1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Copyright (C) 2014, Itseez Inc, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_ML_HPP
- #define OPENCV_ML_HPP
- #ifdef __cplusplus
- # include "opencv2/core.hpp"
- #endif
- #ifdef __cplusplus
- #include <float.h>
- #include <map>
- #include <iostream>
- /**
- @defgroup ml Machine Learning
- The Machine Learning Library (MLL) is a set of classes and functions for statistical
- classification, regression, and clustering of data.
- Most of the classification and regression algorithms are implemented as C++ classes. As the
- algorithms have different sets of features (like an ability to handle missing measurements or
- categorical input variables), there is a little common ground between the classes. This common
- ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from.
- See detailed overview here: @ref ml_intro.
- */
- namespace cv
- {
- namespace ml
- {
- //! @addtogroup ml
- //! @{
- /** @brief Variable types */
- enum VariableTypes
- {
- VAR_NUMERICAL =0, //!< same as VAR_ORDERED
- VAR_ORDERED =0, //!< ordered variables
- VAR_CATEGORICAL =1 //!< categorical variables
- };
- /** @brief %Error types */
- enum ErrorTypes
- {
- TEST_ERROR = 0,
- TRAIN_ERROR = 1
- };
- /** @brief Sample types */
- enum SampleTypes
- {
- ROW_SAMPLE = 0, //!< each training sample is a row of samples
- COL_SAMPLE = 1 //!< each training sample occupies a column of samples
- };
- /** @brief The structure represents the logarithmic grid range of statmodel parameters.
- It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate
- being computed by cross-validation.
- */
- class CV_EXPORTS_W ParamGrid
- {
- public:
- /** @brief Default constructor */
- ParamGrid();
- /** @brief Constructor with parameters */
- ParamGrid(double _minVal, double _maxVal, double _logStep);
- CV_PROP_RW double minVal; //!< Minimum value of the statmodel parameter. Default value is 0.
- CV_PROP_RW double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0.
- /** @brief Logarithmic step for iterating the statmodel parameter.
- The grid determines the following iteration sequence of the statmodel parameter values:
- \f[(minVal, minVal*step, minVal*{step}^2, \dots, minVal*{logStep}^n),\f]
- where \f$n\f$ is the maximal index satisfying
- \f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f]
- The grid is logarithmic, so logStep must always be greater then 1. Default value is 1.
- */
- CV_PROP_RW double logStep;
- /** @brief Creates a ParamGrid Ptr that can be given to the %SVM::trainAuto method
- @param minVal minimum value of the parameter grid
- @param maxVal maximum value of the parameter grid
- @param logstep Logarithmic step for iterating the statmodel parameter
- */
- CV_WRAP static Ptr<ParamGrid> create(double minVal=0., double maxVal=0., double logstep=1.);
- };
- /** @brief Class encapsulating training data.
- Please note that the class only specifies the interface of training data, but not implementation.
- All the statistical model classes in _ml_ module accepts Ptr\<TrainData\> as parameter. In other
- words, you can create your own class derived from TrainData and pass smart pointer to the instance
- of this class into StatModel::train.
- @sa @ref ml_intro_data
- */
- class CV_EXPORTS_W TrainData
- {
- public:
- static inline float missingValue() { return FLT_MAX; }
- virtual ~TrainData();
- CV_WRAP virtual int getLayout() const = 0;
- CV_WRAP virtual int getNTrainSamples() const = 0;
- CV_WRAP virtual int getNTestSamples() const = 0;
- CV_WRAP virtual int getNSamples() const = 0;
- CV_WRAP virtual int getNVars() const = 0;
- CV_WRAP virtual int getNAllVars() const = 0;
- CV_WRAP virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0;
- CV_WRAP virtual Mat getSamples() const = 0;
- CV_WRAP virtual Mat getMissing() const = 0;
- /** @brief Returns matrix of train samples
- @param layout The requested layout. If it's different from the initial one, the matrix is
- transposed. See ml::SampleTypes.
- @param compressSamples if true, the function returns only the training samples (specified by
- sampleIdx)
- @param compressVars if true, the function returns the shorter training samples, containing only
- the active variables.
- In current implementation the function tries to avoid physical data copying and returns the
- matrix stored inside TrainData (unless the transposition or compression is needed).
- */
- CV_WRAP virtual Mat getTrainSamples(int layout=ROW_SAMPLE,
- bool compressSamples=true,
- bool compressVars=true) const = 0;
- /** @brief Returns the vector of responses
- The function returns ordered or the original categorical responses. Usually it's used in
- regression algorithms.
- */
- CV_WRAP virtual Mat getTrainResponses() const = 0;
- /** @brief Returns the vector of normalized categorical responses
- The function returns vector of responses. Each response is integer from `0` to `<number of
- classes>-1`. The actual label value can be retrieved then from the class label vector, see
- TrainData::getClassLabels.
- */
- CV_WRAP virtual Mat getTrainNormCatResponses() const = 0;
- CV_WRAP virtual Mat getTestResponses() const = 0;
- CV_WRAP virtual Mat getTestNormCatResponses() const = 0;
- CV_WRAP virtual Mat getResponses() const = 0;
- CV_WRAP virtual Mat getNormCatResponses() const = 0;
- CV_WRAP virtual Mat getSampleWeights() const = 0;
- CV_WRAP virtual Mat getTrainSampleWeights() const = 0;
- CV_WRAP virtual Mat getTestSampleWeights() const = 0;
- CV_WRAP virtual Mat getVarIdx() const = 0;
- CV_WRAP virtual Mat getVarType() const = 0;
- CV_WRAP virtual Mat getVarSymbolFlags() const = 0;
- CV_WRAP virtual int getResponseType() const = 0;
- CV_WRAP virtual Mat getTrainSampleIdx() const = 0;
- CV_WRAP virtual Mat getTestSampleIdx() const = 0;
- CV_WRAP virtual void getValues(int vi, InputArray sidx, float* values) const = 0;
- virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0;
- CV_WRAP virtual Mat getDefaultSubstValues() const = 0;
- CV_WRAP virtual int getCatCount(int vi) const = 0;
- /** @brief Returns the vector of class labels
- The function returns vector of unique labels occurred in the responses.
- */
- CV_WRAP virtual Mat getClassLabels() const = 0;
- CV_WRAP virtual Mat getCatOfs() const = 0;
- CV_WRAP virtual Mat getCatMap() const = 0;
- /** @brief Splits the training data into the training and test parts
- @sa TrainData::setTrainTestSplitRatio
- */
- CV_WRAP virtual void setTrainTestSplit(int count, bool shuffle=true) = 0;
- /** @brief Splits the training data into the training and test parts
- The function selects a subset of specified relative size and then returns it as the training
- set. If the function is not called, all the data is used for training. Please, note that for
- each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test
- subset can be retrieved and processed as well.
- @sa TrainData::setTrainTestSplit
- */
- CV_WRAP virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0;
- CV_WRAP virtual void shuffleTrainTest() = 0;
- /** @brief Returns matrix of test samples */
- CV_WRAP virtual Mat getTestSamples() const = 0;
- /** @brief Returns vector of symbolic names captured in loadFromCSV() */
- CV_WRAP virtual void getNames(std::vector<String>& names) const = 0;
- /** @brief Extract from 1D vector elements specified by passed indexes.
- @param vec input vector (supported types: CV_32S, CV_32F, CV_64F)
- @param idx 1D index vector
- */
- static CV_WRAP Mat getSubVector(const Mat& vec, const Mat& idx);
- /** @brief Extract from matrix rows/cols specified by passed indexes.
- @param matrix input matrix (supported types: CV_32S, CV_32F, CV_64F)
- @param idx 1D index vector
- @param layout specifies to extract rows (cv::ml::ROW_SAMPLES) or to extract columns (cv::ml::COL_SAMPLES)
- */
- static CV_WRAP Mat getSubMatrix(const Mat& matrix, const Mat& idx, int layout);
- /** @brief Reads the dataset from a .csv file and returns the ready-to-use training data.
- @param filename The input file name
- @param headerLineCount The number of lines in the beginning to skip; besides the header, the
- function also skips empty lines and lines staring with `#`
- @param responseStartIdx Index of the first output variable. If -1, the function considers the
- last variable as the response
- @param responseEndIdx Index of the last output variable + 1. If -1, then there is single
- response variable at responseStartIdx.
- @param varTypeSpec The optional text string that specifies the variables' types. It has the
- format `ord[n1-n2,n3,n4-n5,...]cat[n6,n7-n8,...]`. That is, variables from `n1 to n2`
- (inclusive range), `n3`, `n4 to n5` ... are considered ordered and `n6`, `n7 to n8` ... are
- considered as categorical. The range `[n1..n2] + [n3] + [n4..n5] + ... + [n6] + [n7..n8]`
- should cover all the variables. If varTypeSpec is not specified, then algorithm uses the
- following rules:
- - all input variables are considered ordered by default. If some column contains has non-
- numerical values, e.g. 'apple', 'pear', 'apple', 'apple', 'mango', the corresponding
- variable is considered categorical.
