123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997 |
- /*
- By downloading, copying, installing or using the software you agree to this
- license. If you do not agree to this license, do not download, install,
- copy or use the software.
- License Agreement
- For Open Source Computer Vision Library
- (3-clause BSD License)
- Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- Third party copyrights are property of their respective owners.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the names of the copyright holders nor the names of the contributors
- may be used to endorse or promote products derived from this software
- without specific prior written permission.
- This software is provided by the copyright holders and contributors "as is" and
- any express or implied warranties, including, but not limited to, the implied
- warranties of merchantability and fitness for a particular purpose are
- disclaimed. In no event shall copyright holders or contributors be liable for
- any direct, indirect, incidental, special, exemplary, or consequential damages
- (including, but not limited to, procurement of substitute goods or services;
- loss of use, data, or profits; or business interruption) however caused
- and on any theory of liability, whether in contract, strict liability,
- or tort (including negligence or otherwise) arising in any way out of
- the use of this software, even if advised of the possibility of such damage.
- */
- #ifndef __OPENCV_XFEATURES2D_HPP__
- #define __OPENCV_XFEATURES2D_HPP__
- #include "opencv2/features2d.hpp"
- #include "opencv2/xfeatures2d/nonfree.hpp"
- /** @defgroup xfeatures2d Extra 2D Features Framework
- @{
- @defgroup xfeatures2d_experiment Experimental 2D Features Algorithms
- This section describes experimental algorithms for 2d feature detection.
- @defgroup xfeatures2d_nonfree Non-free 2D Features Algorithms
- This section describes two popular algorithms for 2d feature detection, SIFT and SURF, that are
- known to be patented. You need to set the OPENCV_ENABLE_NONFREE option in cmake to use those. Use them at your own risk.
- @defgroup xfeatures2d_match Experimental 2D Features Matching Algorithm
- This section describes the GMS (Grid-based Motion Statistics) matching strategy.
- @}
- */
- namespace cv
- {
- namespace xfeatures2d
- {
- //! @addtogroup xfeatures2d_experiment
- //! @{
- /** @brief Class implementing the FREAK (*Fast Retina Keypoint*) keypoint descriptor, described in @cite AOV12 .
- The algorithm propose a novel keypoint descriptor inspired by the human visual system and more
- precisely the retina, coined Fast Retina Key- point (FREAK). A cascade of binary strings is
- computed by efficiently comparing image intensities over a retinal sampling pattern. FREAKs are in
- general faster to compute with lower memory load and also more robust than SIFT, SURF or BRISK.
- They are competitive alternatives to existing keypoints in particular for embedded applications.
- @note
- - An example on how to use the FREAK descriptor can be found at
- opencv_source_code/samples/cpp/freak_demo.cpp
- */
- class CV_EXPORTS_W FREAK : public Feature2D
- {
- public:
- static const int NB_SCALES = 64;
- static const int NB_PAIRS = 512;
- static const int NB_ORIENPAIRS = 45;
- /**
- @param orientationNormalized Enable orientation normalization.
- @param scaleNormalized Enable scale normalization.
- @param patternScale Scaling of the description pattern.
- @param nOctaves Number of octaves covered by the detected keypoints.
- @param selectedPairs (Optional) user defined selected pairs indexes,
- */
- CV_WRAP static Ptr<FREAK> create(bool orientationNormalized = true,
- bool scaleNormalized = true,
- float patternScale = 22.0f,
- int nOctaves = 4,
- const std::vector<int>& selectedPairs = std::vector<int>());
- };
- /** @brief The class implements the keypoint detector introduced by @cite Agrawal08, synonym of StarDetector. :
- */
- class CV_EXPORTS_W StarDetector : public Feature2D
- {
- public:
- //! the full constructor
- CV_WRAP static Ptr<StarDetector> create(int maxSize=45, int responseThreshold=30,
- int lineThresholdProjected=10,
- int lineThresholdBinarized=8,
- int suppressNonmaxSize=5);
- };
- /*
- * BRIEF Descriptor
- */
- /** @brief Class for computing BRIEF descriptors described in @cite calon2010 .
- @param bytes legth of the descriptor in bytes, valid values are: 16, 32 (default) or 64 .
- @param use_orientation sample patterns using keypoints orientation, disabled by default.
- */
- class CV_EXPORTS_W BriefDescriptorExtractor : public Feature2D
- {
- public:
- CV_WRAP static Ptr<BriefDescriptorExtractor> create( int bytes = 32, bool use_orientation = false );
- };
- /** @brief Class implementing the locally uniform comparison image descriptor, described in @cite LUCID
- An image descriptor that can be computed very fast, while being
- about as robust as, for example, SURF or BRIEF.
