123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef __OPENCV_SALIENCY_SPECIALIZED_CLASSES_HPP__
- #define __OPENCV_SALIENCY_SPECIALIZED_CLASSES_HPP__
- #include <cstdio>
- #include <string>
- #include <iostream>
- #include <stdint.h>
- #include "saliencyBaseClasses.hpp"
- #include "opencv2/core.hpp"
- namespace cv
- {
- namespace saliency
- {
- //! @addtogroup saliency
- //! @{
- /************************************ Specific Static Saliency Specialized Classes ************************************/
- /** @brief the Spectral Residual approach from @cite SR
- Starting from the principle of natural image statistics, this method simulate the behavior of
- pre-attentive visual search. The algorithm analyze the log spectrum of each image and obtain the
- spectral residual. Then transform the spectral residual to spatial domain to obtain the saliency
- map, which suggests the positions of proto-objects.
- */
- class CV_EXPORTS_W StaticSaliencySpectralResidual : public StaticSaliency
- {
- public:
- StaticSaliencySpectralResidual();
- virtual ~StaticSaliencySpectralResidual();
- CV_WRAP static Ptr<StaticSaliencySpectralResidual> create()
- {
- return makePtr<StaticSaliencySpectralResidual>();
- }
- CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
- {
- if( image.empty() )
- return false;
- return computeSaliencyImpl( image, saliencyMap );
- }
- CV_WRAP void read( const FileNode& fn ) CV_OVERRIDE;
- void write( FileStorage& fs ) const CV_OVERRIDE;
- CV_WRAP int getImageWidth() const
- {
- return resImWidth;
- }
- CV_WRAP inline void setImageWidth(int val)
- {
- resImWidth = val;
- }
- CV_WRAP int getImageHeight() const
- {
- return resImHeight;
- }
- CV_WRAP void setImageHeight(int val)
- {
- resImHeight = val;
- }
- protected:
- bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) CV_OVERRIDE;
- CV_PROP_RW int resImWidth;
- CV_PROP_RW int resImHeight;
- };
- /** @brief the Fine Grained Saliency approach from @cite FGS
- This method calculates saliency based on center-surround differences.
- High resolution saliency maps are generated in real time by using integral images.
- */
- class CV_EXPORTS_W StaticSaliencyFineGrained : public StaticSaliency
- {
- public:
- StaticSaliencyFineGrained();
- CV_WRAP static Ptr<StaticSaliencyFineGrained> create()
- {
- return makePtr<StaticSaliencyFineGrained>();
- }
- CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
- {
- if( image.empty() )
- return false;
- return computeSaliencyImpl( image, saliencyMap );
- }
- virtual ~StaticSaliencyFineGrained();
- protected:
- bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) CV_OVERRIDE;
- private:
- void calcIntensityChannel(Mat src, Mat dst);
- void copyImage(Mat src, Mat dst);
- void getIntensityScaled(Mat integralImage, Mat gray, Mat saliencyOn, Mat saliencyOff, int neighborhood);
- float getMean(Mat srcArg, Point2i PixArg, int neighbourhood, int centerVal);
- void mixScales(Mat *saliencyOn, Mat intensityOn, Mat *saliencyOff, Mat intensityOff, const int numScales);
- void mixOnOff(Mat intensityOn, Mat intensityOff, Mat intensity);
- void getIntensity(Mat srcArg, Mat dstArg, Mat dstOnArg, Mat dstOffArg, bool generateOnOff);
- };
- /************************************ Specific Motion Saliency Specialized Classes ************************************/
- /*!
- * A Fast Self-tuning Background Subtraction Algorithm.
- *
- * This background subtraction algorithm is inspired to the work of B. Wang and P. Dudek [2]
- * [2] B. Wang and P. Dudek "A Fast Self-tuning Background Subtraction Algorithm", in proc of IEEE Workshop on Change Detection, 2014
- *
- */
- /** @brief the Fast Self-tuning Background Subtraction Algorithm from @cite BinWangApr2014
- */
- class CV_EXPORTS_W MotionSaliencyBinWangApr2014 : public MotionSaliency
- {
- public:
- MotionSaliencyBinWangApr2014();
- virtual ~MotionSaliencyBinWangApr2014();
- CV_WRAP static Ptr<MotionSaliencyBinWangApr2014> create()
- {
- return makePtr<MotionSaliencyBinWangApr2014>();
- }
- CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
- {
- if( image.empty() )
- return false;
- return computeSaliencyImpl( image, saliencyMap );
- }
- /** @brief This is a utility function that allows to set the correct size (taken from the input image) in the
- corresponding variables that will be used to size the data structures of the algorithm.
