123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef __OPENCV_SALIENCY_BASE_CLASSES_HPP__
- #define __OPENCV_SALIENCY_BASE_CLASSES_HPP__
- #include "opencv2/core.hpp"
- #include <opencv2/core/persistence.hpp>
- #include "opencv2/imgproc.hpp"
- #include <iostream>
- #include <sstream>
- #include <complex>
- namespace cv
- {
- namespace saliency
- {
- //! @addtogroup saliency
- //! @{
- /************************************ Saliency Base Class ************************************/
- class CV_EXPORTS_W Saliency : public virtual Algorithm
- {
- public:
- /**
- * \brief Destructor
- */
- virtual ~Saliency();
- /**
- * \brief Compute the saliency
- * \param image The image.
- * \param saliencyMap The computed saliency map.
- * \return true if the saliency map is computed, false otherwise
- */
- CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap );
- protected:
- virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) = 0;
- String className;
- };
- /************************************ Static Saliency Base Class ************************************/
- class CV_EXPORTS_W StaticSaliency : public virtual Saliency
- {
- public:
- /** @brief This function perform a binary map of given saliency map. This is obtained in this
- way:
- In a first step, to improve the definition of interest areas and facilitate identification of
- targets, a segmentation by clustering is performed, using *K-means algorithm*. Then, to gain a
- binary representation of clustered saliency map, since values of the map can vary according to
- the characteristics of frame under analysis, it is not convenient to use a fixed threshold. So,
- *Otsu's algorithm* is used, which assumes that the image to be thresholded contains two classes
- of pixels or bi-modal histograms (e.g. foreground and back-ground pixels); later on, the
- algorithm calculates the optimal threshold separating those two classes, so that their
- intra-class variance is minimal.
- @param _saliencyMap the saliency map obtained through one of the specialized algorithms
- @param _binaryMap the binary map
- */
- CV_WRAP bool computeBinaryMap( InputArray _saliencyMap, OutputArray _binaryMap );
- protected:
- virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) CV_OVERRIDE = 0;
- };
- /************************************ Motion Saliency Base Class ************************************/
- class CV_EXPORTS_W MotionSaliency : public virtual Saliency
- {
- protected:
- virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) CV_OVERRIDE = 0;
- };
- /************************************ Objectness Base Class ************************************/
- class CV_EXPORTS_W Objectness : public virtual Saliency
- {
- protected:
- virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) CV_OVERRIDE = 0;
- };
- //! @}
- } /* namespace saliency */
- } /* namespace cv */
- #endif
|