- @note It requires a color image as input.
- */
- class CV_EXPORTS_W LUCID : public Feature2D
- {
- public:
- /**
- * @param lucid_kernel kernel for descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
- * @param blur_kernel kernel for blurring image prior to descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth
- */
- CV_WRAP static Ptr<LUCID> create(const int lucid_kernel = 1, const int blur_kernel = 2);
- };
- /*
- * LATCH Descriptor
- */
- /** latch Class for computing the LATCH descriptor.
- If you find this code useful, please add a reference to the following paper in your work:
- Gil Levi and Tal Hassner, "LATCH: Learned Arrangements of Three Patch Codes", arXiv preprint arXiv:1501.03719, 15 Jan. 2015
- LATCH is a binary descriptor based on learned comparisons of triplets of image patches.
- * bytes is the size of the descriptor - can be 64, 32, 16, 8, 4, 2 or 1
- * rotationInvariance - whether or not the descriptor should compansate for orientation changes.
- * half_ssd_size - the size of half of the mini-patches size. For example, if we would like to compare triplets of patches of size 7x7x
- then the half_ssd_size should be (7-1)/2 = 3.
- * sigma - sigma value for GaussianBlur smoothing of the source image. Source image will be used without smoothing in case sigma value is 0.
- Note: the descriptor can be coupled with any keypoint extractor. The only demand is that if you use set rotationInvariance = True then
- you will have to use an extractor which estimates the patch orientation (in degrees). Examples for such extractors are ORB and SIFT.
- Note: a complete example can be found under /samples/cpp/tutorial_code/xfeatures2D/latch_match.cpp
- */
- class CV_EXPORTS_W LATCH : public Feature2D
- {
- public:
- CV_WRAP static Ptr<LATCH> create(int bytes = 32, bool rotationInvariance = true, int half_ssd_size = 3, double sigma = 2.0);
- };
- /** @brief Class implementing DAISY descriptor, described in @cite Tola10
- @param radius radius of the descriptor at the initial scale
- @param q_radius amount of radial range division quantity
- @param q_theta amount of angular range division quantity
- @param q_hist amount of gradient orientations range division quantity
- @param norm choose descriptors normalization type, where
- DAISY::NRM_NONE will not do any normalization (default),
- DAISY::NRM_PARTIAL mean that histograms are normalized independently for L2 norm equal to 1.0,
- DAISY::NRM_FULL mean that descriptors are normalized for L2 norm equal to 1.0,
- DAISY::NRM_SIFT mean that descriptors are normalized for L2 norm equal to 1.0 but no individual one is bigger than 0.154 as in SIFT
- @param H optional 3x3 homography matrix used to warp the grid of daisy but sampling keypoints remains unwarped on image
- @param interpolation switch to disable interpolation for speed improvement at minor quality loss
- @param use_orientation sample patterns using keypoints orientation, disabled by default.
- */
- class CV_EXPORTS_W DAISY : public Feature2D
- {
- public:
- enum NormalizationType
- {
- NRM_NONE = 100, NRM_PARTIAL = 101, NRM_FULL = 102, NRM_SIFT = 103,
- };
- CV_WRAP static Ptr<DAISY> create( float radius = 15, int q_radius = 3, int q_theta = 8,
- int q_hist = 8, DAISY::NormalizationType norm = DAISY::NRM_NONE, InputArray H = noArray(),
- bool interpolation = true, bool use_orientation = false );
- /** @overload
- * @param image image to extract descriptors
- * @param keypoints of interest within image
- * @param descriptors resulted descriptors array
- */
- virtual void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors ) CV_OVERRIDE = 0;
- virtual void compute( InputArrayOfArrays images,
- std::vector<std::vector<KeyPoint> >& keypoints,
- OutputArrayOfArrays descriptors ) CV_OVERRIDE;
- /** @overload
- * @param image image to extract descriptors
- * @param roi region of interest within image
- * @param descriptors resulted descriptors array for roi image pixels
- */
- virtual void compute( InputArray image, Rect roi, OutputArray descriptors ) = 0;
- /**@overload
- * @param image image to extract descriptors
- * @param descriptors resulted descriptors array for all image pixels
- */
- virtual void compute( InputArray image, OutputArray descriptors ) = 0;
- /**
- * @param y position y on image
- * @param x position x on image
- * @param orientation orientation on image (0->360)
- * @param descriptor supplied array for descriptor storage
- */
- virtual void GetDescriptor( double y, double x, int orientation, float* descriptor ) const = 0;
- /**
- * @param y position y on image
- * @param x position x on image
- * @param orientation orientation on image (0->360)
- * @param descriptor supplied array for descriptor storage
- * @param H homography matrix for warped grid
- */
- virtual bool GetDescriptor( double y, double x, int orientation, float* descriptor, double* H ) const = 0;
- /**
- * @param y position y on image
- * @param x position x on image
- * @param orientation orientation on image (0->360)
- * @param descriptor supplied array for descriptor storage
- */
- virtual void GetUnnormalizedDescriptor( double y, double x, int orientation, float* descriptor ) const = 0;
- /**
- * @param y position y on image
- * @param x position x on image
- * @param orientation orientation on image (0->360)
- * @param descriptor supplied array for descriptor storage
- * @param H homography matrix for warped grid
- */
- virtual bool GetUnnormalizedDescriptor( double y, double x, int orientation, float* descriptor , double *H ) const = 0;
- };
- /** @brief Class implementing the MSD (*Maximal Self-Dissimilarity*) keypoint detector, described in @cite Tombari14.