- - if there are several output variables, they are all considered as ordered. Error is
- reported when non-numerical values are used.
- - if there is a single output variable, then if its values are non-numerical or are all
- integers, then it's considered categorical. Otherwise, it's considered ordered.
- @param delimiter The character used to separate values in each line.
- @param missch The character used to specify missing measurements. It should not be a digit.
- Although it's a non-numerical value, it surely does not affect the decision of whether the
- variable ordered or categorical.
- @note If the dataset only contains input variables and no responses, use responseStartIdx = -2
- and responseEndIdx = 0. The output variables vector will just contain zeros.
- */
- static Ptr<TrainData> loadFromCSV(const String& filename,
- int headerLineCount,
- int responseStartIdx=-1,
- int responseEndIdx=-1,
- const String& varTypeSpec=String(),
- char delimiter=',',
- char missch='?');
- /** @brief Creates training data from in-memory arrays.
- @param samples matrix of samples. It should have CV_32F type.
- @param layout see ml::SampleTypes.
- @param responses matrix of responses. If the responses are scalar, they should be stored as a
- single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
- former case the responses are considered as ordered by default; in the latter case - as
- categorical)
- @param varIdx vector specifying which variables to use for training. It can be an integer vector
- (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
- active variables.
- @param sampleIdx vector specifying which samples to use for training. It can be an integer
- vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
- of training samples.
- @param sampleWeights optional vector with weights for each sample. It should have CV_32F type.
- @param varType optional vector of type CV_8U and size `<number_of_variables_in_samples> +
- <number_of_variables_in_responses>`, containing types of each input and output variable. See
- ml::VariableTypes.
- */
- CV_WRAP static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
- InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
- InputArray sampleWeights=noArray(), InputArray varType=noArray());
- };
- /** @brief Base class for statistical models in OpenCV ML.
- */
- class CV_EXPORTS_W StatModel : public Algorithm
- {
- public:
- /** Predict options */
- enum Flags {
- UPDATE_MODEL = 1,
- RAW_OUTPUT=1, //!< makes the method return the raw results (the sum), not the class label
- COMPRESSED_INPUT=2,
- PREPROCESSED_INPUT=4
- };
- /** @brief Returns the number of variables in training samples */
- CV_WRAP virtual int getVarCount() const = 0;
- CV_WRAP virtual bool empty() const CV_OVERRIDE;
- /** @brief Returns true if the model is trained */
- CV_WRAP virtual bool isTrained() const = 0;
- /** @brief Returns true if the model is classifier */
- CV_WRAP virtual bool isClassifier() const = 0;
- /** @brief Trains the statistical model
- @param trainData training data that can be loaded from file using TrainData::loadFromCSV or
- created with TrainData::create.
- @param flags optional flags, depending on the model. Some of the models can be updated with the
- new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
- */
- CV_WRAP virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
- /** @brief Trains the statistical model
- @param samples training samples
- @param layout See ml::SampleTypes.
- @param responses vector of responses associated with the training samples.
- */
- CV_WRAP virtual bool train( InputArray samples, int layout, InputArray responses );
- /** @brief Computes error on the training or test dataset
- @param data the training data
- @param test if true, the error is computed over the test subset of the data, otherwise it's
- computed over the training subset of the data. Please note that if you loaded a completely
- different dataset to evaluate already trained classifier, you will probably want not to set
- the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
- that the error is computed for the whole new set. Yes, this sounds a bit confusing.
- @param resp the optional output responses.
- The method uses StatModel::predict to compute the error. For regression models the error is
- computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
- */
- CV_WRAP virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
- /** @brief Predicts response(s) for the provided sample(s)
- @param samples The input samples, floating-point matrix
- @param results The optional output matrix of results.
- @param flags The optional flags, model-dependent. See cv::ml::StatModel::Flags.
- */
- CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
- /** @brief Create and train model with default parameters
- The class must implement static `create()` method with no parameters or with all default parameter values
- */
- template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, int flags=0)
- {
- Ptr<_Tp> model = _Tp::create();
- return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
- }
- };
- /****************************************************************************************\
- * Normal Bayes Classifier *
- \****************************************************************************************/
- /** @brief Bayes classifier for normally distributed data.
- @sa @ref ml_intro_bayes
- */
- class CV_EXPORTS_W NormalBayesClassifier : public StatModel
- {
- public:
- /** @brief Predicts the response for sample(s).
- The method estimates the most probable classes for input vectors. Input vectors (one or more)
- are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one
- output vector outputs. The predicted class for a single input vector is returned by the method.
- The vector outputProbs contains the output probabilities corresponding to each element of
- result.
- */
- CV_WRAP virtual float predictProb( InputArray inputs, OutputArray outputs,
- OutputArray outputProbs, int flags=0 ) const = 0;
- /** Creates empty model
- Use StatModel::train to train the model after creation. */
- CV_WRAP static Ptr<NormalBayesClassifier> create();
- /** @brief Loads and creates a serialized NormalBayesClassifier from a file
- *
- * Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.
- * Load the NormalBayesClassifier from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized NormalBayesClassifier
- * @param nodeName name of node containing the classifier
- */
- CV_WRAP static Ptr<NormalBayesClassifier> load(const String& filepath , const String& nodeName = String());
- };
- /****************************************************************************************\
- * K-Nearest Neighbour Classifier *
- \****************************************************************************************/
- /** @brief The class implements K-Nearest Neighbors model
- @sa @ref ml_intro_knn
- */
- class CV_EXPORTS_W KNearest : public StatModel
- {
- public:
- /** Default number of neighbors to use in predict method. */
- /** @see setDefaultK */
- CV_WRAP virtual int getDefaultK() const = 0;
- /** @copybrief getDefaultK @see getDefaultK */
- CV_WRAP virtual void setDefaultK(int val) = 0;
- /** Whether classification or regression model should be trained. */
- /** @see setIsClassifier */
- CV_WRAP virtual bool getIsClassifier() const = 0;
- /** @copybrief getIsClassifier @see getIsClassifier */
- CV_WRAP virtual void setIsClassifier(bool val) = 0;
- /** Parameter for KDTree implementation. */
- /** @see setEmax */
- CV_WRAP virtual int getEmax() const = 0;
- /** @copybrief getEmax @see getEmax */
- CV_WRAP virtual void setEmax(int val) = 0;
- /** %Algorithm type, one of KNearest::Types. */
- /** @see setAlgorithmType */
- CV_WRAP virtual int getAlgorithmType() const = 0;
- /** @copybrief getAlgorithmType @see getAlgorithmType */
- CV_WRAP virtual void setAlgorithmType(int val) = 0;
- /** @brief Finds the neighbors and predicts responses for input vectors.
- @param samples Input samples stored by rows. It is a single-precision floating-point matrix of
- `<number_of_samples> * k` size.
- @param k Number of used nearest neighbors. Should be greater than 1.
- @param results Vector with results of prediction (regression or classification) for each input
- sample. It is a single-precision floating-point vector with `<number_of_samples>` elements.
- @param neighborResponses Optional output values for corresponding neighbors. It is a single-
- precision floating-point matrix of `<number_of_samples> * k` size.
- @param dist Optional output distances from the input vectors to the corresponding neighbors. It
- is a single-precision floating-point matrix of `<number_of_samples> * k` size.
- For each input vector (a row of the matrix samples), the method finds the k nearest neighbors.
- In case of regression, the predicted result is a mean value of the particular vector's neighbor
- responses. In case of classification, the class is determined by voting.
- For each input vector, the neighbors are sorted by their distances to the vector.
- In case of C++ interface you can use output pointers to empty matrices and the function will
- allocate memory itself.
- If only a single input vector is passed, all output matrices are optional and the predicted
- value is returned by the method.
- The function is parallelized with the TBB library.
- */
- CV_WRAP virtual float findNearest( InputArray samples, int k,
- OutputArray results,
- OutputArray neighborResponses=noArray(),
- OutputArray dist=noArray() ) const = 0;
- /** @brief Implementations of KNearest algorithm
- */
- enum Types
- {
- BRUTE_FORCE=1,
- KDTREE=2
- };
- /** @brief Creates the empty model
- The static method creates empty %KNearest classifier. It should be then trained using StatModel::train method.
- */
- CV_WRAP static Ptr<KNearest> create();
- };
- /****************************************************************************************\
- * Support Vector Machines *
- \****************************************************************************************/
- /** @brief Support Vector Machines.
- @sa @ref ml_intro_svm
- */
- class CV_EXPORTS_W SVM : public StatModel
- {
- public:
- class CV_EXPORTS Kernel : public Algorithm
- {
- public:
- virtual int getType() const = 0;
- virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0;
- };
- /** Type of a %SVM formulation.
- See SVM::Types. Default value is SVM::C_SVC. */
- /** @see setType */
- CV_WRAP virtual int getType() const = 0;
- /** @copybrief getType @see getType */
- CV_WRAP virtual void setType(int val) = 0;
- /** Parameter \f$\gamma\f$ of a kernel function.
