123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- // Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>.
- // Third party copyrights are property of their respective owners.
- #ifndef __OPENCV_FACEREC_HPP__
- #define __OPENCV_FACEREC_HPP__
- #include "opencv2/face.hpp"
- #include "opencv2/core.hpp"
- namespace cv { namespace face {
- //! @addtogroup face
- //! @{
- // base for two classes
- class CV_EXPORTS_W BasicFaceRecognizer : public FaceRecognizer
- {
- public:
- /** @see setNumComponents */
- CV_WRAP int getNumComponents() const;
- /** @copybrief getNumComponents @see getNumComponents */
- CV_WRAP void setNumComponents(int val);
- /** @see setThreshold */
- CV_WRAP double getThreshold() const CV_OVERRIDE;
- /** @copybrief getThreshold @see getThreshold */
- CV_WRAP void setThreshold(double val) CV_OVERRIDE;
- CV_WRAP std::vector<cv::Mat> getProjections() const;
- CV_WRAP cv::Mat getLabels() const;
- CV_WRAP cv::Mat getEigenValues() const;
- CV_WRAP cv::Mat getEigenVectors() const;
- CV_WRAP cv::Mat getMean() const;
- virtual void read(const FileNode& fn) CV_OVERRIDE;
- virtual void write(FileStorage& fs) const CV_OVERRIDE;
- virtual bool empty() const CV_OVERRIDE;
- using FaceRecognizer::read;
- using FaceRecognizer::write;
- protected:
- int _num_components;
- double _threshold;
- std::vector<Mat> _projections;
- Mat _labels;
- Mat _eigenvectors;
- Mat _eigenvalues;
- Mat _mean;
- };
- class CV_EXPORTS_W EigenFaceRecognizer : public BasicFaceRecognizer
- {
- public:
- /**
- @param num_components The number of components (read: Eigenfaces) kept for this Principal
- Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
- kept for good reconstruction capabilities. It is based on your input data, so experiment with the
- number. Keeping 80 components should almost always be sufficient.
- @param threshold The threshold applied in the prediction.
- ### Notes:
- - Training and prediction must be done on grayscale images, use cvtColor to convert between the
- color spaces.
- - **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
- SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
- input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
- the images.
- - This model does not support updating.
- ### Model internal data:
- - num_components see EigenFaceRecognizer::create.
- - threshold see EigenFaceRecognizer::create.
- - eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).
- - eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their
- eigenvalue).
- - mean The sample mean calculated from the training data.
- - projections The projections of the training data.
- - labels The threshold applied in the prediction. If the distance to the nearest neighbor is
- larger than the threshold, this method returns -1.
- */
- CV_WRAP static Ptr<EigenFaceRecognizer> create(int num_components = 0, double threshold = DBL_MAX);
- };
- class CV_EXPORTS_W FisherFaceRecognizer : public BasicFaceRecognizer
- {
- public:
- /**
- @param num_components The number of components (read: Fisherfaces) kept for this Linear
- Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that
- means the number of your classes c (read: subjects, persons you want to recognize). If you leave
- this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
- correct number (c-1) automatically.
- @param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
- is larger than the threshold, this method returns -1.
- ### Notes:
- - Training and prediction must be done on grayscale images, use cvtColor to convert between the
- color spaces.
- - **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
- SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
- input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
- the images.
- - This model does not support updating.
- ### Model internal data:
- - num_components see FisherFaceRecognizer::create.
- - threshold see FisherFaceRecognizer::create.
- - eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).
- - eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
- eigenvalue).
- - mean The sample mean calculated from the training data.
- - projections The projections of the training data.
- - labels The labels corresponding to the projections.
- */
- CV_WRAP static Ptr<FisherFaceRecognizer> create(int num_components = 0, double threshold = DBL_MAX);
- };
- class CV_EXPORTS_W LBPHFaceRecognizer : public FaceRecognizer
- {
- public:
- /** @see setGridX */
- CV_WRAP virtual int getGridX() const = 0;
- /** @copybrief getGridX @see getGridX */
- CV_WRAP virtual void setGridX(int val) = 0;
- /** @see setGridY */
- CV_WRAP virtual int getGridY() const = 0;
- /** @copybrief getGridY @see getGridY */
- CV_WRAP virtual void setGridY(int val) = 0;
- /** @see setRadius */
- CV_WRAP virtual int getRadius() const = 0;
- /** @copybrief getRadius @see getRadius */
- CV_WRAP virtual void setRadius(int val) = 0;
- /** @see setNeighbors */
- CV_WRAP virtual int getNeighbors() const = 0;
- /** @copybrief getNeighbors @see getNeighbors */
- CV_WRAP virtual void setNeighbors(int val) = 0;
- /** @see setThreshold */
- CV_WRAP virtual double getThreshold() const CV_OVERRIDE = 0;
- /** @copybrief getThreshold @see getThreshold */
- CV_WRAP virtual void setThreshold(double val) CV_OVERRIDE = 0;
- CV_WRAP virtual std::vector<cv::Mat> getHistograms() const = 0;
- CV_WRAP virtual cv::Mat getLabels() const = 0;
- /**
- @param radius The radius used for building the Circular Local Binary Pattern. The greater the
- radius, the smoother the image but more spatial information you can get.
- @param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
- appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
- the higher the computational cost.
- @param grid_x The number of cells in the horizontal direction, 8 is a common value used in
- publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- feature vector.
- @param grid_y The number of cells in the vertical direction, 8 is a common value used in
- publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
- feature vector.
- @param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
- is larger than the threshold, this method returns -1.
- ### Notes:
- - The Circular Local Binary Patterns (used in training and prediction) expect the data given as
- grayscale images, use cvtColor to convert between the color spaces.
- - This model supports updating.
- ### Model internal data:
- - radius see LBPHFaceRecognizer::create.
- - neighbors see LBPHFaceRecognizer::create.
- - grid_x see LLBPHFaceRecognizer::create.
- - grid_y see LBPHFaceRecognizer::create.
- - threshold see LBPHFaceRecognizer::create.
- - histograms Local Binary Patterns Histograms calculated from the given training data (empty if
- none was given).
- - labels Labels corresponding to the calculated Local Binary Patterns Histograms.
- */
- CV_WRAP static Ptr<LBPHFaceRecognizer> create(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold = DBL_MAX);
- };
- //! @}
- }} //namespace cv::face
- #endif //__OPENCV_FACEREC_HPP__
|