- The algorithm implements a novel interest point detector stemming from the intuition that image patches
- which are highly dissimilar over a relatively large extent of their surroundings hold the property of
- being repeatable and distinctive. This concept of "contextual self-dissimilarity" reverses the key
- paradigm of recent successful techniques such as the Local Self-Similarity descriptor and the Non-Local
- Means filter, which build upon the presence of similar - rather than dissimilar - patches. Moreover,
- it extends to contextual information the local self-dissimilarity notion embedded in established
- detectors of corner-like interest points, thereby achieving enhanced repeatability, distinctiveness and
- localization accuracy.
- */
- class CV_EXPORTS_W MSDDetector : public Feature2D {
- public:
- static Ptr<MSDDetector> create(int m_patch_radius = 3, int m_search_area_radius = 5,
- int m_nms_radius = 5, int m_nms_scale_radius = 0, float m_th_saliency = 250.0f, int m_kNN = 4,
- float m_scale_factor = 1.25f, int m_n_scales = -1, bool m_compute_orientation = false);
- };
- /** @brief Class implementing VGG (Oxford Visual Geometry Group) descriptor trained end to end
- using "Descriptor Learning Using Convex Optimisation" (DLCO) aparatus described in @cite Simonyan14.
- @param desc type of descriptor to use, VGG::VGG_120 is default (120 dimensions float)
- Available types are VGG::VGG_120, VGG::VGG_80, VGG::VGG_64, VGG::VGG_48
- @param isigma gaussian kernel value for image blur (default is 1.4f)
- @param img_normalize use image sample intensity normalization (enabled by default)
- @param use_orientation sample patterns using keypoints orientation, enabled by default
- @param scale_factor adjust the sampling window of detected keypoints to 64.0f (VGG sampling window)
- 6.25f is default and fits for KAZE, SURF detected keypoints window ratio
- 6.75f should be the scale for SIFT detected keypoints window ratio
- 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio
- 0.75f should be the scale for ORB keypoints ratio
- @param dsc_normalize clamp descriptors to 255 and convert to uchar CV_8UC1 (disabled by default)
- */
- class CV_EXPORTS_W VGG : public Feature2D
- {
- public:
- CV_WRAP enum
- {
- VGG_120 = 100, VGG_80 = 101, VGG_64 = 102, VGG_48 = 103,
- };
- CV_WRAP static Ptr<VGG> create( int desc = VGG::VGG_120, float isigma = 1.4f,
- bool img_normalize = true, bool use_scale_orientation = true,
- float scale_factor = 6.25f, bool dsc_normalize = false );
- CV_WRAP virtual void setSigma(const float isigma) = 0;
- CV_WRAP virtual float getSigma() const = 0;
- CV_WRAP virtual void setUseNormalizeImage(const bool img_normalize) = 0;
- CV_WRAP virtual bool getUseNormalizeImage() const = 0;
- CV_WRAP virtual void setUseScaleOrientation(const bool use_scale_orientation) = 0;
- CV_WRAP virtual bool getUseScaleOrientation() const = 0;
- CV_WRAP virtual void setScaleFactor(const float scale_factor) = 0;
- CV_WRAP virtual float getScaleFactor() const = 0;
- CV_WRAP virtual void setUseNormalizeDescriptor(const bool dsc_normalize) = 0;
- CV_WRAP virtual bool getUseNormalizeDescriptor() const = 0;
- };
- /** @brief Class implementing BoostDesc (Learning Image Descriptors with Boosting), described in
- @cite Trzcinski13a and @cite Trzcinski13b.