- @param W width of input image
- @param H height of input image
- */
- CV_WRAP void setImagesize( int W, int H );
- /** @brief This function allows the correct initialization of all data structures that will be used by the
- algorithm.
- */
- CV_WRAP bool init();
- CV_WRAP int getImageWidth() const
- {
- return imageWidth;
- }
- CV_WRAP inline void setImageWidth(int val)
- {
- imageWidth = val;
- }
- CV_WRAP int getImageHeight() const
- {
- return imageHeight;
- }
- CV_WRAP void setImageHeight(int val)
- {
- imageHeight = val;
- }
- protected:
- /** @brief Performs all the operations and calls all internal functions necessary for the accomplishment of the
- Fast Self-tuning Background Subtraction Algorithm algorithm.
- @param image input image. According to the needs of this specialized algorithm, the param image is a
- single *Mat*.
- @param saliencyMap Saliency Map. Is a binarized map that, in accordance with the nature of the algorithm, highlights the moving objects or areas of change in the scene.
- The saliency map is given by a single *Mat* (one for each frame of an hypothetical video
- stream).
- */
- bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) CV_OVERRIDE;
- private:
- // classification (and adaptation) functions
- bool fullResolutionDetection( const Mat& image, Mat& highResBFMask );
- bool lowResolutionDetection( const Mat& image, Mat& lowResBFMask );
- // Background model maintenance functions
- bool templateOrdering();
- bool templateReplacement( const Mat& finalBFMask, const Mat& image );
- // Decision threshold adaptation and Activity control function
- bool activityControl(const Mat& current_noisePixelsMask);
- bool decisionThresholdAdaptation();
- // changing structure
- std::vector<Ptr<Mat> > backgroundModel;// The vector represents the background template T0---TK of reference paper.
- // Matrices are two-channel matrix. In the first layer there are the B (background value)
- // for each pixel. In the second layer, there are the C (efficacy) value for each pixel
- Mat potentialBackground;// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
- // and in the secon level there are the Ca value, the counter for each potential value.
- Mat epslonPixelsValue;// epslon threshold
- Mat activityPixelsValue;// Activity level of each pixel
- //vector<Mat> noisePixelMask; // We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
- Mat noisePixelMask;// We define a ‘noise-pixel’ as a pixel that has been classified as a foreground pixel during the full resolution
- //detection process,however, after the low resolution detection, it has become a
- // background pixel. The matrix is two-channel matrix. In the first layer there is the mask ( the identified noise-pixels are set to 1 while other pixels are 0)
- // for each pixel. In the second layer, there is the value of activity level A for each pixel.
- //fixed parameter
- bool activityControlFlag;
- bool neighborhoodCheck;
- int N_DS;// Number of template to be downsampled and used in lowResolutionDetection function
- CV_PROP_RW int imageWidth;// Width of input image
- CV_PROP_RW int imageHeight;//Height of input image
- int K;// Number of background model template
- int N;// NxN is the size of the block for downsampling in the lowlowResolutionDetection
- float alpha;// Learning rate
- int L0, L1;// Upper-bound values for C0 and C1 (efficacy of the first two template (matrices) of backgroundModel
- int thetaL;// T0, T1 swap threshold
- int thetaA;// Potential background value threshold
- int gamma;// Parameter that controls the time that the newly updated long-term background value will remain in the
- // long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
- //restrain the generation of ghosts.