- For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. */
- /** @see setGamma */
- CV_WRAP virtual double getGamma() const = 0;
- /** @copybrief getGamma @see getGamma */
- CV_WRAP virtual void setGamma(double val) = 0;
- /** Parameter _coef0_ of a kernel function.
- For SVM::POLY or SVM::SIGMOID. Default value is 0.*/
- /** @see setCoef0 */
- CV_WRAP virtual double getCoef0() const = 0;
- /** @copybrief getCoef0 @see getCoef0 */
- CV_WRAP virtual void setCoef0(double val) = 0;
- /** Parameter _degree_ of a kernel function.
- For SVM::POLY. Default value is 0. */
- /** @see setDegree */
- CV_WRAP virtual double getDegree() const = 0;
- /** @copybrief getDegree @see getDegree */
- CV_WRAP virtual void setDegree(double val) = 0;
- /** Parameter _C_ of a %SVM optimization problem.
- For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. */
- /** @see setC */
- CV_WRAP virtual double getC() const = 0;
- /** @copybrief getC @see getC */
- CV_WRAP virtual void setC(double val) = 0;
- /** Parameter \f$\nu\f$ of a %SVM optimization problem.
- For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. */
- /** @see setNu */
- CV_WRAP virtual double getNu() const = 0;
- /** @copybrief getNu @see getNu */
- CV_WRAP virtual void setNu(double val) = 0;
- /** Parameter \f$\epsilon\f$ of a %SVM optimization problem.
- For SVM::EPS_SVR. Default value is 0. */
- /** @see setP */
- CV_WRAP virtual double getP() const = 0;
- /** @copybrief getP @see getP */
- CV_WRAP virtual void setP(double val) = 0;
- /** Optional weights in the SVM::C_SVC problem, assigned to particular classes.
- They are multiplied by _C_ so the parameter _C_ of class _i_ becomes `classWeights(i) * C`. Thus
- these weights affect the misclassification penalty for different classes. The larger weight,
- the larger penalty on misclassification of data from the corresponding class. Default value is
- empty Mat. */
- /** @see setClassWeights */
- CV_WRAP virtual cv::Mat getClassWeights() const = 0;
- /** @copybrief getClassWeights @see getClassWeights */
- CV_WRAP virtual void setClassWeights(const cv::Mat &val) = 0;
- /** Termination criteria of the iterative %SVM training procedure which solves a partial
- case of constrained quadratic optimization problem.
- You can specify tolerance and/or the maximum number of iterations. Default value is
- `TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )`; */
- /** @see setTermCriteria */
- CV_WRAP virtual cv::TermCriteria getTermCriteria() const = 0;
- /** @copybrief getTermCriteria @see getTermCriteria */
- CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0;
- /** Type of a %SVM kernel.
- See SVM::KernelTypes. Default value is SVM::RBF. */
- CV_WRAP virtual int getKernelType() const = 0;
- /** Initialize with one of predefined kernels.
- See SVM::KernelTypes. */
- CV_WRAP virtual void setKernel(int kernelType) = 0;
- /** Initialize with custom kernel.
- See SVM::Kernel class for implementation details */
- virtual void setCustomKernel(const Ptr<Kernel> &_kernel) = 0;
- //! %SVM type
- enum Types {
- /** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows
- imperfect separation of classes with penalty multiplier C for outliers. */
- C_SVC=100,
- /** \f$\nu\f$-Support Vector Classification. n-class classification with possible
- imperfect separation. Parameter \f$\nu\f$ (in the range 0..1, the larger the value, the smoother
- the decision boundary) is used instead of C. */
- NU_SVC=101,
- /** Distribution Estimation (One-class %SVM). All the training data are from
- the same class, %SVM builds a boundary that separates the class from the rest of the feature
- space. */
- ONE_CLASS=102,
- /** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors
- from the training set and the fitting hyper-plane must be less than p. For outliers the
- penalty multiplier C is used. */
- EPS_SVR=103,
- /** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p.
- See @cite LibSVM for details. */
- NU_SVR=104
- };
- /** @brief %SVM kernel type
- A comparison of different kernels on the following 2D test case with four classes. Four
- SVM::C_SVC SVMs have been trained (one against rest) with auto_train. Evaluation on three
- different kernels (SVM::CHI2, SVM::INTER, SVM::RBF). The color depicts the class with max score.
- Bright means max-score \> 0, dark means max-score \< 0.
- ![image](pics/SVM_Comparison.png)
- */
- enum KernelTypes {
- /** Returned by SVM::getKernelType in case when custom kernel has been set */
- CUSTOM=-1,
- /** Linear kernel. No mapping is done, linear discrimination (or regression) is
- done in the original feature space. It is the fastest option. \f$K(x_i, x_j) = x_i^T x_j\f$. */
- LINEAR=0,
- /** Polynomial kernel:
- \f$K(x_i, x_j) = (\gamma x_i^T x_j + coef0)^{degree}, \gamma > 0\f$. */
- POLY=1,
- /** Radial basis function (RBF), a good choice in most cases.
- \f$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \gamma > 0\f$. */
- RBF=2,
- /** Sigmoid kernel: \f$K(x_i, x_j) = \tanh(\gamma x_i^T x_j + coef0)\f$. */
- SIGMOID=3,
- /** Exponential Chi2 kernel, similar to the RBF kernel:
- \f$K(x_i, x_j) = e^{-\gamma \chi^2(x_i,x_j)}, \chi^2(x_i,x_j) = (x_i-x_j)^2/(x_i+x_j), \gamma > 0\f$. */
- CHI2=4,
- /** Histogram intersection kernel. A fast kernel. \f$K(x_i, x_j) = min(x_i,x_j)\f$. */
- INTER=5
- };
- //! %SVM params type
- enum ParamTypes {
- C=0,
- GAMMA=1,
- P=2,
- NU=3,
- COEF=4,
- DEGREE=5
- };
- /** @brief Trains an %SVM with optimal parameters.
- @param data the training data that can be constructed using TrainData::create or
- TrainData::loadFromCSV.
- @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- executed kFold times.
- @param Cgrid grid for C
- @param gammaGrid grid for gamma
- @param pGrid grid for p
- @param nuGrid grid for nu
- @param coeffGrid grid for coeff
- @param degreeGrid grid for degree
- @param balanced If true and the problem is 2-class classification then the method creates more
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- If there is no need to optimize a parameter, the corresponding grid step should be set to any
- value less than or equal to 1. For example, to avoid optimization in gamma, set `gammaGrid.step
- = 0`, `gammaGrid.minVal`, `gamma_grid.maxVal` as arbitrary numbers. In this case, the value
- `Gamma` is taken for gamma.
- And, finally, if the optimization in a parameter is required but the corresponding grid is
- unknown, you may call the function SVM::getDefaultGrid. To generate a grid, for example, for
- gamma, call `SVM::getDefaultGrid(SVM::GAMMA)`.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.
- */
- virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
- ParamGrid Cgrid = getDefaultGrid(C),
- ParamGrid gammaGrid = getDefaultGrid(GAMMA),
- ParamGrid pGrid = getDefaultGrid(P),
- ParamGrid nuGrid = getDefaultGrid(NU),
- ParamGrid coeffGrid = getDefaultGrid(COEF),
- ParamGrid degreeGrid = getDefaultGrid(DEGREE),
- bool balanced=false) = 0;
- /** @brief Trains an %SVM with optimal parameters
- @param samples training samples
- @param layout See ml::SampleTypes.
- @param responses vector of responses associated with the training samples.
- @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One
- subset is used to test the model, the others form the train set. So, the %SVM algorithm is
- @param Cgrid grid for C
- @param gammaGrid grid for gamma
- @param pGrid grid for p
- @param nuGrid grid for nu
- @param coeffGrid grid for coeff
- @param degreeGrid grid for degree
- @param balanced If true and the problem is 2-class classification then the method creates more
- balanced cross-validation subsets that is proportions between classes in subsets are close
- to such proportion in the whole train dataset.
- The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
- nu, coef0, degree. Parameters are considered optimal when the cross-validation
- estimate of the test set error is minimal.
- This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
- offers rudimentary parameter options.
- This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
- regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
- the usual %SVM with parameters specified in params is executed.
- */
- CV_WRAP virtual bool trainAuto(InputArray samples,
- int layout,
- InputArray responses,
- int kFold = 10,
- Ptr<ParamGrid> Cgrid = SVM::getDefaultGridPtr(SVM::C),
- Ptr<ParamGrid> gammaGrid = SVM::getDefaultGridPtr(SVM::GAMMA),
- Ptr<ParamGrid> pGrid = SVM::getDefaultGridPtr(SVM::P),
- Ptr<ParamGrid> nuGrid = SVM::getDefaultGridPtr(SVM::NU),
- Ptr<ParamGrid> coeffGrid = SVM::getDefaultGridPtr(SVM::COEF),
- Ptr<ParamGrid> degreeGrid = SVM::getDefaultGridPtr(SVM::DEGREE),
- bool balanced=false) = 0;
- /** @brief Retrieves all the support vectors
- The method returns all the support vectors as a floating-point matrix, where support vectors are
- stored as matrix rows.