- @param desc type of descriptor to use, BoostDesc::BINBOOST_256 is default (256 bit long dimension)
- Available types are: BoostDesc::BGM, BoostDesc::BGM_HARD, BoostDesc::BGM_BILINEAR, BoostDesc::LBGM,
- BoostDesc::BINBOOST_64, BoostDesc::BINBOOST_128, BoostDesc::BINBOOST_256
- @param use_orientation sample patterns using keypoints orientation, enabled by default
- @param scale_factor adjust the sampling window of detected keypoints
- 6.25f is default and fits for KAZE, SURF detected keypoints window ratio
- 6.75f should be the scale for SIFT detected keypoints window ratio
- 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio
- 0.75f should be the scale for ORB keypoints ratio
- 1.50f was the default in original implementation
- @note BGM is the base descriptor where each binary dimension is computed as the output of a single weak learner.
- BGM_HARD and BGM_BILINEAR refers to same BGM but use different type of gradient binning. In the BGM_HARD that
- use ASSIGN_HARD binning type the gradient is assigned to the nearest orientation bin. In the BGM_BILINEAR that use
- ASSIGN_BILINEAR binning type the gradient is assigned to the two neighbouring bins. In the BGM and all other modes that use
- ASSIGN_SOFT binning type the gradient is assigned to 8 nearest bins according to the cosine value between the gradient
- angle and the bin center. LBGM (alias FP-Boost) is the floating point extension where each dimension is computed
- as a linear combination of the weak learner responses. BINBOOST and subvariants are the binary extensions of LBGM
- where each bit is computed as a thresholded linear combination of a set of weak learners.
- BoostDesc header files (boostdesc_*.i) was exported from original binaries with export-boostdesc.py script from
- samples subfolder.
- */
- class CV_EXPORTS_W BoostDesc : public Feature2D
- {
- public:
- CV_WRAP enum
- {
- BGM = 100, BGM_HARD = 101, BGM_BILINEAR = 102, LBGM = 200,
- BINBOOST_64 = 300, BINBOOST_128 = 301, BINBOOST_256 = 302
- };
- CV_WRAP static Ptr<BoostDesc> create( int desc = BoostDesc::BINBOOST_256,
- bool use_scale_orientation = true, float scale_factor = 6.25f );
- CV_WRAP virtual void setUseScaleOrientation(const bool use_scale_orientation) = 0;
- CV_WRAP virtual bool getUseScaleOrientation() const = 0;
- CV_WRAP virtual void setScaleFactor(const float scale_factor) = 0;
- CV_WRAP virtual float getScaleFactor() const = 0;
- };
- /*
- * Position-Color-Texture signatures
- */
- /**
- * @brief Class implementing PCT (position-color-texture) signature extraction
- * as described in @cite KrulisLS16.
- * The algorithm is divided to a feature sampler and a clusterizer.
- * Feature sampler produces samples at given set of coordinates.
- * Clusterizer then produces clusters of these samples using k-means algorithm.
- * Resulting set of clusters is the signature of the input image.
- *
- * A signature is an array of SIGNATURE_DIMENSION-dimensional points.
- * Used dimensions are:
- * weight, x, y position; lab color, contrast, entropy.
- * @cite KrulisLS16
- * @cite BeecksUS10
- */
- class CV_EXPORTS_W PCTSignatures : public Algorithm
- {
- public:
- /**
- * @brief Lp distance function selector.
- */
- enum DistanceFunction
- {
- L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY
- };
- /**
- * @brief Point distributions supported by random point generator.
- */
- enum PointDistribution
- {
- UNIFORM, //!< Generate numbers uniformly.
- REGULAR, //!< Generate points in a regular grid.
- NORMAL //!< Generate points with normal (gaussian) distribution.
- };
- /**
- * @brief Similarity function selector.
- * @see
- * Christian Beecks, Merih Seran Uysal, Thomas Seidl.
- * Signature quadratic form distance.
- * In Proceedings of the ACM International Conference on Image and Video Retrieval, pages 438-445.
- * ACM, 2010.
- * @cite BeecksUS10
- * @note For selected distance function: \f[ d(c_i, c_j) \f] and parameter: \f[ \alpha \f]
- */
- enum SimilarityFunction
- {
- MINUS, //!< \f[ -d(c_i, c_j) \f]
- GAUSSIAN, //!< \f[ e^{ -\alpha * d^2(c_i, c_j)} \f]
- HEURISTIC //!< \f[ \frac{1}{\alpha + d(c_i, c_j)} \f]
- };
- /**
- * @brief Creates PCTSignatures algorithm using sample and seed count.
