calib3d.hpp 155 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885
  1. /*M///////////////////////////////////////////////////////////////////////////////////////
  2. //
  3. // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  4. //
  5. // By downloading, copying, installing or using the software you agree to this license.
  6. // If you do not agree to this license, do not download, install,
  7. // copy or use the software.
  8. //
  9. //
  10. // License Agreement
  11. // For Open Source Computer Vision Library
  12. //
  13. // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
  14. // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
  15. // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
  16. // Third party copyrights are property of their respective owners.
  17. //
  18. // Redistribution and use in source and binary forms, with or without modification,
  19. // are permitted provided that the following conditions are met:
  20. //
  21. // * Redistribution's of source code must retain the above copyright notice,
  22. // this list of conditions and the following disclaimer.
  23. //
  24. // * Redistribution's in binary form must reproduce the above copyright notice,
  25. // this list of conditions and the following disclaimer in the documentation
  26. // and/or other materials provided with the distribution.
  27. //
  28. // * The name of the copyright holders may not be used to endorse or promote products
  29. // derived from this software without specific prior written permission.
  30. //
  31. // This software is provided by the copyright holders and contributors "as is" and
  32. // any express or implied warranties, including, but not limited to, the implied
  33. // warranties of merchantability and fitness for a particular purpose are disclaimed.
  34. // In no event shall the Intel Corporation or contributors be liable for any direct,
  35. // indirect, incidental, special, exemplary, or consequential damages
  36. // (including, but not limited to, procurement of substitute goods or services;
  37. // loss of use, data, or profits; or business interruption) however caused
  38. // and on any theory of liability, whether in contract, strict liability,
  39. // or tort (including negligence or otherwise) arising in any way out of
  40. // the use of this software, even if advised of the possibility of such damage.
  41. //
  42. //M*/
  43. #ifndef OPENCV_CALIB3D_HPP
  44. #define OPENCV_CALIB3D_HPP
  45. #include "opencv2/core.hpp"
  46. #include "opencv2/features2d.hpp"
  47. #include "opencv2/core/affine.hpp"
  48. /**
  49. @defgroup calib3d Camera Calibration and 3D Reconstruction
  50. The functions in this section use a so-called pinhole camera model. In this model, a scene view is
  51. formed by projecting 3D points into the image plane using a perspective transformation.
  52. \f[s \; m' = A [R|t] M'\f]
  53. or
  54. \f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
  55. \begin{bmatrix}
  56. r_{11} & r_{12} & r_{13} & t_1 \\
  57. r_{21} & r_{22} & r_{23} & t_2 \\
  58. r_{31} & r_{32} & r_{33} & t_3
  59. \end{bmatrix}
  60. \begin{bmatrix}
  61. X \\
  62. Y \\
  63. Z \\
  64. 1
  65. \end{bmatrix}\f]
  66. where:
  67. - \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space
  68. - \f$(u, v)\f$ are the coordinates of the projection point in pixels
  69. - \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters
  70. - \f$(cx, cy)\f$ is a principal point that is usually at the image center
  71. - \f$fx, fy\f$ are the focal lengths expressed in pixel units.
  72. Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled
  73. (multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not
  74. depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is
  75. fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of
  76. extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa,
  77. rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a
  78. point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above
  79. is equivalent to the following (when \f$z \ne 0\f$ ):
  80. \f[\begin{array}{l}
  81. \vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\
  82. x' = x/z \\
  83. y' = y/z \\
  84. u = f_x*x' + c_x \\
  85. v = f_y*y' + c_y
  86. \end{array}\f]
  87. The following figure illustrates the pinhole camera model.
  88. ![Pinhole camera model](pics/pinhole_camera_model.png)
  89. Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion.
  90. So, the above model is extended as:
  91. \f[\begin{array}{l}
  92. \vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\
  93. x' = x/z \\
  94. y' = y/z \\
  95. x'' = x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
  96. y'' = y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
  97. \text{where} \quad r^2 = x'^2 + y'^2 \\
  98. u = f_x*x'' + c_x \\
  99. v = f_y*y'' + c_y
  100. \end{array}\f]
  101. \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are
  102. tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
  103. coefficients. Higher-order coefficients are not considered in OpenCV.
