123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef __OPENCV_XFEATURES2D_CUDA_HPP__
- #define __OPENCV_XFEATURES2D_CUDA_HPP__
- #include "opencv2/core/cuda.hpp"
- namespace cv { namespace cuda {
- //! @addtogroup xfeatures2d_nonfree
- //! @{
- /** @brief Class used for extracting Speeded Up Robust Features (SURF) from an image. :
- The class SURF_CUDA implements Speeded Up Robust Features descriptor. There is a fast multi-scale
- Hessian keypoint detector that can be used to find the keypoints (which is the default option). But
- the descriptors can also be computed for the user-specified keypoints. Only 8-bit grayscale images
- are supported.
- The class SURF_CUDA can store results in the GPU and CPU memory. It provides functions to convert
- results between CPU and GPU version ( uploadKeypoints, downloadKeypoints, downloadDescriptors ). The
- format of CPU results is the same as SURF results. GPU results are stored in GpuMat. The keypoints
- matrix is \f$\texttt{nFeatures} \times 7\f$ matrix with the CV_32FC1 type.
- - keypoints.ptr\<float\>(X_ROW)[i] contains x coordinate of the i-th feature.
- - keypoints.ptr\<float\>(Y_ROW)[i] contains y coordinate of the i-th feature.
- - keypoints.ptr\<float\>(LAPLACIAN_ROW)[i] contains the laplacian sign of the i-th feature.
- - keypoints.ptr\<float\>(OCTAVE_ROW)[i] contains the octave of the i-th feature.
- - keypoints.ptr\<float\>(SIZE_ROW)[i] contains the size of the i-th feature.
- - keypoints.ptr\<float\>(ANGLE_ROW)[i] contain orientation of the i-th feature.
- - keypoints.ptr\<float\>(HESSIAN_ROW)[i] contains the response of the i-th feature.
- The descriptors matrix is \f$\texttt{nFeatures} \times \texttt{descriptorSize}\f$ matrix with the
- CV_32FC1 type.
- The class SURF_CUDA uses some buffers and provides access to it. All buffers can be safely released
- between function calls.
- @sa SURF
- @note
- - An example for using the SURF keypoint matcher on GPU can be found at
- opencv_source_code/samples/gpu/surf_keypoint_matcher.cpp
- */
- class CV_EXPORTS SURF_CUDA
- {
- public:
- enum KeypointLayout
- {
- X_ROW = 0,
- Y_ROW,
- LAPLACIAN_ROW,
- OCTAVE_ROW,
- SIZE_ROW,
- ANGLE_ROW,
- HESSIAN_ROW,
- ROWS_COUNT
- };
- //! the default constructor
- SURF_CUDA();
- //! the full constructor taking all the necessary parameters
- explicit SURF_CUDA(double _hessianThreshold, int _nOctaves=4,
- int _nOctaveLayers=2, bool _extended=false, float _keypointsRatio=0.01f, bool _upright = false);
- //! returns the descriptor size in float's (64 or 128)
- int descriptorSize() const;
- //! returns the default norm type
- int defaultNorm() const;
- //! upload host keypoints to device memory
- void uploadKeypoints(const std::vector<KeyPoint>& keypoints, GpuMat& keypointsGPU);
- //! download keypoints from device to host memory
- void downloadKeypoints(const GpuMat& keypointsGPU, std::vector<KeyPoint>& keypoints);
- //! download descriptors from device to host memory
- void downloadDescriptors(const GpuMat& descriptorsGPU, std::vector<float>& descriptors);
- //! finds the keypoints using fast hessian detector used in SURF
- //! supports CV_8UC1 images
- //! keypoints will have nFeature cols and 6 rows
- //! keypoints.ptr<float>(X_ROW)[i] will contain x coordinate of i'th feature
- //! keypoints.ptr<float>(Y_ROW)[i] will contain y coordinate of i'th feature
- //! keypoints.ptr<float>(LAPLACIAN_ROW)[i] will contain laplacian sign of i'th feature
- //! keypoints.ptr<float>(OCTAVE_ROW)[i] will contain octave of i'th feature
- //! keypoints.ptr<float>(SIZE_ROW)[i] will contain size of i'th feature
- //! keypoints.ptr<float>(ANGLE_ROW)[i] will contain orientation of i'th feature
- //! keypoints.ptr<float>(HESSIAN_ROW)[i] will contain response of i'th feature
- void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints);
- //! finds the keypoints and computes their descriptors.
- //! Optionally it can compute descriptors for the user-provided keypoints and recompute keypoints direction
- void operator()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors,
- bool useProvidedKeypoints = false);
- void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
- void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors,
- bool useProvidedKeypoints = false);
- void operator()(const GpuMat& img, const GpuMat& mask, std::vector<KeyPoint>& keypoints, std::vector<float>& descriptors,
- bool useProvidedKeypoints = false);
- void releaseMemory();
- // SURF parameters
- double hessianThreshold;
- int nOctaves;
- int nOctaveLayers;
- bool extended;
- bool upright;
- //! max keypoints = min(keypointsRatio * img.size().area(), 65535)
- float keypointsRatio;
- GpuMat sum, mask1, maskSum;
- GpuMat det, trace;
- GpuMat maxPosBuffer;
- };
- //! @}
- }} // namespace cv { namespace cuda {
- #endif // __OPENCV_XFEATURES2D_CUDA_HPP__
|