- * It generates its own sets of sampling points and clusterization seed indexes.
- * @param initSampleCount Number of points used for image sampling.
- * @param initSeedCount Number of initial clusterization seeds.
- * Must be lower or equal to initSampleCount
- * @param pointDistribution Distribution of generated points. Default: UNIFORM.
- * Available: UNIFORM, REGULAR, NORMAL.
- * @return Created algorithm.
- */
- CV_WRAP static Ptr<PCTSignatures> create(
- const int initSampleCount = 2000,
- const int initSeedCount = 400,
- const int pointDistribution = 0);
- /**
- * @brief Creates PCTSignatures algorithm using pre-generated sampling points
- * and number of clusterization seeds. It uses the provided
- * sampling points and generates its own clusterization seed indexes.
- * @param initSamplingPoints Sampling points used in image sampling.
- * @param initSeedCount Number of initial clusterization seeds.
- * Must be lower or equal to initSamplingPoints.size().
- * @return Created algorithm.
- */
- CV_WRAP static Ptr<PCTSignatures> create(
- const std::vector<Point2f>& initSamplingPoints,
- const int initSeedCount);
- /**
- * @brief Creates PCTSignatures algorithm using pre-generated sampling points
- * and clusterization seeds indexes.
- * @param initSamplingPoints Sampling points used in image sampling.
- * @param initClusterSeedIndexes Indexes of initial clusterization seeds.
- * Its size must be lower or equal to initSamplingPoints.size().
- * @return Created algorithm.
- */
- CV_WRAP static Ptr<PCTSignatures> create(
- const std::vector<Point2f>& initSamplingPoints,
- const std::vector<int>& initClusterSeedIndexes);
- /**
- * @brief Computes signature of given image.
- * @param image Input image of CV_8U type.
- * @param signature Output computed signature.
- */
- CV_WRAP virtual void computeSignature(
- InputArray image,
- OutputArray signature) const = 0;
- /**
- * @brief Computes signatures for multiple images in parallel.
- * @param images Vector of input images of CV_8U type.
- * @param signatures Vector of computed signatures.
- */
- CV_WRAP virtual void computeSignatures(
- const std::vector<Mat>& images,
- std::vector<Mat>& signatures) const = 0;
- /**
- * @brief Draws signature in the source image and outputs the result.
- * Signatures are visualized as a circle
- * with radius based on signature weight
- * and color based on signature color.
- * Contrast and entropy are not visualized.
- * @param source Source image.
- * @param signature Image signature.
- * @param result Output result.
- * @param radiusToShorterSideRatio Determines maximal radius of signature in the output image.
- * @param borderThickness Border thickness of the visualized signature.
- */
- CV_WRAP static void drawSignature(
- InputArray source,
- InputArray signature,
- OutputArray result,
- float radiusToShorterSideRatio = 1.0 / 8,
- int borderThickness = 1);
- /**
- * @brief Generates initial sampling points according to selected point distribution.
- * @param initPoints Output vector where the generated points will be saved.
- * @param count Number of points to generate.
- * @param pointDistribution Point distribution selector.
- * Available: UNIFORM, REGULAR, NORMAL.
- * @note Generated coordinates are in range [0..1)
- */
- CV_WRAP static void generateInitPoints(
- std::vector<Point2f>& initPoints,
- const int count,
- int pointDistribution);
- /**** sampler ****/
- /**
- * @brief Number of initial samples taken from the image.
- */
- CV_WRAP virtual int getSampleCount() const = 0;
- /**
- * @brief Color resolution of the greyscale bitmap represented in allocated bits
- * (i.e., value 4 means that 16 shades of grey are used).
- * The greyscale bitmap is used for computing contrast and entropy values.
- */
- CV_WRAP virtual int getGrayscaleBits() const = 0;
- /**
- * @brief Color resolution of the greyscale bitmap represented in allocated bits
- * (i.e., value 4 means that 16 shades of grey are used).
- * The greyscale bitmap is used for computing contrast and entropy values.
- */
- CV_WRAP virtual void setGrayscaleBits(int grayscaleBits) = 0;
- /**
- * @brief Size of the texture sampling window used to compute contrast and entropy
- * (center of the window is always in the pixel selected by x,y coordinates
- * of the corresponding feature sample).
- */
- CV_WRAP virtual int getWindowRadius() const = 0;
- /**
- * @brief Size of the texture sampling window used to compute contrast and entropy
- * (center of the window is always in the pixel selected by x,y coordinates
- * of the corresponding feature sample).