  104. The next figures show two common types of radial distortion: barrel distortion (typically \f$ k_1 < 0 \f$) and pincushion distortion (typically \f$ k_1 > 0 \f$).
  105. ![](pics/distortion_examples.png)
  106. ![](pics/distortion_examples2.png)
  107. In some cases the image sensor may be tilted in order to focus an oblique plane in front of the
  108. camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or
  109. triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
  110. \f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07.
  111. \f[\begin{array}{l}
  112. s\vecthree{x'''}{y'''}{1} =
  113. \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
  114. {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
  115. {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
  116. u = f_x*x''' + c_x \\
  117. v = f_y*y''' + c_y
  118. \end{array}\f]
  119. where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$
  120. and \f$\tau_y\f$, respectively,
  121. \f[
  122. R(\tau_x, \tau_y) =
  123. \vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
  124. \vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
  125. \vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
  126. {0}{\cos(\tau_x)}{\sin(\tau_x)}
  127. {\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
  128. \f]
  129. In the functions below the coefficients are passed or returned as
  130. \f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
  131. vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
  132. coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
  133. parameters. And they remain the same regardless of the captured image resolution. If, for example, a
  134. camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
  135. coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and
  136. \f$c_y\f$ need to be scaled appropriately.
  137. The functions below use the above model to do the following:
  138. - Project 3D points to the image plane given intrinsic and extrinsic parameters.
  139. - Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
  140. projections.
  141. - Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
  142. pattern (every view is described by several 3D-2D point correspondences).
  143. - Estimate the relative position and orientation of the stereo camera "heads" and compute the
  144. *rectification* transformation that makes the camera optical axes parallel.
  145. @note
  146. - A calibration sample for 3 cameras in horizontal position can be found at
  147. opencv_source_code/samples/cpp/3calibration.cpp
  148. - A calibration sample based on a sequence of images can be found at
  149. opencv_source_code/samples/cpp/calibration.cpp
  150. - A calibration sample in order to do 3D reconstruction can be found at
  151. opencv_source_code/samples/cpp/build3dmodel.cpp
  152. - A calibration sample of an artificially generated camera and chessboard patterns can be
  153. found at opencv_source_code/samples/cpp/calibration_artificial.cpp
  154. - A calibration example on stereo calibration can be found at
  155. opencv_source_code/samples/cpp/stereo_calib.cpp
  156. - A calibration example on stereo matching can be found at
  157. opencv_source_code/samples/cpp/stereo_match.cpp
  158. - (Python) A camera calibration sample can be found at
  159. opencv_source_code/samples/python/calibrate.py
  160. @{
  161. @defgroup calib3d_fisheye Fisheye camera model
  162. Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
  163. matrix X) The coordinate vector of P in the camera reference frame is:
  164. \f[Xc = R X + T\f]
  165. where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
  166. and z the 3 coordinates of Xc:
  167. \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]
  168. The pinhole projection coordinates of P is [a; b] where
  169. \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]
  170. Fisheye distortion:
  171. \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
  172. The distorted point coordinates are [x'; y'] where
  173. \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]
  174. Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
  175. \f[u = f_x (x' + \alpha y') + c_x \\
  176. v = f_y y' + c_y\f]
  177. @defgroup calib3d_c C API
  178. @}
  179. */
  180. namespace cv
  181. {
  182. //! @addtogroup calib3d