- */
- CV_WRAP virtual Mat getSupportVectors() const = 0;
- /** @brief Retrieves all the uncompressed support vectors of a linear %SVM
- The method returns all the uncompressed support vectors of a linear %SVM that the compressed
- support vector, used for prediction, was derived from. They are returned in a floating-point
- matrix, where the support vectors are stored as matrix rows.
- */
- CV_WRAP virtual Mat getUncompressedSupportVectors() const = 0;
- /** @brief Retrieves the decision function
- @param i the index of the decision function. If the problem solved is regression, 1-class or
- 2-class classification, then there will be just one decision function and the index should
- always be 0. Otherwise, in the case of N-class classification, there will be \f$N(N-1)/2\f$
- decision functions.
- @param alpha the optional output vector for weights, corresponding to different support vectors.
- In the case of linear %SVM all the alpha's will be 1's.
- @param svidx the optional output vector of indices of support vectors within the matrix of
- support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear
- %SVM each decision function consists of a single "compressed" support vector.
- The method returns rho parameter of the decision function, a scalar subtracted from the weighted
- sum of kernel responses.
- */
- CV_WRAP virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0;
- /** @brief Generates a grid for %SVM parameters.
- @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
- generated for the parameter with this ID.
- The function generates a grid for the specified parameter of the %SVM algorithm. The grid may be
- passed to the function SVM::trainAuto.
- */
- static ParamGrid getDefaultGrid( int param_id );
- /** @brief Generates a grid for %SVM parameters.
- @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
- generated for the parameter with this ID.
- The function generates a grid pointer for the specified parameter of the %SVM algorithm.
- The grid may be passed to the function SVM::trainAuto.
- */
- CV_WRAP static Ptr<ParamGrid> getDefaultGridPtr( int param_id );
- /** Creates empty model.
- Use StatModel::train to train the model. Since %SVM has several parameters, you may want to
- find the best parameters for your problem, it can be done with SVM::trainAuto. */
- CV_WRAP static Ptr<SVM> create();
- /** @brief Loads and creates a serialized svm from a file
- *
- * Use SVM::save to serialize and store an SVM to disk.
- * Load the SVM from this file again, by calling this function with the path to the file.
- *
- * @param filepath path to serialized svm
- */
- CV_WRAP static Ptr<SVM> load(const String& filepath);
- };
- /****************************************************************************************\
- * Expectation - Maximization *
- \****************************************************************************************/
- /** @brief The class implements the Expectation Maximization algorithm.
- @sa @ref ml_intro_em
- */
- class CV_EXPORTS_W EM : public StatModel
- {
- public:
- //! Type of covariation matrices
- enum Types {
- /** A scaled identity matrix \f$\mu_k * I\f$. There is the only
- parameter \f$\mu_k\f$ to be estimated for each matrix. The option may be used in special cases,
- when the constraint is relevant, or as a first step in the optimization (for example in case
- when the data is preprocessed with PCA). The results of such preliminary estimation may be
- passed again to the optimization procedure, this time with
- covMatType=EM::COV_MAT_DIAGONAL. */
- COV_MAT_SPHERICAL=0,
- /** A diagonal matrix with positive diagonal elements. The number of
- free parameters is d for each matrix. This is most commonly used option yielding good
- estimation results. */
- COV_MAT_DIAGONAL=1,
- /** A symmetric positively defined matrix. The number of free
- parameters in each matrix is about \f$d^2/2\f$. It is not recommended to use this option, unless
- there is pretty accurate initial estimation of the parameters and/or a huge number of
- training samples. */
- COV_MAT_GENERIC=2,
- COV_MAT_DEFAULT=COV_MAT_DIAGONAL
- };
- //! Default parameters
- enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
- //! The initial step
- enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
- /** The number of mixture components in the Gaussian mixture model.
- Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could
- determine the optimal number of mixtures within a specified value range, but that is not the
- case in ML yet. */
- /** @see setClustersNumber */
- CV_WRAP virtual int getClustersNumber() const = 0;
- /** @copybrief getClustersNumber @see getClustersNumber */
- CV_WRAP virtual void setClustersNumber(int val) = 0;
- /** Constraint on covariance matrices which defines type of matrices.
- See EM::Types. */
- /** @see setCovarianceMatrixType */
- CV_WRAP virtual int getCovarianceMatrixType() const = 0;
- /** @copybrief getCovarianceMatrixType @see getCovarianceMatrixType */
- CV_WRAP virtual void setCovarianceMatrixType(int val) = 0;
- /** The termination criteria of the %EM algorithm.
- The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of
- M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default
- maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. */
- /** @see setTermCriteria */
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
- /** @copybrief getTermCriteria @see getTermCriteria */
- CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0;
- /** @brief Returns weights of the mixtures
- Returns vector with the number of elements equal to the number of mixtures.
- */
- CV_WRAP virtual Mat getWeights() const = 0;
- /** @brief Returns the cluster centers (means of the Gaussian mixture)
- Returns matrix with the number of rows equal to the number of mixtures and number of columns
- equal to the space dimensionality.
- */
- CV_WRAP virtual Mat getMeans() const = 0;
- /** @brief Returns covariation matrices
- Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures,
- each matrix is a square floating-point matrix NxN, where N is the space dimensionality.
- */
- CV_WRAP virtual void getCovs(CV_OUT std::vector<Mat>& covs) const = 0;
- /** @brief Returns posterior probabilities for the provided samples
- @param samples The input samples, floating-point matrix
- @param results The optional output \f$ nSamples \times nClusters\f$ matrix of results. It contains
- posterior probabilities for each sample from the input
- @param flags This parameter will be ignored
- */
- CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const CV_OVERRIDE = 0;
- /** @brief Returns a likelihood logarithm value and an index of the most probable mixture component
- for the given sample.
- @param sample A sample for classification. It should be a one-channel matrix of
- \f$1 \times dims\f$ or \f$dims \times 1\f$ size.
- @param probs Optional output matrix that contains posterior probabilities of each component
- given the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type.
- The method returns a two-element double vector. Zero element is a likelihood logarithm value for
- the sample. First element is an index of the most probable mixture component for the given
- sample.
- */
- CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;
- /** @brief Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. Initial values of the model parameters will be
- estimated by the k-means algorithm.
- Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
- responses (class labels or function values) as input. Instead, it computes the *Maximum
- Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the
- parameters inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in
- covs[k], \f$\pi_k\f$ in weights , and optionally computes the output "class label" for each
- sample: \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most
- probable mixture component for each sample).
- The trained model can be used further for prediction, just like any other classifier. The
- trained model is similar to the NormalBayesClassifier.
- @param samples Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.
- @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
- @param labels The optional output "class label" for each sample:
- \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable
- mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
- @param probs The optional output matrix that contains posterior probabilities of each Gaussian
- mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
- CV_64FC1 type.
- */
- CV_WRAP virtual bool trainEM(InputArray samples,
- OutputArray logLikelihoods=noArray(),
- OutputArray labels=noArray(),
- OutputArray probs=noArray()) = 0;
- /** @brief Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Expectation step. You need to provide initial means \f$a_k\f$ of
- mixture components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices
- \f$S_k\f$ of mixture components.
- @param samples Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.
- @param means0 Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of
- \f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be
- converted to the inner matrix of such type for the further computing.
- @param covs0 The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of
- covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices
- do not have CV_64F type they will be converted to the inner matrices of such type for the
- further computing.
- @param weights0 Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel
- floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size.
- @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
- @param labels The optional output "class label" for each sample:
- \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable
- mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
- @param probs The optional output matrix that contains posterior probabilities of each Gaussian
- mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
- CV_64FC1 type.
- */
- CV_WRAP virtual bool trainE(InputArray samples, InputArray means0,
- InputArray covs0=noArray(),
- InputArray weights0=noArray(),
- OutputArray logLikelihoods=noArray(),
- OutputArray labels=noArray(),
- OutputArray probs=noArray()) = 0;
- /** @brief Estimate the Gaussian mixture parameters from a samples set.
- This variation starts with Maximization step. You need to provide initial probabilities
- \f$p_{i,k}\f$ to use this option.
- @param samples Samples from which the Gaussian mixture model will be estimated. It should be a
- one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
- it will be converted to the inner matrix of such type for the further computing.
- @param probs0
- @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
- each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
- @param labels The optional output "class label" for each sample:
- \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable
- mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
- @param probs The optional output matrix that contains posterior probabilities of each Gaussian
- mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
- CV_64FC1 type.
- */
- CV_WRAP virtual bool trainM(InputArray samples, InputArray probs0,
- OutputArray logLikelihoods=noArray(),
- OutputArray labels=noArray(),
- OutputArray probs=noArray()) = 0;
- /** Creates empty %EM model.
- The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you
- can use one of the EM::train\* methods or load it from file using Algorithm::load\<EM\>(filename).
- */
- CV_WRAP static Ptr<EM> create();
- /** @brief Loads and creates a serialized EM from a file
- *
- * Use EM::save to serialize and store an EM to disk.