- */
- CV_WRAP virtual void setWindowRadius(int radius) = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual float getWeightX() const = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual void setWeightX(float weight) = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual float getWeightY() const = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual void setWeightY(float weight) = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual float getWeightL() const = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual void setWeightL(float weight) = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual float getWeightA() const = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual void setWeightA(float weight) = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual float getWeightB() const = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual void setWeightB(float weight) = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual float getWeightContrast() const = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual void setWeightContrast(float weight) = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual float getWeightEntropy() const = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
- * (x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
- */
- CV_WRAP virtual void setWeightEntropy(float weight) = 0;
- /**
- * @brief Initial samples taken from the image.
- * These sampled features become the input for clustering.
- */
- CV_WRAP virtual std::vector<Point2f> getSamplingPoints() const = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
- * @param idx ID of the weight
- * @param value Value of the weight
- * @note
- * WEIGHT_IDX = 0;
- * X_IDX = 1;
- * Y_IDX = 2;
- * L_IDX = 3;
- * A_IDX = 4;
- * B_IDX = 5;
- * CONTRAST_IDX = 6;
- * ENTROPY_IDX = 7;
- */
- CV_WRAP virtual void setWeight(int idx, float value) = 0;
- /**
- * @brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
- * @param weights Values of all weights.
- * @note
- * WEIGHT_IDX = 0;
- * X_IDX = 1;
- * Y_IDX = 2;
- * L_IDX = 3;
- * A_IDX = 4;
- * B_IDX = 5;
- * CONTRAST_IDX = 6;
- * ENTROPY_IDX = 7;
- */
- CV_WRAP virtual void setWeights(const std::vector<float>& weights) = 0;
- /**
- * @brief Translations of the individual axes of the feature space.
- * @param idx ID of the translation
- * @param value Value of the translation
- * @note
- * WEIGHT_IDX = 0;
- * X_IDX = 1;
- * Y_IDX = 2;
- * L_IDX = 3;
- * A_IDX = 4;
- * B_IDX = 5;
- * CONTRAST_IDX = 6;
- * ENTROPY_IDX = 7;
- */
- CV_WRAP virtual void setTranslation(int idx, float value) = 0;
- /**
- * @brief Translations of the individual axes of the feature space.
- * @param translations Values of all translations.
- * @note
- * WEIGHT_IDX = 0;
- * X_IDX = 1;
- * Y_IDX = 2;
- * L_IDX = 3;
- * A_IDX = 4;
- * B_IDX = 5;
- * CONTRAST_IDX = 6;
- * ENTROPY_IDX = 7;
- */
- CV_WRAP virtual void setTranslations(const std::vector<float>& translations) = 0;
- /**
- * @brief Sets sampling points used to sample the input image.
- * @param samplingPoints Vector of sampling points in range [0..1)
- * @note Number of sampling points must be greater or equal to clusterization seed count.
- */
- CV_WRAP virtual void setSamplingPoints(std::vector<Point2f> samplingPoints) = 0;
- /**** clusterizer ****/
- /**
- * @brief Initial seeds (initial number of clusters) for the k-means algorithm.
- */
- CV_WRAP virtual std::vector<int> getInitSeedIndexes() const = 0;
- /**
- * @brief Initial seed indexes for the k-means algorithm.
- */
- CV_WRAP virtual void setInitSeedIndexes(std::vector<int> initSeedIndexes) = 0;
- /**
- * @brief Number of initial seeds (initial number of clusters) for the k-means algorithm.
- */
- CV_WRAP virtual int getInitSeedCount() const = 0;
- /**
- * @brief Number of iterations of the k-means clustering.
- * We use fixed number of iterations, since the modified clustering is pruning clusters
- * (not iteratively refining k clusters).
- */
- CV_WRAP virtual int getIterationCount() const = 0;
- /**
- * @brief Number of iterations of the k-means clustering.
- * We use fixed number of iterations, since the modified clustering is pruning clusters
- * (not iteratively refining k clusters).
- */
- CV_WRAP virtual void setIterationCount(int iterationCount) = 0;
- /**
- * @brief Maximal number of generated clusters. If the number is exceeded,
- * the clusters are sorted by their weights and the smallest clusters are cropped.
- */
- CV_WRAP virtual int getMaxClustersCount() const = 0;
- /**
- * @brief Maximal number of generated clusters. If the number is exceeded,
- * the clusters are sorted by their weights and the smallest clusters are cropped.
- */
- CV_WRAP virtual void setMaxClustersCount(int maxClustersCount) = 0;
- /**
- * @brief This parameter multiplied by the index of iteration gives lower limit for cluster size.