  183. //! @{
  184. //! type of the robust estimation algorithm
  185. enum { LMEDS = 4, //!< least-median of squares algorithm
  186. RANSAC = 8, //!< RANSAC algorithm
  187. RHO = 16 //!< RHO algorithm
  188. };
  189. enum { SOLVEPNP_ITERATIVE = 0,
  190. SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
  191. SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
  192. SOLVEPNP_DLS = 3, //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
  193. SOLVEPNP_UPNP = 4, //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
  194. SOLVEPNP_AP3P = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
  195. SOLVEPNP_MAX_COUNT //!< Used for count
  196. };
  197. enum { CALIB_CB_ADAPTIVE_THRESH = 1,
  198. CALIB_CB_NORMALIZE_IMAGE = 2,
  199. CALIB_CB_FILTER_QUADS = 4,
  200. CALIB_CB_FAST_CHECK = 8,
  201. CALIB_CB_EXHAUSTIVE = 16,
  202. CALIB_CB_ACCURACY = 32
  203. };
  204. enum { CALIB_CB_SYMMETRIC_GRID = 1,
  205. CALIB_CB_ASYMMETRIC_GRID = 2,
  206. CALIB_CB_CLUSTERING = 4
  207. };
  208. enum { CALIB_NINTRINSIC = 18,
  209. CALIB_USE_INTRINSIC_GUESS = 0x00001,
  210. CALIB_FIX_ASPECT_RATIO = 0x00002,
  211. CALIB_FIX_PRINCIPAL_POINT = 0x00004,
  212. CALIB_ZERO_TANGENT_DIST = 0x00008,
  213. CALIB_FIX_FOCAL_LENGTH = 0x00010,
  214. CALIB_FIX_K1 = 0x00020,
  215. CALIB_FIX_K2 = 0x00040,
  216. CALIB_FIX_K3 = 0x00080,
  217. CALIB_FIX_K4 = 0x00800,
  218. CALIB_FIX_K5 = 0x01000,
  219. CALIB_FIX_K6 = 0x02000,
  220. CALIB_RATIONAL_MODEL = 0x04000,
  221. CALIB_THIN_PRISM_MODEL = 0x08000,
  222. CALIB_FIX_S1_S2_S3_S4 = 0x10000,
  223. CALIB_TILTED_MODEL = 0x40000,
  224. CALIB_FIX_TAUX_TAUY = 0x80000,
  225. CALIB_USE_QR = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
  226. CALIB_FIX_TANGENT_DIST = 0x200000,
  227. // only for stereo
  228. CALIB_FIX_INTRINSIC = 0x00100,
  229. CALIB_SAME_FOCAL_LENGTH = 0x00200,
  230. // for stereo rectification
  231. CALIB_ZERO_DISPARITY = 0x00400,
  232. CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
  233. CALIB_USE_EXTRINSIC_GUESS = (1 << 22), //!< for stereoCalibrate
  234. };
  235. //! the algorithm for finding fundamental matrix
  236. enum { FM_7POINT = 1, //!< 7-point algorithm
  237. FM_8POINT = 2, //!< 8-point algorithm
  238. FM_LMEDS = 4, //!< least-median algorithm. 7-point algorithm is used.
  239. FM_RANSAC = 8 //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
  240. };
  241. /** @brief Converts a rotation matrix to a rotation vector or vice versa.
  242. @param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
  243. @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
  244. @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
  245. derivatives of the output array components with respect to the input array components.
  246. \f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos{\theta} I + (1- \cos{\theta} ) r r^T + \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
  247. Inverse transformation can be also done easily, since
  248. \f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
  249. A rotation vector is a convenient and most compact representation of a rotation matrix (since any
  250. rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
  251. optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
  252. */
  253. CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
  254. /** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp
  255. An example program about pose estimation from coplanar points
  256. Check @ref tutorial_homography "the corresponding tutorial" for more details
  257. */
  258. /** Levenberg-Marquardt solver. Starting with the specified vector of parameters it
  259. optimizes the target vector criteria "err"
  260. (finds local minima of each target vector component absolute value).
  261. When needed, it calls user-provided callback.
  262. */
  263. class CV_EXPORTS LMSolver : public Algorithm
  264. {
  265. public:
  266. class CV_EXPORTS Callback
  267. {
  268. public:
  269. virtual ~Callback() {}
  270. /**
  271. computes error and Jacobian for the specified vector of parameters
  272. @param param the current vector of parameters
  273. @param err output vector of errors: err_i = actual_f_i - ideal_f_i
  274. @param J output Jacobian: J_ij = d(err_i)/d(param_j)
  275. when J=noArray(), it means that it does not need to be computed.