- uchar Ainc;// Activity Incrementation;
- int Bmax;// Upper-bound value for pixel activity
- int Bth;// Max activity threshold
- int Binc, Bdec;// Threshold for pixel-level decision threshold (epslon) adaptation
- float deltaINC, deltaDEC;// Increment-decrement value for epslon adaptation
- int epslonMIN, epslonMAX;// Range values for epslon threshold
- };
- /************************************ Specific Objectness Specialized Classes ************************************/
- /**
- * \brief Objectness algorithms based on [3]
- * [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
- */
- /** @brief the Binarized normed gradients algorithm from @cite BING
- */
- class CV_EXPORTS_W ObjectnessBING : public Objectness
- {
- public:
- ObjectnessBING();
- virtual ~ObjectnessBING();
- CV_WRAP static Ptr<ObjectnessBING> create()
- {
- return makePtr<ObjectnessBING>();
- }
- CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap )
- {
- if( image.empty() )
- return false;
- return computeSaliencyImpl( image, saliencyMap );
- }
- CV_WRAP void read();
- CV_WRAP void write() const;
- /** @brief Return the list of the rectangles' objectness value,
- in the same order as the *vector\<Vec4i\> objectnessBoundingBox* returned by the algorithm (in
- computeSaliencyImpl function). The bigger value these scores are, it is more likely to be an
- object window.
- */
- CV_WRAP std::vector<float> getobjectnessValues();
- /** @brief This is a utility function that allows to set the correct path from which the algorithm will load
- the trained model.
- @param trainingPath trained model path
- */
- CV_WRAP void setTrainingPath( const String& trainingPath );
- /** @brief This is a utility function that allows to set an arbitrary path in which the algorithm will save the
- optional results
- (ie writing on file the total number and the list of rectangles returned by objectess, one for
- each row).
- @param resultsDir results' folder path
- */
- CV_WRAP void setBBResDir( const String& resultsDir );
- CV_WRAP double getBase() const
- {
- return _base;
- }
- CV_WRAP inline void setBase(double val)
- {
- _base = val;
- }
- CV_WRAP int getNSS() const
- {
- return _NSS;
- }
- CV_WRAP void setNSS(int val)
- {
- _NSS = val;
- }
- CV_WRAP int getW() const
- {
- return _W;
- }
- CV_WRAP void setW(int val)
- {
- _W = val;
- }
- protected:
- /** @brief Performs all the operations and calls all internal functions necessary for the
- accomplishment of the Binarized normed gradients algorithm.
- @param image input image. According to the needs of this specialized algorithm, the param image is a
- single *Mat*
- @param objectnessBoundingBox objectness Bounding Box vector. According to the result given by this
- specialized algorithm, the objectnessBoundingBox is a *vector\<Vec4i\>*. Each bounding box is
- represented by a *Vec4i* for (minX, minY, maxX, maxY).
- */
- bool computeSaliencyImpl( InputArray image, OutputArray objectnessBoundingBox ) CV_OVERRIDE;
- private:
- class FilterTIG
- {
- public:
- void update( Mat &w );
- // For a W by H gradient magnitude map, find a W-7 by H-7 CV_32F matching score map
- Mat matchTemplate( const Mat &mag1u );
- float dot( int64_t tig1, int64_t tig2, int64_t tig4, int64_t tig8 );
- void reconstruct( Mat &w );// For illustration purpose
- private:
- static const int NUM_COMP = 2;// Number of components
- static const int D = 64;// Dimension of TIG
- int64_t _bTIGs[NUM_COMP];// Binary TIG features
- float _coeffs1[NUM_COMP];// Coefficients of binary TIG features
- // For efficiently deals with different bits in CV_8U gradient map
- float _coeffs2[NUM_COMP], _coeffs4[NUM_COMP], _coeffs8[NUM_COMP];
- };
- template<typename VT, typename ST>
- struct ValStructVec
- {
- ValStructVec();
- int size() const;
- void clear();
- void reserve( int resSz );
- void pushBack( const VT& val, const ST& structVal );
- const VT& operator ()( int i ) const;
- const ST& operator []( int i ) const;
- VT& operator ()( int i );
- ST& operator []( int i );
- void sort( bool descendOrder = true );
- const std::vector<ST> &getSortedStructVal();
- std::vector<std::pair<VT, int> > getvalIdxes();
- void append( const ValStructVec<VT, ST> &newVals, int startV = 0 );
- std::vector<ST> structVals; // struct values
- int sz;// size of the value struct vector
- std::vector<std::pair<VT, int> > valIdxes;// Indexes after sort
- bool smaller()
- {
- return true;
- }
- std::vector<ST> sortedStructVals;
- };
- enum
- {
- MAXBGR,
- HSV,
- G
- };
- double _base, _logBase; // base for window size quantization
- int _W;// As described in the paper: #Size, Size(_W, _H) of feature window.