- * Clusters containing fewer points than specified by the limit have their centroid dismissed
- * and points are reassigned.
- */
- CV_WRAP virtual int getClusterMinSize() const = 0;
- /**
- * @brief This parameter multiplied by the index of iteration gives lower limit for cluster size.
- * Clusters containing fewer points than specified by the limit have their centroid dismissed
- * and points are reassigned.
- */
- CV_WRAP virtual void setClusterMinSize(int clusterMinSize) = 0;
- /**
- * @brief Threshold euclidean distance between two centroids.
- * If two cluster centers are closer than this distance,
- * one of the centroid is dismissed and points are reassigned.
- */
- CV_WRAP virtual float getJoiningDistance() const = 0;
- /**
- * @brief Threshold euclidean distance between two centroids.
- * If two cluster centers are closer than this distance,
- * one of the centroid is dismissed and points are reassigned.
- */
- CV_WRAP virtual void setJoiningDistance(float joiningDistance) = 0;
- /**
- * @brief Remove centroids in k-means whose weight is lesser or equal to given threshold.
- */
- CV_WRAP virtual float getDropThreshold() const = 0;
- /**
- * @brief Remove centroids in k-means whose weight is lesser or equal to given threshold.
- */
- CV_WRAP virtual void setDropThreshold(float dropThreshold) = 0;
- /**
- * @brief Distance function selector used for measuring distance between two points in k-means.
- */
- CV_WRAP virtual int getDistanceFunction() const = 0;
- /**
- * @brief Distance function selector used for measuring distance between two points in k-means.
- * Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY.
- */
- CV_WRAP virtual void setDistanceFunction(int distanceFunction) = 0;
- };
- /**
- * @brief Class implementing Signature Quadratic Form Distance (SQFD).
- * @see Christian Beecks, Merih Seran Uysal, Thomas Seidl.
- * Signature quadratic form distance.
- * In Proceedings of the ACM International Conference on Image and Video Retrieval, pages 438-445.
- * ACM, 2010.
- * @cite BeecksUS10
- */
- class CV_EXPORTS_W PCTSignaturesSQFD : public Algorithm
- {
- public:
- /**
- * @brief Creates the algorithm instance using selected distance function,
- * similarity function and similarity function parameter.
- * @param distanceFunction Distance function selector. Default: L2
- * Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY
- * @param similarityFunction Similarity function selector. Default: HEURISTIC
- * Available: MINUS, GAUSSIAN, HEURISTIC
- * @param similarityParameter Parameter of the similarity function.
- */
- CV_WRAP static Ptr<PCTSignaturesSQFD> create(
- const int distanceFunction = 3,
- const int similarityFunction = 2,
- const float similarityParameter = 1.0f);
- /**
- * @brief Computes Signature Quadratic Form Distance of two signatures.
- * @param _signature0 The first signature.
- * @param _signature1 The second signature.
- */
- CV_WRAP virtual float computeQuadraticFormDistance(
- InputArray _signature0,
- InputArray _signature1) const = 0;
- /**
- * @brief Computes Signature Quadratic Form Distance between the reference signature
- * and each of the other image signatures.
- * @param sourceSignature The signature to measure distance of other signatures from.
- * @param imageSignatures Vector of signatures to measure distance from the source signature.
- * @param distances Output vector of measured distances.
- */
- CV_WRAP virtual void computeQuadraticFormDistances(
- const Mat& sourceSignature,
- const std::vector<Mat>& imageSignatures,
- std::vector<float>& distances) const = 0;
- };
- /**
- * @brief Elliptic region around an interest point.
- */
- class CV_EXPORTS Elliptic_KeyPoint : public KeyPoint
- {
- public:
- Size_<float> axes; //!< the lengths of the major and minor ellipse axes
- float si; //!< the integration scale at which the parameters were estimated
- Matx23f transf; //!< the transformation between image space and local patch space
- Elliptic_KeyPoint();
- Elliptic_KeyPoint(Point2f pt, float angle, Size axes, float size, float si);
- virtual ~Elliptic_KeyPoint();
- };
- /**
- * @brief Class implementing the Harris-Laplace feature detector as described in @cite Mikolajczyk2004.
- */
- class CV_EXPORTS_W HarrisLaplaceFeatureDetector : public Feature2D
- {
- public:
- /**
- * @brief Creates a new implementation instance.