- * Load the EM from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized EM
- * @param nodeName name of node containing the classifier
- */
- CV_WRAP static Ptr<EM> load(const String& filepath , const String& nodeName = String());
- };
- /****************************************************************************************\
- * Decision Tree *
- \****************************************************************************************/
- /** @brief The class represents a single decision tree or a collection of decision trees.
- The current public interface of the class allows user to train only a single decision tree, however
- the class is capable of storing multiple decision trees and using them for prediction (by summing
- responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost)
- use this capability to implement decision tree ensembles.
- @sa @ref ml_intro_trees
- */
- class CV_EXPORTS_W DTrees : public StatModel
- {
- public:
- /** Predict options */
- enum Flags { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };
- /** Cluster possible values of a categorical variable into K\<=maxCategories clusters to
- find a suboptimal split.
- If a discrete variable, on which the training procedure tries to make a split, takes more than
- maxCategories values, the precise best subset estimation may take a very long time because the
- algorithm is exponential. Instead, many decision trees engines (including our implementation)
- try to find sub-optimal split in this case by clustering all the samples into maxCategories
- clusters that is some categories are merged together. The clustering is applied only in n \>
- 2-class classification problems for categorical variables with N \> max_categories possible
- values. In case of regression and 2-class classification the optimal split can be found
- efficiently without employing clustering, thus the parameter is not used in these cases.
- Default value is 10.*/
- /** @see setMaxCategories */
- CV_WRAP virtual int getMaxCategories() const = 0;
- /** @copybrief getMaxCategories @see getMaxCategories */
- CV_WRAP virtual void setMaxCategories(int val) = 0;
- /** The maximum possible depth of the tree.
- That is the training algorithms attempts to split a node while its depth is less than maxDepth.
- The root node has zero depth. The actual depth may be smaller if the other termination criteria
- are met (see the outline of the training procedure @ref ml_intro_trees "here"), and/or if the
- tree is pruned. Default value is INT_MAX.*/
- /** @see setMaxDepth */
- CV_WRAP virtual int getMaxDepth() const = 0;
- /** @copybrief getMaxDepth @see getMaxDepth */
- CV_WRAP virtual void setMaxDepth(int val) = 0;
- /** If the number of samples in a node is less than this parameter then the node will not be split.
- Default value is 10.*/
- /** @see setMinSampleCount */
- CV_WRAP virtual int getMinSampleCount() const = 0;
- /** @copybrief getMinSampleCount @see getMinSampleCount */
- CV_WRAP virtual void setMinSampleCount(int val) = 0;
- /** If CVFolds \> 1 then algorithms prunes the built decision tree using K-fold
- cross-validation procedure where K is equal to CVFolds.
- Default value is 10.*/
- /** @see setCVFolds */
- CV_WRAP virtual int getCVFolds() const = 0;
- /** @copybrief getCVFolds @see getCVFolds */
- CV_WRAP virtual void setCVFolds(int val) = 0;
- /** If true then surrogate splits will be built.
- These splits allow to work with missing data and compute variable importance correctly.
- Default value is false.
- @note currently it's not implemented.*/
- /** @see setUseSurrogates */
- CV_WRAP virtual bool getUseSurrogates() const = 0;
- /** @copybrief getUseSurrogates @see getUseSurrogates */
- CV_WRAP virtual void setUseSurrogates(bool val) = 0;
- /** If true then a pruning will be harsher.
- This will make a tree more compact and more resistant to the training data noise but a bit less
- accurate. Default value is true.*/
- /** @see setUse1SERule */
- CV_WRAP virtual bool getUse1SERule() const = 0;
- /** @copybrief getUse1SERule @see getUse1SERule */
- CV_WRAP virtual void setUse1SERule(bool val) = 0;
- /** If true then pruned branches are physically removed from the tree.
- Otherwise they are retained and it is possible to get results from the original unpruned (or
- pruned less aggressively) tree. Default value is true.*/
- /** @see setTruncatePrunedTree */
- CV_WRAP virtual bool getTruncatePrunedTree() const = 0;
- /** @copybrief getTruncatePrunedTree @see getTruncatePrunedTree */
- CV_WRAP virtual void setTruncatePrunedTree(bool val) = 0;
- /** Termination criteria for regression trees.
- If all absolute differences between an estimated value in a node and values of train samples
- in this node are less than this parameter then the node will not be split further. Default
- value is 0.01f*/
- /** @see setRegressionAccuracy */
- CV_WRAP virtual float getRegressionAccuracy() const = 0;
- /** @copybrief getRegressionAccuracy @see getRegressionAccuracy */
- CV_WRAP virtual void setRegressionAccuracy(float val) = 0;
- /** @brief The array of a priori class probabilities, sorted by the class label value.
- The parameter can be used to tune the decision tree preferences toward a certain class. For
- example, if you want to detect some rare anomaly occurrence, the training base will likely
- contain much more normal cases than anomalies, so a very good classification performance
- will be achieved just by considering every case as normal. To avoid this, the priors can be
- specified, where the anomaly probability is artificially increased (up to 0.5 or even
- greater), so the weight of the misclassified anomalies becomes much bigger, and the tree is
- adjusted properly.
- You can also think about this parameter as weights of prediction categories which determine
- relative weights that you give to misclassification. That is, if the weight of the first
- category is 1 and the weight of the second category is 10, then each mistake in predicting
- the second category is equivalent to making 10 mistakes in predicting the first category.
- Default value is empty Mat.*/
- /** @see setPriors */
- CV_WRAP virtual cv::Mat getPriors() const = 0;
- /** @copybrief getPriors @see getPriors */
- CV_WRAP virtual void setPriors(const cv::Mat &val) = 0;
- /** @brief The class represents a decision tree node.
- */
- class CV_EXPORTS Node
- {
- public:
- Node();
- double value; //!< Value at the node: a class label in case of classification or estimated
- //!< function value in case of regression.
- int classIdx; //!< Class index normalized to 0..class_count-1 range and assigned to the
- //!< node. It is used internally in classification trees and tree ensembles.
- int parent; //!< Index of the parent node
- int left; //!< Index of the left child node
- int right; //!< Index of right child node
- int defaultDir; //!< Default direction where to go (-1: left or +1: right). It helps in the
- //!< case of missing values.
- int split; //!< Index of the first split
- };
- /** @brief The class represents split in a decision tree.
- */
- class CV_EXPORTS Split
- {
- public:
- Split();
- int varIdx; //!< Index of variable on which the split is created.
- bool inversed; //!< If true, then the inverse split rule is used (i.e. left and right
- //!< branches are exchanged in the rule expressions below).
- float quality; //!< The split quality, a positive number. It is used to choose the best split.
- int next; //!< Index of the next split in the list of splits for the node
- float c; /**< The threshold value in case of split on an ordered variable.
- The rule is:
- @code{.none}
- if var_value < c
- then next_node <- left
- else next_node <- right
- @endcode */
- int subsetOfs; /**< Offset of the bitset used by the split on a categorical variable.
- The rule is:
- @code{.none}
- if bitset[var_value] == 1
- then next_node <- left
- else next_node <- right
- @endcode */
- };
- /** @brief Returns indices of root nodes
- */
- virtual const std::vector<int>& getRoots() const = 0;
- /** @brief Returns all the nodes
- all the node indices are indices in the returned vector
- */
- virtual const std::vector<Node>& getNodes() const = 0;
- /** @brief Returns all the splits
- all the split indices are indices in the returned vector
- */
- virtual const std::vector<Split>& getSplits() const = 0;
- /** @brief Returns all the bitsets for categorical splits
- Split::subsetOfs is an offset in the returned vector
- */
- virtual const std::vector<int>& getSubsets() const = 0;
- /** @brief Creates the empty model
- The static method creates empty decision tree with the specified parameters. It should be then
- trained using train method (see StatModel::train). Alternatively, you can load the model from
- file using Algorithm::load\<DTrees\>(filename).
- */
- CV_WRAP static Ptr<DTrees> create();
- /** @brief Loads and creates a serialized DTrees from a file
- *
- * Use DTree::save to serialize and store an DTree to disk.
- * Load the DTree from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized DTree
- * @param nodeName name of node containing the classifier
- */
- CV_WRAP static Ptr<DTrees> load(const String& filepath , const String& nodeName = String());
- };
- /****************************************************************************************\
- * Random Trees Classifier *
- \****************************************************************************************/
- /** @brief The class implements the random forest predictor.
- @sa @ref ml_intro_rtrees
- */
- class CV_EXPORTS_W RTrees : public DTrees
- {
- public:
- /** If true then variable importance will be calculated and then it can be retrieved by RTrees::getVarImportance.
- Default value is false.*/
- /** @see setCalculateVarImportance */
- CV_WRAP virtual bool getCalculateVarImportance() const = 0;
- /** @copybrief getCalculateVarImportance @see getCalculateVarImportance */
- CV_WRAP virtual void setCalculateVarImportance(bool val) = 0;
- /** The size of the randomly selected subset of features at each tree node and that are used
- to find the best split(s).