  276. Dimensionality of error vector and param vector can be different.
  277. The callback should explicitly allocate (with "create" method) each output array
  278. (unless it's noArray()).
  279. */
  280. virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0;
  281. };
  282. /**
  283. Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
  284. The final vector of parameters (whether the algorithm converged or not) is stored at the same
  285. vector. The method returns the number of iterations used. If it's equal to the previously specified
  286. maxIters, there is a big chance the algorithm did not converge.
  287. @param param initial/final vector of parameters.
  288. Note that the dimensionality of parameter space is defined by the size of param vector,
  289. and the dimensionality of optimized criteria is defined by the size of err vector
  290. computed by the callback.
  291. */
  292. virtual int run(InputOutputArray param) const = 0;
  293. /**
  294. Sets the maximum number of iterations
  295. @param maxIters the number of iterations
  296. */
  297. virtual void setMaxIters(int maxIters) = 0;
  298. /**
  299. Retrieves the current maximum number of iterations
  300. */
  301. virtual int getMaxIters() const = 0;
  302. /**
  303. Creates Levenberg-Marquard solver
  304. @param cb callback
  305. @param maxIters maximum number of iterations that can be further
  306. modified using setMaxIters() method.
  307. */
  308. static Ptr<LMSolver> create(const Ptr<LMSolver::Callback>& cb, int maxIters);
  309. };
  310. /** @brief Finds a perspective transformation between two planes.
  311. @param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
  312. or vector\<Point2f\> .
  313. @param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
  314. a vector\<Point2f\> .
  315. @param method Method used to compute a homography matrix. The following methods are possible:
  316. - **0** - a regular method using all the points, i.e., the least squares method
  317. - **RANSAC** - RANSAC-based robust method
  318. - **LMEDS** - Least-Median robust method
  319. - **RHO** - PROSAC-based robust method
  320. @param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
  321. (used in the RANSAC and RHO methods only). That is, if
  322. \f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold}\f]
  323. then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
  324. it usually makes sense to set this parameter somewhere in the range of 1 to 10.
  325. @param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input
  326. mask values are ignored.
  327. @param maxIters The maximum number of RANSAC iterations.
  328. @param confidence Confidence level, between 0 and 1.
  329. The function finds and returns the perspective transformation \f$H\f$ between the source and the
  330. destination planes:
  331. \f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f]
  332. so that the back-projection error
  333. \f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
  334. is minimized. If the parameter method is set to the default value 0, the function uses all the point
  335. pairs to compute an initial homography estimate with a simple least-squares scheme.
  336. However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
  337. transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
  338. you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
  339. random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
  340. using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
  341. computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
  342. LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
  343. the mask of inliers/outliers.
  344. Regardless of the method, robust or not, the computed homography matrix is refined further (using
  345. inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
  346. re-projection error even more.
  347. The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
  348. distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
  349. correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
  350. noise is rather small, use the default method (method=0).
  351. The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
  352. determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix
  353. cannot be estimated, an empty one will be returned.
  354. @sa
  355. getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
  356. perspectiveTransform
  357. */
  358. CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
  359. int method = 0, double ransacReprojThreshold = 3,
  360. OutputArray mask=noArray(), const int maxIters = 2000,
  361. const double confidence = 0.995);
  362. /** @overload */
  363. CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
  364. OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
  365. /** @brief Computes an RQ decomposition of 3x3 matrices.
  366. @param src 3x3 input matrix.
  367. @param mtxR Output 3x3 upper-triangular matrix.
  368. @param mtxQ Output 3x3 orthogonal matrix.
  369. @param Qx Optional output 3x3 rotation matrix around x-axis.
  370. @param Qy Optional output 3x3 rotation matrix around y-axis.