- int _NSS;// Size for non-maximal suppress
- int _maxT, _minT, _numT;// The minimal and maximal dimensions of the template
- int _Clr;//
- static const char* _clrName[3];
- // Names and paths to read model and to store results
- std::string _modelName, _bbResDir, _trainingPath, _resultsDir;
- std::vector<int> _svmSzIdxs;// Indexes of active size. It's equal to _svmFilters.size() and _svmReW1f.rows
- Mat _svmFilter;// Filters learned at stage I, each is a _H by _W CV_32F matrix
- FilterTIG _tigF;// TIG filter
- Mat _svmReW1f;// Re-weight parameters learned at stage II.
- // List of the rectangles' objectness value, in the same order as
- // the vector<Vec4i> objectnessBoundingBox returned by the algorithm (in computeSaliencyImpl function)
- std::vector<float> objectnessValues;
- private:
- // functions
- inline static float LoG( float x, float y, float delta )
- {
- float d = - ( x * x + y * y ) / ( 2 * delta * delta );
- return -1.0f / ( (float) ( CV_PI ) * pow( delta, 4 ) ) * ( 1 + d ) * exp( d );
- } // Laplacian of Gaussian
- // Read matrix from binary file
- static bool matRead( const std::string& filename, Mat& M );
- void setColorSpace( int clr = MAXBGR );
- // Load trained model.
- int loadTrainedModel();// Return -1, 0, or 1 if partial, none, or all loaded
- // Get potential bounding boxes, each of which is represented by a Vec4i for (minX, minY, maxX, maxY).
- // The trained model should be prepared before calling this function: loadTrainedModel() or trainStageI() + trainStageII().
- // Use numDet to control the final number of proposed bounding boxes, and number of per size (scale and aspect ratio)
- void getObjBndBoxes( Mat &img3u, ValStructVec<float, Vec4i> &valBoxes, int numDetPerSize = 120 );
- void getObjBndBoxesForSingleImage( Mat img, ValStructVec<float, Vec4i> &boxes, int numDetPerSize );
- bool filtersLoaded()
- {
- int n = (int) _svmSzIdxs.size();
- return n > 0 && _svmReW1f.size() == Size( 2, n ) && _svmFilter.size() == Size( _W, _W );
- }
- void predictBBoxSI( Mat &mag3u, ValStructVec<float, Vec4i> &valBoxes, std::vector<int> &sz, int NUM_WIN_PSZ = 100, bool fast = true );
- void predictBBoxSII( ValStructVec<float, Vec4i> &valBoxes, const std::vector<int> &sz );
- // Calculate the image gradient: center option as in VLFeat
- void gradientMag( Mat &imgBGR3u, Mat &mag1u );
- static void gradientRGB( Mat &bgr3u, Mat &mag1u );
- static void gradientGray( Mat &bgr3u, Mat &mag1u );
- static void gradientHSV( Mat &bgr3u, Mat &mag1u );
- static void gradientXY( Mat &x1i, Mat &y1i, Mat &mag1u );
- static inline int bgrMaxDist( const Vec3b &u, const Vec3b &v )
- {
- int b = abs( u[0] - v[0] ), g = abs( u[1] - v[1] ), r = abs( u[2] - v[2] );
- b = max( b, g );
- return max( b, r );
- }
- static inline int vecDist3b( const Vec3b &u, const Vec3b &v )
- {
- return abs( u[0] - v[0] ) + abs( u[1] - v[1] ) + abs( u[2] - v[2] );
- }
- //Non-maximal suppress
- static void nonMaxSup( Mat &matchCost1f, ValStructVec<float, Point> &matchCost, int NSS = 1, int maxPoint = 50, bool fast = true );
- };
- //! @}
- }
- /* namespace saliency */
- } /* namespace cv */
- #endif
|