;
clampMlp = Mathf.Sin(sinF);
}
return Quaternion.Slerp(Quaternion.identity, rotation, clampMlp * targetClampMlp);
}
///
/// Clamps an angular value.
///
public static float ClampAngle(float angle, float clampWeight, int clampSmoothing) {
if (clampWeight >= 1f) return 0f;
if (clampWeight <= 0f) return angle;
float dot = 1f - (Mathf.Abs(angle) / 180f);
float targetClampMlp = Mathf.Clamp(1f - ((clampWeight - dot) / (1f - dot)), 0f, 1f);
float clampMlp = Mathf.Clamp(dot / clampWeight, 0f, 1f);
// Sine smoothing iterations
for (int i = 0; i < clampSmoothing; i++) {
float sinF = clampMlp * Mathf.PI * 0.5f;
clampMlp = Mathf.Sin(sinF);
}
return Mathf.Lerp(0f, angle, clampMlp * targetClampMlp);
}
///
/// Used for matching the rotations of objects that have different orientations.
///
public static Quaternion MatchRotation(Quaternion targetRotation, Vector3 targetforwardAxis, Vector3 targetUpAxis, Vector3 forwardAxis, Vector3 upAxis) {
Quaternion f = Quaternion.LookRotation(forwardAxis, upAxis);
Quaternion fTarget = Quaternion.LookRotation(targetforwardAxis, targetUpAxis);
Quaternion d = targetRotation * fTarget;
return d * Quaternion.Inverse(f);
}
///
/// Converts an Euler rotation from 0 to 360 representation to -180 to 180.
///
public static Vector3 ToBiPolar(Vector3 euler)
{
return new Vector3(ToBiPolar(euler.x), ToBiPolar(euler.y), ToBiPolar(euler.z));
}
///
/// Converts an angular value from 0 to 360 representation to -180 to 180.
///
public static float ToBiPolar(float angle)
{
angle = angle % 360f;
if (angle >= 180f) return angle - 360f;
if (angle <= -180f) return angle + 360f;
return angle;
}
}
}