  371. @param Qz Optional output 3x3 rotation matrix around z-axis.
  372. The function computes a RQ decomposition using the given rotations. This function is used in
  373. decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
  374. and a rotation matrix.
  375. It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
  376. degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
  377. sequence of rotations about the three principal axes that results in the same orientation of an
  378. object, e.g. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
  379. are only one of the possible solutions.
  380. */
  381. CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
  382. OutputArray Qx = noArray(),
  383. OutputArray Qy = noArray(),
  384. OutputArray Qz = noArray());
  385. /** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix.
  386. @param projMatrix 3x4 input projection matrix P.
  387. @param cameraMatrix Output 3x3 camera matrix K.
  388. @param rotMatrix Output 3x3 external rotation matrix R.
  389. @param transVect Output 4x1 translation vector T.
  390. @param rotMatrixX Optional 3x3 rotation matrix around x-axis.
  391. @param rotMatrixY Optional 3x3 rotation matrix around y-axis.
  392. @param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
  393. @param eulerAngles Optional three-element vector containing three Euler angles of rotation in
  394. degrees.
  395. The function computes a decomposition of a projection matrix into a calibration and a rotation
  396. matrix and the position of a camera.
  397. It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
  398. be used in OpenGL. Note, there is always more than one sequence of rotations about the three
  399. principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
  400. tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
  401. The function is based on RQDecomp3x3 .
  402. */
  403. CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
  404. OutputArray rotMatrix, OutputArray transVect,
  405. OutputArray rotMatrixX = noArray(),
  406. OutputArray rotMatrixY = noArray(),
  407. OutputArray rotMatrixZ = noArray(),
  408. OutputArray eulerAngles =noArray() );
  409. /** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
  410. @param A First multiplied matrix.
  411. @param B Second multiplied matrix.
  412. @param dABdA First output derivative matrix d(A\*B)/dA of size
  413. \f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
  414. @param dABdB Second output derivative matrix d(A\*B)/dB of size
  415. \f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
  416. The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
  417. the elements of each of the two input matrices. The function is used to compute the Jacobian
  418. matrices in stereoCalibrate but can also be used in any other similar optimization function.
  419. */
  420. CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
  421. /** @brief Combines two rotation-and-shift transformations.
  422. @param rvec1 First rotation vector.
  423. @param tvec1 First translation vector.
  424. @param rvec2 Second rotation vector.
  425. @param tvec2 Second translation vector.
  426. @param rvec3 Output rotation vector of the superposition.
  427. @param tvec3 Output translation vector of the superposition.
  428. @param dr3dr1
  429. @param dr3dt1
  430. @param dr3dr2
  431. @param dr3dt2
  432. @param dt3dr1
  433. @param dt3dt1
  434. @param dt3dr2
  435. @param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and
  436. tvec2, respectively.
  437. The functions compute:
  438. \f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f]
  439. where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
  440. \f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.
  441. Also, the functions can compute the derivatives of the output vectors with regards to the input
  442. vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
  443. your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
  444. function that contains a matrix multiplication.
  445. */
  446. CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
  447. InputArray rvec2, InputArray tvec2,
  448. OutputArray rvec3, OutputArray tvec3,
  449. OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
  450. OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
  451. OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
  452. OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
  453. /** @brief Projects 3D points to an image plane.
  454. @param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or
  455. vector\<Point3f\> ), where N is the number of points in the view.
  456. @param rvec Rotation vector. See Rodrigues for details.
  457. @param tvec Translation vector.
  458. @param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ .
  459. @param distCoeffs Input vector of distortion coefficients
  460. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
  461. 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
  462. @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
  463. vector\<Point2f\> .
  464. @param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
  465. points with respect to components of the rotation vector, translation vector, focal lengths,
  466. coordinates of the principal point and the distortion coefficients. In the old interface different
  467. components of the jacobian are returned via different output parameters.
  468. @param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
  469. function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian
  470. matrix.