- If you set it to 0 then the size will be set to the square root of the total number of
- features. Default value is 0.*/
- /** @see setActiveVarCount */
- CV_WRAP virtual int getActiveVarCount() const = 0;
- /** @copybrief getActiveVarCount @see getActiveVarCount */
- CV_WRAP virtual void setActiveVarCount(int val) = 0;
- /** The termination criteria that specifies when the training algorithm stops.
- Either when the specified number of trees is trained and added to the ensemble or when
- sufficient accuracy (measured as OOB error) is achieved. Typically the more trees you have the
- better the accuracy. However, the improvement in accuracy generally diminishes and asymptotes
- pass a certain number of trees. Also to keep in mind, the number of tree increases the
- prediction time linearly. Default value is TermCriteria(TermCriteria::MAX_ITERS +
- TermCriteria::EPS, 50, 0.1)*/
- /** @see setTermCriteria */
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
- /** @copybrief getTermCriteria @see getTermCriteria */
- CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0;
- /** Returns the variable importance array.
- The method returns the variable importance vector, computed at the training stage when
- CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is
- returned.
- */
- CV_WRAP virtual Mat getVarImportance() const = 0;
- /** Returns the result of each individual tree in the forest.
- In case the model is a regression problem, the method will return each of the trees'
- results for each of the sample cases. If the model is a classifier, it will return
- a Mat with samples + 1 rows, where the first row gives the class number and the
- following rows return the votes each class had for each sample.
- @param samples Array containing the samples for which votes will be calculated.
- @param results Array where the result of the calculation will be written.
- @param flags Flags for defining the type of RTrees.
- */
- CV_WRAP virtual void getVotes(InputArray samples, OutputArray results, int flags) const = 0;
- /** Creates the empty model.
- Use StatModel::train to train the model, StatModel::train to create and train the model,
- Algorithm::load to load the pre-trained model.
- */
- CV_WRAP static Ptr<RTrees> create();
- /** @brief Loads and creates a serialized RTree from a file
- *
- * Use RTree::save to serialize and store an RTree to disk.
- * Load the RTree from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized RTree
- * @param nodeName name of node containing the classifier
- */
- CV_WRAP static Ptr<RTrees> load(const String& filepath , const String& nodeName = String());
- };
- /****************************************************************************************\
- * Boosted tree classifier *
- \****************************************************************************************/
- /** @brief Boosted tree classifier derived from DTrees
- @sa @ref ml_intro_boost
- */
- class CV_EXPORTS_W Boost : public DTrees
- {
- public:
- /** Type of the boosting algorithm.
- See Boost::Types. Default value is Boost::REAL. */
- /** @see setBoostType */
- CV_WRAP virtual int getBoostType() const = 0;
- /** @copybrief getBoostType @see getBoostType */
- CV_WRAP virtual void setBoostType(int val) = 0;
- /** The number of weak classifiers.
- Default value is 100. */
- /** @see setWeakCount */
- CV_WRAP virtual int getWeakCount() const = 0;
- /** @copybrief getWeakCount @see getWeakCount */
- CV_WRAP virtual void setWeakCount(int val) = 0;
- /** A threshold between 0 and 1 used to save computational time.
- Samples with summary weight \f$\leq 1 - weight_trim_rate\f$ do not participate in the *next*
- iteration of training. Set this parameter to 0 to turn off this functionality. Default value is 0.95.*/
- /** @see setWeightTrimRate */
- CV_WRAP virtual double getWeightTrimRate() const = 0;
- /** @copybrief getWeightTrimRate @see getWeightTrimRate */
- CV_WRAP virtual void setWeightTrimRate(double val) = 0;
- /** Boosting type.
- Gentle AdaBoost and Real AdaBoost are often the preferable choices. */
- enum Types {
- DISCRETE=0, //!< Discrete AdaBoost.
- REAL=1, //!< Real AdaBoost. It is a technique that utilizes confidence-rated predictions
- //!< and works well with categorical data.
- LOGIT=2, //!< LogitBoost. It can produce good regression fits.
- GENTLE=3 //!< Gentle AdaBoost. It puts less weight on outlier data points and for that
- //!<reason is often good with regression data.
- };
- /** Creates the empty model.
- Use StatModel::train to train the model, Algorithm::load\<Boost\>(filename) to load the pre-trained model. */
- CV_WRAP static Ptr<Boost> create();
- /** @brief Loads and creates a serialized Boost from a file
- *
- * Use Boost::save to serialize and store an RTree to disk.
- * Load the Boost from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized Boost
- * @param nodeName name of node containing the classifier
- */
- CV_WRAP static Ptr<Boost> load(const String& filepath , const String& nodeName = String());
- };
- /****************************************************************************************\
- * Gradient Boosted Trees *
- \****************************************************************************************/
- /*class CV_EXPORTS_W GBTrees : public DTrees
- {
- public:
- struct CV_EXPORTS_W_MAP Params : public DTrees::Params
- {
- CV_PROP_RW int weakCount;
- CV_PROP_RW int lossFunctionType;
- CV_PROP_RW float subsamplePortion;
- CV_PROP_RW float shrinkage;
- Params();
- Params( int lossFunctionType, int weakCount, float shrinkage,
- float subsamplePortion, int maxDepth, bool useSurrogates );
- };
- enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
- virtual void setK(int k) = 0;
- virtual float predictSerial( InputArray samples,
- OutputArray weakResponses, int flags) const = 0;
- static Ptr<GBTrees> create(const Params& p);
- };*/
- /****************************************************************************************\
- * Artificial Neural Networks (ANN) *
- \****************************************************************************************/
- /////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
- /** @brief Artificial Neural Networks - Multi-Layer Perceptrons.
- Unlike many other models in ML that are constructed and trained at once, in the MLP model these
- steps are separated. First, a network with the specified topology is created using the non-default
- constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is
- trained using a set of input and output vectors. The training procedure can be repeated more than
- once, that is, the weights can be adjusted based on the new training data.
- Additional flags for StatModel::train are available: ANN_MLP::TrainFlags.
- @sa @ref ml_intro_ann
- */
- class CV_EXPORTS_W ANN_MLP : public StatModel
- {
- public:
- /** Available training methods */
- enum TrainingMethods {
- BACKPROP=0, //!< The back-propagation algorithm.
- RPROP = 1, //!< The RPROP algorithm. See @cite RPROP93 for details.
- ANNEAL = 2 //!< The simulated annealing algorithm. See @cite Kirkpatrick83 for details.
- };
- /** Sets training method and common parameters.
- @param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.
- @param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.
- @param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL.
- */
- CV_WRAP virtual void setTrainMethod(int method, double param1 = 0, double param2 = 0) = 0;
- /** Returns current training method */
- CV_WRAP virtual int getTrainMethod() const = 0;
- /** Initialize the activation function for each neuron.
- Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.
- @param type The type of activation function. See ANN_MLP::ActivationFunctions.
- @param param1 The first parameter of the activation function, \f$\alpha\f$. Default value is 0.
- @param param2 The second parameter of the activation function, \f$\beta\f$. Default value is 0.
- */
- CV_WRAP virtual void setActivationFunction(int type, double param1 = 0, double param2 = 0) = 0;
- /** Integer vector specifying the number of neurons in each layer including the input and output layers.
- The very first element specifies the number of elements in the input layer.
- The last element - number of elements in the output layer. Default value is empty Mat.
- @sa getLayerSizes */
- CV_WRAP virtual void setLayerSizes(InputArray _layer_sizes) = 0;
- /** Integer vector specifying the number of neurons in each layer including the input and output layers.
- The very first element specifies the number of elements in the input layer.
- The last element - number of elements in the output layer.
- @sa setLayerSizes */
- CV_WRAP virtual cv::Mat getLayerSizes() const = 0;
- /** Termination criteria of the training algorithm.
- You can specify the maximum number of iterations (maxCount) and/or how much the error could
- change between the iterations to make the algorithm continue (epsilon). Default value is
- TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01).*/
- /** @see setTermCriteria */
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
- /** @copybrief getTermCriteria @see getTermCriteria */
- CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0;
- /** BPROP: Strength of the weight gradient term.
- The recommended value is about 0.1. Default value is 0.1.*/
- /** @see setBackpropWeightScale */
- CV_WRAP virtual double getBackpropWeightScale() const = 0;
- /** @copybrief getBackpropWeightScale @see getBackpropWeightScale */
- CV_WRAP virtual void setBackpropWeightScale(double val) = 0;
- /** BPROP: Strength of the momentum term (the difference between weights on the 2 previous iterations).
- This parameter provides some inertia to smooth the random fluctuations of the weights. It can
- vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough.
- Default value is 0.1.*/
- /** @see setBackpropMomentumScale */
- CV_WRAP virtual double getBackpropMomentumScale() const = 0;
- /** @copybrief getBackpropMomentumScale @see getBackpropMomentumScale */
- CV_WRAP virtual void setBackpropMomentumScale(double val) = 0;
- /** RPROP: Initial value \f$\Delta_0\f$ of update-values \f$\Delta_{ij}\f$.
- Default value is 0.1.*/
- /** @see setRpropDW0 */
- CV_WRAP virtual double getRpropDW0() const = 0;
- /** @copybrief getRpropDW0 @see getRpropDW0 */
- CV_WRAP virtual void setRpropDW0(double val) = 0;
- /** RPROP: Increase factor \f$\eta^+\f$.