- *
- * @param numOctaves the number of octaves in the scale-space pyramid
- * @param corn_thresh the threshold for the Harris cornerness measure
- * @param DOG_thresh the threshold for the Difference-of-Gaussians scale selection
- * @param maxCorners the maximum number of corners to consider
- * @param num_layers the number of intermediate scales per octave
- */
- CV_WRAP static Ptr<HarrisLaplaceFeatureDetector> create(
- int numOctaves=6,
- float corn_thresh=0.01f,
- float DOG_thresh=0.01f,
- int maxCorners=5000,
- int num_layers=4);
- };
- /**
- * @brief Class implementing affine adaptation for key points.
- *
- * A @ref FeatureDetector and a @ref DescriptorExtractor are wrapped to augment the
- * detected points with their affine invariant elliptic region and to compute
- * the feature descriptors on the regions after warping them into circles.
- *
- * The interface is equivalent to @ref Feature2D, adding operations for
- * @ref Elliptic_KeyPoint "Elliptic_KeyPoints" instead of @ref KeyPoint "KeyPoints".
- */
- class CV_EXPORTS AffineFeature2D : public Feature2D
- {
- public:
- /**
- * @brief Creates an instance wrapping the given keypoint detector and
- * descriptor extractor.
- */
- static Ptr<AffineFeature2D> create(
- Ptr<FeatureDetector> keypoint_detector,
- Ptr<DescriptorExtractor> descriptor_extractor);
- /**
- * @brief Creates an instance where keypoint detector and descriptor
- * extractor are identical.
- */
- static Ptr<AffineFeature2D> create(
- Ptr<FeatureDetector> keypoint_detector)
- {
- return create(keypoint_detector, keypoint_detector);
- }
- using Feature2D::detect; // overload, don't hide
- /**
- * @brief Detects keypoints in the image using the wrapped detector and
- * performs affine adaptation to augment them with their elliptic regions.
- */
- virtual void detect(
- InputArray image,
- CV_OUT std::vector<Elliptic_KeyPoint>& keypoints,
- InputArray mask=noArray() ) = 0;
- using Feature2D::detectAndCompute; // overload, don't hide
- /**
- * @brief Detects keypoints and computes descriptors for their surrounding
- * regions, after warping them into circles.
- */
- virtual void detectAndCompute(
- InputArray image,
- InputArray mask,
- CV_OUT std::vector<Elliptic_KeyPoint>& keypoints,
- OutputArray descriptors,
- bool useProvidedKeypoints=false ) = 0;
- };
- /** @brief Estimates cornerness for prespecified KeyPoints using the FAST algorithm
- @param image grayscale image where keypoints (corners) are detected.
- @param keypoints keypoints which should be tested to fit the FAST criteria. Keypoints not beeing
- detected as corners are removed.
- @param threshold threshold on difference between intensity of the central pixel and pixels of a
- circle around this pixel.
- @param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
- (keypoints).
- @param type one of the three neighborhoods as defined in the paper:
- FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
- FastFeatureDetector::TYPE_5_8
- Detects corners using the FAST algorithm by @cite Rosten06 .
- */
- CV_EXPORTS void FASTForPointSet( InputArray image, CV_IN_OUT std::vector<KeyPoint>& keypoints,
- int threshold, bool nonmaxSuppression=true, cv::FastFeatureDetector::DetectorType type=FastFeatureDetector::TYPE_9_16);
- //! @}
- //! @addtogroup xfeatures2d_match
- //! @{
- /** @brief GMS (Grid-based Motion Statistics) feature matching strategy by @cite Bian2017gms .
- @param size1 Input size of image1.
- @param size2 Input size of image2.
- @param keypoints1 Input keypoints of image1.
- @param keypoints2 Input keypoints of image2.
- @param matches1to2 Input 1-nearest neighbor matches.
- @param matchesGMS Matches returned by the GMS matching strategy.
- @param withRotation Take rotation transformation into account.
- @param withScale Take scale transformation into account.
- @param thresholdFactor The higher, the less matches.
- @note
- Since GMS works well when the number of features is large, we recommend to use the ORB feature and set FastThreshold to 0 to get as many as possible features quickly.
- If matching results are not satisfying, please add more features. (We use 10000 for images with 640 X 480).
- If your images have big rotation and scale changes, please set withRotation or withScale to true.
- */
- CV_EXPORTS_W void matchGMS( const Size& size1, const Size& size2, const std::vector<KeyPoint>& keypoints1, const std::vector<KeyPoint>& keypoints2,
- const std::vector<DMatch>& matches1to2, CV_OUT std::vector<DMatch>& matchesGMS, const bool withRotation = false,
- const bool withScale = false, const double thresholdFactor = 6.0 );
- //! @}
- }
- }
- #endif
|