  471. The function computes projections of 3D points to the image plane given intrinsic and extrinsic
  472. camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
  473. image points coordinates (as functions of all the input parameters) with respect to the particular
  474. parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in
  475. calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a
  476. re-projection error given the current intrinsic and extrinsic parameters.
  477. @note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by
  478. passing zero distortion coefficients, you can get various useful partial cases of the function. This
  479. means that you can compute the distorted coordinates for a sparse set of points or apply a
  480. perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
  481. */
  482. CV_EXPORTS_W void projectPoints( InputArray objectPoints,
  483. InputArray rvec, InputArray tvec,
  484. InputArray cameraMatrix, InputArray distCoeffs,
  485. OutputArray imagePoints,
  486. OutputArray jacobian = noArray(),
  487. double aspectRatio = 0 );
  488. /** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp
  489. An example program about homography from the camera displacement
  490. Check @ref tutorial_homography "the corresponding tutorial" for more details
  491. */
  492. /** @brief Finds an object pose from 3D-2D point correspondences.
  493. @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
  494. 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
  495. @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
  496. where N is the number of points. vector\<Point2f\> can be also passed here.
  497. @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
  498. @param distCoeffs Input vector of distortion coefficients
  499. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
  500. 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
  501. assumed.
  502. @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from
  503. the model coordinate system to the camera coordinate system.
  504. @param tvec Output translation vector.
  505. @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
  506. the provided rvec and tvec values as initial approximations of the rotation and translation
  507. vectors, respectively, and further optimizes them.
  508. @param flags Method for solving a PnP problem:
  509. - **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
  510. this case the function finds such a pose that minimizes reprojection error, that is the sum
  511. of squared distances between the observed projections imagePoints and the projected (using
  512. projectPoints ) objectPoints .
  513. - **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
  514. "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
  515. In this case the function requires exactly four object and image points.
  516. - **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis
  517. "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
  518. In this case the function requires exactly four object and image points.
  519. - **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
  520. paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
  521. - **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
  522. "A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
  523. - **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
  524. F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
  525. Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
  526. assuming that both have the same value. Then the cameraMatrix is updated with the estimated
  527. focal length.
  528. - **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
  529. "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). In this case the
  530. function requires exactly four object and image points.
  531. The function estimates the object pose given a set of object points, their corresponding image
  532. projections, as well as the camera matrix and the distortion coefficients, see the figure below
  533. (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
  534. and the Z-axis forward).
  535. ![](pnp.jpg)
  536. Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$
  537. using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$:
  538. \f[
  539. \begin{align*}
  540. \begin{bmatrix}
  541. u \\
  542. v \\
  543. 1
  544. \end{bmatrix} &=
  545. \bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{M}_w
  546. \begin{bmatrix}
  547. X_{w} \\
  548. Y_{w} \\
  549. Z_{w} \\
  550. 1
  551. \end{bmatrix} \\
  552. \begin{bmatrix}
  553. u \\
  554. v \\
  555. 1
  556. \end{bmatrix} &=
  557. \begin{bmatrix}
  558. f_x & 0 & c_x \\
  559. 0 & f_y & c_y \\
  560. 0 & 0 & 1
  561. \end{bmatrix}
  562. \begin{bmatrix}
  563. 1 & 0 & 0 & 0 \\
  564. 0 & 1 & 0 & 0 \\
  565. 0 & 0 & 1 & 0
  566. \end{bmatrix}
  567. \begin{bmatrix}
  568. r_{11} & r_{12} & r_{13} & t_x \\
  569. r_{21} & r_{22} & r_{23} & t_y \\
  570. r_{31} & r_{32} & r_{33} & t_z \\
  571. 0 & 0 & 0 & 1
  572. \end{bmatrix}
  573. \begin{bmatrix}
  574. X_{w} \\
  575. Y_{w} \\
  576. Z_{w} \\
  577. 1
  578. \end{bmatrix}
  579. \end{align*}
  580. \f]
  581. The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow to transform
  582. a 3D point expressed in the world frame into the camera frame:
  583. \f[