- It must be \>1. Default value is 1.2.*/
- /** @see setRpropDWPlus */
- CV_WRAP virtual double getRpropDWPlus() const = 0;
- /** @copybrief getRpropDWPlus @see getRpropDWPlus */
- CV_WRAP virtual void setRpropDWPlus(double val) = 0;
- /** RPROP: Decrease factor \f$\eta^-\f$.
- It must be \<1. Default value is 0.5.*/
- /** @see setRpropDWMinus */
- CV_WRAP virtual double getRpropDWMinus() const = 0;
- /** @copybrief getRpropDWMinus @see getRpropDWMinus */
- CV_WRAP virtual void setRpropDWMinus(double val) = 0;
- /** RPROP: Update-values lower limit \f$\Delta_{min}\f$.
- It must be positive. Default value is FLT_EPSILON.*/
- /** @see setRpropDWMin */
- CV_WRAP virtual double getRpropDWMin() const = 0;
- /** @copybrief getRpropDWMin @see getRpropDWMin */
- CV_WRAP virtual void setRpropDWMin(double val) = 0;
- /** RPROP: Update-values upper limit \f$\Delta_{max}\f$.
- It must be \>1. Default value is 50.*/
- /** @see setRpropDWMax */
- CV_WRAP virtual double getRpropDWMax() const = 0;
- /** @copybrief getRpropDWMax @see getRpropDWMax */
- CV_WRAP virtual void setRpropDWMax(double val) = 0;
- /** ANNEAL: Update initial temperature.
- It must be \>=0. Default value is 10.*/
- /** @see setAnnealInitialT */
- CV_WRAP virtual double getAnnealInitialT() const = 0;
- /** @copybrief getAnnealInitialT @see getAnnealInitialT */
- CV_WRAP virtual void setAnnealInitialT(double val) = 0;
- /** ANNEAL: Update final temperature.
- It must be \>=0 and less than initialT. Default value is 0.1.*/
- /** @see setAnnealFinalT */
- CV_WRAP virtual double getAnnealFinalT() const = 0;
- /** @copybrief getAnnealFinalT @see getAnnealFinalT */
- CV_WRAP virtual void setAnnealFinalT(double val) = 0;
- /** ANNEAL: Update cooling ratio.
- It must be \>0 and less than 1. Default value is 0.95.*/
- /** @see setAnnealCoolingRatio */
- CV_WRAP virtual double getAnnealCoolingRatio() const = 0;
- /** @copybrief getAnnealCoolingRatio @see getAnnealCoolingRatio */
- CV_WRAP virtual void setAnnealCoolingRatio(double val) = 0;
- /** ANNEAL: Update iteration per step.
- It must be \>0 . Default value is 10.*/
- /** @see setAnnealItePerStep */
- CV_WRAP virtual int getAnnealItePerStep() const = 0;
- /** @copybrief getAnnealItePerStep @see getAnnealItePerStep */
- CV_WRAP virtual void setAnnealItePerStep(int val) = 0;
- /** @brief Set/initialize anneal RNG */
- virtual void setAnnealEnergyRNG(const RNG& rng) = 0;
- /** possible activation functions */
- enum ActivationFunctions {
- /** Identity function: \f$f(x)=x\f$ */
- IDENTITY = 0,
- /** Symmetrical sigmoid: \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x})\f$
- @note
- If you are using the default sigmoid activation function with the default parameter values
- fparam1=0 and fparam2=0 then the function used is y = 1.7159\*tanh(2/3 \* x), so the output
- will range from [-1.7159, 1.7159], instead of [0,1].*/
- SIGMOID_SYM = 1,
- /** Gaussian function: \f$f(x)=\beta e^{-\alpha x*x}\f$ */
- GAUSSIAN = 2,
- /** ReLU function: \f$f(x)=max(0,x)\f$ */
- RELU = 3,
- /** Leaky ReLU function: for x>0 \f$f(x)=x \f$ and x<=0 \f$f(x)=\alpha x \f$*/
- LEAKYRELU= 4
- };
- /** Train options */
- enum TrainFlags {
- /** Update the network weights, rather than compute them from scratch. In the latter case
- the weights are initialized using the Nguyen-Widrow algorithm. */
- UPDATE_WEIGHTS = 1,
- /** Do not normalize the input vectors. If this flag is not set, the training algorithm
- normalizes each input feature independently, shifting its mean value to 0 and making the
- standard deviation equal to 1. If the network is assumed to be updated frequently, the new
- training data could be much different from original one. In this case, you should take care
- of proper normalization. */
- NO_INPUT_SCALE = 2,
- /** Do not normalize the output vectors. If the flag is not set, the training algorithm
- normalizes each output feature independently, by transforming it to the certain range
- depending on the used activation function. */
- NO_OUTPUT_SCALE = 4
- };
- CV_WRAP virtual Mat getWeights(int layerIdx) const = 0;
- /** @brief Creates empty model
- Use StatModel::train to train the model, Algorithm::load\<ANN_MLP\>(filename) to load the pre-trained model.
- Note that the train method has optional flags: ANN_MLP::TrainFlags.
- */
- CV_WRAP static Ptr<ANN_MLP> create();
- /** @brief Loads and creates a serialized ANN from a file
- *
- * Use ANN::save to serialize and store an ANN to disk.
- * Load the ANN from this file again, by calling this function with the path to the file.
- *
- * @param filepath path to serialized ANN
- */
- CV_WRAP static Ptr<ANN_MLP> load(const String& filepath);
- };
- #ifndef DISABLE_OPENCV_3_COMPATIBILITY
- typedef ANN_MLP ANN_MLP_ANNEAL;
- #endif
- /****************************************************************************************\
- * Logistic Regression *
- \****************************************************************************************/
- /** @brief Implements Logistic Regression classifier.
- @sa @ref ml_intro_lr
- */
- class CV_EXPORTS_W LogisticRegression : public StatModel
- {
- public:
- /** Learning rate. */
- /** @see setLearningRate */
- CV_WRAP virtual double getLearningRate() const = 0;
- /** @copybrief getLearningRate @see getLearningRate */
- CV_WRAP virtual void setLearningRate(double val) = 0;
- /** Number of iterations. */
- /** @see setIterations */
- CV_WRAP virtual int getIterations() const = 0;
- /** @copybrief getIterations @see getIterations */
- CV_WRAP virtual void setIterations(int val) = 0;
- /** Kind of regularization to be applied. See LogisticRegression::RegKinds. */
- /** @see setRegularization */
- CV_WRAP virtual int getRegularization() const = 0;
- /** @copybrief getRegularization @see getRegularization */
- CV_WRAP virtual void setRegularization(int val) = 0;
- /** Kind of training method used. See LogisticRegression::Methods. */
- /** @see setTrainMethod */
- CV_WRAP virtual int getTrainMethod() const = 0;
- /** @copybrief getTrainMethod @see getTrainMethod */
- CV_WRAP virtual void setTrainMethod(int val) = 0;
- /** Specifies the number of training samples taken in each step of Mini-Batch Gradient
- Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It
- has to take values less than the total number of training samples. */
- /** @see setMiniBatchSize */
- CV_WRAP virtual int getMiniBatchSize() const = 0;
- /** @copybrief getMiniBatchSize @see getMiniBatchSize */
- CV_WRAP virtual void setMiniBatchSize(int val) = 0;
- /** Termination criteria of the algorithm. */
- /** @see setTermCriteria */
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
- /** @copybrief getTermCriteria @see getTermCriteria */
- CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0;
- //! Regularization kinds
- enum RegKinds {
- REG_DISABLE = -1, //!< Regularization disabled
- REG_L1 = 0, //!< %L1 norm
- REG_L2 = 1 //!< %L2 norm
- };
- //! Training methods
- enum Methods {
- BATCH = 0,
- MINI_BATCH = 1 //!< Set MiniBatchSize to a positive integer when using this method.
- };
- /** @brief Predicts responses for input samples and returns a float type.
- @param samples The input data for the prediction algorithm. Matrix [m x n], where each row
- contains variables (features) of one object being classified. Should have data type CV_32F.
- @param results Predicted labels as a column matrix of type CV_32S.
- @param flags Not used.
- */
- CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const CV_OVERRIDE = 0;
- /** @brief This function returns the trained parameters arranged across rows.
- For a two class classifcation problem, it returns a row matrix. It returns learnt parameters of
- the Logistic Regression as a matrix of type CV_32F.
- */
- CV_WRAP virtual Mat get_learnt_thetas() const = 0;
- /** @brief Creates empty model.
- Creates Logistic Regression model with parameters given.
- */
- CV_WRAP static Ptr<LogisticRegression> create();
- /** @brief Loads and creates a serialized LogisticRegression from a file
- *
- * Use LogisticRegression::save to serialize and store an LogisticRegression to disk.