  584. \begin{align*}
  585. \begin{bmatrix}
  586. X_c \\
  587. Y_c \\
  588. Z_c \\
  589. 1
  590. \end{bmatrix} &=
  591. \hspace{0.2em} ^{c}\bf{M}_w
  592. \begin{bmatrix}
  593. X_{w} \\
  594. Y_{w} \\
  595. Z_{w} \\
  596. 1
  597. \end{bmatrix} \\
  598. \begin{bmatrix}
  599. X_c \\
  600. Y_c \\
  601. Z_c \\
  602. 1
  603. \end{bmatrix} &=
  604. \begin{bmatrix}
  605. r_{11} & r_{12} & r_{13} & t_x \\
  606. r_{21} & r_{22} & r_{23} & t_y \\
  607. r_{31} & r_{32} & r_{33} & t_z \\
  608. 0 & 0 & 0 & 1
  609. \end{bmatrix}
  610. \begin{bmatrix}
  611. X_{w} \\
  612. Y_{w} \\
  613. Z_{w} \\
  614. 1
  615. \end{bmatrix}
  616. \end{align*}
  617. \f]
  618. @note
  619. - An example of how to use solvePnP for planar augmented reality can be found at
  620. opencv_source_code/samples/python/plane_ar.py
  621. - If you are using Python:
  622. - Numpy array slices won't work as input because solvePnP requires contiguous
  623. arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
  624. modules/calib3d/src/solvepnp.cpp version 2.4.9)
  625. - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
  626. to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
  627. which requires 2-channel information.
  628. - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
  629. it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
  630. np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
  631. - The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
  632. unstable and sometimes give completely wrong results. If you pass one of these two
  633. flags, **SOLVEPNP_EPNP** method will be used instead.
  634. - The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
  635. methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
  636. of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
  637. - With **SOLVEPNP_ITERATIVE** method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
  638. are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
  639. global solution to converge.
  640. */
  641. CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
  642. InputArray cameraMatrix, InputArray distCoeffs,
  643. OutputArray rvec, OutputArray tvec,
  644. bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
  645. /** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
  646. @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
  647. 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
  648. @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
  649. where N is the number of points. vector\<Point2f\> can be also passed here.
  650. @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
  651. @param distCoeffs Input vector of distortion coefficients
  652. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
  653. 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
  654. assumed.
  655. @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
  656. the model coordinate system to the camera coordinate system.
  657. @param tvec Output translation vector.
  658. @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
  659. the provided rvec and tvec values as initial approximations of the rotation and translation
  660. vectors, respectively, and further optimizes them.
  661. @param iterationsCount Number of iterations.
  662. @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
  663. is the maximum allowed distance between the observed and computed point projections to consider it
  664. an inlier.
  665. @param confidence The probability that the algorithm produces a useful result.
  666. @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
  667. @param flags Method for solving a PnP problem (see solvePnP ).
  668. The function estimates an object pose given a set of object points, their corresponding image
  669. projections, as well as the camera matrix and the distortion coefficients. This function finds such
  670. a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
  671. projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC
  672. makes the function resistant to outliers.
  673. @note
  674. - An example of how to use solvePNPRansac for object detection can be found at
  675. opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
  676. - The default method used to estimate the camera pose for the Minimal Sample Sets step
  677. is #SOLVEPNP_EPNP. Exceptions are:
  678. - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
  679. - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
  680. - The method used to estimate the camera pose using all the inliers is defined by the
  681. flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
  682. the method #SOLVEPNP_EPNP will be used instead.
  683. */
  684. CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
  685. InputArray cameraMatrix, InputArray distCoeffs,
  686. OutputArray rvec, OutputArray tvec,
  687. bool useExtrinsicGuess = false, int iterationsCount = 100,
  688. float reprojectionError = 8.0, double confidence = 0.99,
  689. OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
  690. /** @brief Finds an object pose from 3 3D-2D point correspondences.
  691. @param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
  692. 1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
  693. @param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
  694. vector\<Point2f\> can be also passed here.