- * Load the LogisticRegression from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized LogisticRegression
- * @param nodeName name of node containing the classifier
- */
- CV_WRAP static Ptr<LogisticRegression> load(const String& filepath , const String& nodeName = String());
- };
- /****************************************************************************************\
- * Stochastic Gradient Descent SVM Classifier *
- \****************************************************************************************/
- /*!
- @brief Stochastic Gradient Descent SVM classifier
- SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach,
- as presented in @cite bottou2010large.
- The classifier has following parameters:
- - model type,
- - margin type,
- - margin regularization (\f$\lambda\f$),
- - initial step size (\f$\gamma_0\f$),
- - step decreasing power (\f$c\f$),
- - and termination criteria.
- The model type may have one of the following values: \ref SGD and \ref ASGD.
- - \ref SGD is the classic version of SVMSGD classifier: every next step is calculated by the formula
- \f[w_{t+1} = w_t - \gamma(t) \frac{dQ_i}{dw} |_{w = w_t}\f]
- where
- - \f$w_t\f$ is the weights vector for decision function at step \f$t\f$,
- - \f$\gamma(t)\f$ is the step size of model parameters at the iteration \f$t\f$, it is decreased on each step by the formula
- \f$\gamma(t) = \gamma_0 (1 + \lambda \gamma_0 t) ^ {-c}\f$
- - \f$Q_i\f$ is the target functional from SVM task for sample with number \f$i\f$, this sample is chosen stochastically on each step of the algorithm.
- - \ref ASGD is Average Stochastic Gradient Descent SVM Classifier. ASGD classifier averages weights vector on each step of algorithm by the formula
- \f$\widehat{w}_{t+1} = \frac{t}{1+t}\widehat{w}_{t} + \frac{1}{1+t}w_{t+1}\f$
- The recommended model type is ASGD (following @cite bottou2010large).
- The margin type may have one of the following values: \ref SOFT_MARGIN or \ref HARD_MARGIN.
- - You should use \ref HARD_MARGIN type, if you have linearly separable sets.
- - You should use \ref SOFT_MARGIN type, if you have non-linearly separable sets or sets with outliers.
- - In the general case (if you know nothing about linear separability of your sets), use SOFT_MARGIN.
- The other parameters may be described as follows:
- - Margin regularization parameter is responsible for weights decreasing at each step and for the strength of restrictions on outliers
- (the less the parameter, the less probability that an outlier will be ignored).
- Recommended value for SGD model is 0.0001, for ASGD model is 0.00001.
- - Initial step size parameter is the initial value for the step size \f$\gamma(t)\f$.
- You will have to find the best initial step for your problem.
- - Step decreasing power is the power parameter for \f$\gamma(t)\f$ decreasing by the formula, mentioned above.
- Recommended value for SGD model is 1, for ASGD model is 0.75.
- - Termination criteria can be TermCriteria::COUNT, TermCriteria::EPS or TermCriteria::COUNT + TermCriteria::EPS.
- You will have to find the best termination criteria for your problem.
- Note that the parameters margin regularization, initial step size, and step decreasing power should be positive.
- To use SVMSGD algorithm do as follows:
- - first, create the SVMSGD object. The algoorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(),
- setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower().
- - then the SVM model can be trained using the train features and the correspondent labels by the method train().
- - after that, the label of a new feature vector can be predicted using the method predict().
- @code
- // Create empty object
- cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
- // Train the Stochastic Gradient Descent SVM
- svmsgd->train(trainData);
- // Predict labels for the new samples
- svmsgd->predict(samples, responses);
- @endcode
- */
- class CV_EXPORTS_W SVMSGD : public cv::ml::StatModel
- {
- public:
- /** SVMSGD type.
- ASGD is often the preferable choice. */
- enum SvmsgdType
- {
- SGD, //!< Stochastic Gradient Descent
- ASGD //!< Average Stochastic Gradient Descent
- };
- /** Margin type.*/
- enum MarginType
- {
- SOFT_MARGIN, //!< General case, suits to the case of non-linearly separable sets, allows outliers.
- HARD_MARGIN //!< More accurate for the case of linearly separable sets.
- };
- /**
- * @return the weights of the trained model (decision function f(x) = weights * x + shift).
- */
- CV_WRAP virtual Mat getWeights() = 0;
- /**
- * @return the shift of the trained model (decision function f(x) = weights * x + shift).
- */
- CV_WRAP virtual float getShift() = 0;
- /** @brief Creates empty model.
- * Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to
- * find the best parameters for your problem or use setOptimalParameters() to set some default parameters.
- */
- CV_WRAP static Ptr<SVMSGD> create();
- /** @brief Loads and creates a serialized SVMSGD from a file
- *
- * Use SVMSGD::save to serialize and store an SVMSGD to disk.
- * Load the SVMSGD from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized SVMSGD
- * @param nodeName name of node containing the classifier
- */
- CV_WRAP static Ptr<SVMSGD> load(const String& filepath , const String& nodeName = String());
- /** @brief Function sets optimal parameters values for chosen SVM SGD model.
- * @param svmsgdType is the type of SVMSGD classifier.
- * @param marginType is the type of margin constraint.
- */
- CV_WRAP virtual void setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) = 0;
- /** @brief %Algorithm type, one of SVMSGD::SvmsgdType. */
- /** @see setSvmsgdType */
- CV_WRAP virtual int getSvmsgdType() const = 0;
- /** @copybrief getSvmsgdType @see getSvmsgdType */
- CV_WRAP virtual void setSvmsgdType(int svmsgdType) = 0;
- /** @brief %Margin type, one of SVMSGD::MarginType. */
- /** @see setMarginType */
- CV_WRAP virtual int getMarginType() const = 0;
- /** @copybrief getMarginType @see getMarginType */
- CV_WRAP virtual void setMarginType(int marginType) = 0;
- /** @brief Parameter marginRegularization of a %SVMSGD optimization problem. */
- /** @see setMarginRegularization */
- CV_WRAP virtual float getMarginRegularization() const = 0;
- /** @copybrief getMarginRegularization @see getMarginRegularization */
- CV_WRAP virtual void setMarginRegularization(float marginRegularization) = 0;
- /** @brief Parameter initialStepSize of a %SVMSGD optimization problem. */
- /** @see setInitialStepSize */
- CV_WRAP virtual float getInitialStepSize() const = 0;
- /** @copybrief getInitialStepSize @see getInitialStepSize */
- CV_WRAP virtual void setInitialStepSize(float InitialStepSize) = 0;
- /** @brief Parameter stepDecreasingPower of a %SVMSGD optimization problem. */
- /** @see setStepDecreasingPower */
- CV_WRAP virtual float getStepDecreasingPower() const = 0;
- /** @copybrief getStepDecreasingPower @see getStepDecreasingPower */
- CV_WRAP virtual void setStepDecreasingPower(float stepDecreasingPower) = 0;
- /** @brief Termination criteria of the training algorithm.
- You can specify the maximum number of iterations (maxCount) and/or how much the error could
- change between the iterations to make the algorithm continue (epsilon).*/
- /** @see setTermCriteria */
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
- /** @copybrief getTermCriteria @see getTermCriteria */
- CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0;
- };
- /****************************************************************************************\
- * Auxiliary functions declarations *
- \****************************************************************************************/
- /** @brief Generates _sample_ from multivariate normal distribution
- @param mean an average row vector
- @param cov symmetric covariation matrix
- @param nsamples returned samples count
- @param samples returned samples array
- */
- CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples);
- /** @brief Creates test set */
- CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
- OutputArray samples, OutputArray responses);
- /****************************************************************************************\
- * Simulated annealing solver *
- \****************************************************************************************/
- #ifdef CV_DOXYGEN
- /** @brief This class declares example interface for system state used in simulated annealing optimization algorithm.
- @note This class is not defined in C++ code and can't be use directly - you need your own implementation with the same methods.
- */
- struct SimulatedAnnealingSolverSystem
- {
- /** Give energy value for a state of system.*/
- double energy() const;
- /** Function which change the state of system (random perturbation).*/
- void changeState();
- /** Function to reverse to the previous state. Can be called once only after changeState(). */
- void reverseState();
- };
- #endif // CV_DOXYGEN
- /** @brief The class implements simulated annealing for optimization.
- @cite Kirkpatrick83 for details
- @param solverSystem optimization system (see SimulatedAnnealingSolverSystem)
- @param initialTemperature initial temperature
- @param finalTemperature final temperature
- @param coolingRatio temperature step multiplies
- @param iterationsPerStep number of iterations per temperature changing step
- @param lastTemperature optional output for last used temperature
- @param rngEnergy specify custom random numbers generator (cv::theRNG() by default)
- */
- template<class SimulatedAnnealingSolverSystem>
- int simulatedAnnealingSolver(SimulatedAnnealingSolverSystem& solverSystem,
- double initialTemperature, double finalTemperature, double coolingRatio,
- size_t iterationsPerStep,
- CV_OUT double* lastTemperature = NULL,
- cv::RNG& rngEnergy = cv::theRNG()
- );
- //! @} ml
- }
- }
- #include <opencv2/ml/ml.inl.hpp>
- #endif // __cplusplus
- #endif // OPENCV_ML_HPP
- /* End of file. */
|