  695. @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
  696. @param distCoeffs Input vector of distortion coefficients
  697. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
  698. 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
  699. assumed.
  700. @param rvecs Output rotation vectors (see Rodrigues ) that, together with tvecs , brings points from
  701. the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
  702. @param tvecs Output translation vectors.
  703. @param flags Method for solving a P3P problem:
  704. - **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
  705. "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
  706. - **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
  707. "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
  708. The function estimates the object pose given 3 object points, their corresponding image
  709. projections, as well as the camera matrix and the distortion coefficients.
  710. */
  711. CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
  712. InputArray cameraMatrix, InputArray distCoeffs,
  713. OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
  714. int flags );
  715. /** @brief Finds an initial camera matrix from 3D-2D point correspondences.
  716. @param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
  717. coordinate space. In the old interface all the per-view vectors are concatenated. See
  718. calibrateCamera for details.
  719. @param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
  720. old interface all the per-view vectors are concatenated.
  721. @param imageSize Image size in pixels used to initialize the principal point.
  722. @param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
  723. Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .
  724. The function estimates and returns an initial camera matrix for the camera calibration process.
  725. Currently, the function only supports planar calibration patterns, which are patterns where each
  726. object point has z-coordinate =0.
  727. */
  728. CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
  729. InputArrayOfArrays imagePoints,
  730. Size imageSize, double aspectRatio = 1.0 );
  731. /** @brief Finds the positions of internal corners of the chessboard.
  732. @param image Source chessboard view. It must be an 8-bit grayscale or color image.
  733. @param patternSize Number of inner corners per a chessboard row and column
  734. ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
  735. @param corners Output array of detected corners.
  736. @param flags Various operation flags that can be zero or a combination of the following values:
  737. - **CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
  738. and white, rather than a fixed threshold level (computed from the average image brightness).
  739. - **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
  740. applying fixed or adaptive thresholding.
  741. - **CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
  742. square-like shape) to filter out false quads extracted at the contour retrieval stage.
  743. - **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
  744. and shortcut the call if none is found. This can drastically speed up the call in the
  745. degenerate condition when no chessboard is observed.
  746. The function attempts to determine whether the input image is a view of the chessboard pattern and
  747. locate the internal chessboard corners. The function returns a non-zero value if all of the corners
  748. are found and they are placed in a certain order (row by row, left to right in every row).
  749. Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
  750. a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
  751. squares touch each other. The detected coordinates are approximate, and to determine their positions
  752. more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
  753. different parameters if returned coordinates are not accurate enough.
  754. Sample usage of detecting and drawing chessboard corners: :
  755. @code
  756. Size patternsize(8,6); //interior number of corners
  757. Mat gray = ....; //source image
  758. vector<Point2f> corners; //this will be filled by the detected corners
  759. //CALIB_CB_FAST_CHECK saves a lot of time on images
  760. //that do not contain any chessboard corners
  761. bool patternfound = findChessboardCorners(gray, patternsize, corners,
  762. CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
  763. + CALIB_CB_FAST_CHECK);
  764. if(patternfound)
  765. cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
  766. TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
  767. drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
  768. @endcode
  769. @note The function requires white space (like a square-thick border, the wider the better) around
  770. the board to make the detection more robust in various environments. Otherwise, if there is no
  771. border and the background is dark, the outer black squares cannot be segmented properly and so the
  772. square grouping and ordering algorithm fails.
  773. */
  774. CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
  775. int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
  776. /*
  777. Checks whether the image contains chessboard of the specific size or not.
  778. If yes, nonzero value is returned.
  779. */
  780. CV_EXPORTS_W bool checkChessboard(InputArray img, Size size);
  781. /** @brief Finds the positions of internal corners of the chessboard using a sector based approach.
  782. @param image Source chessboard view. It must be an 8-bit grayscale or color image.
  783. @param patternSize Number of inner corners per a chessboard row and column
  784. ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
  785. @param corners Output array of detected corners.
  786. @param flags Various operation flags that can be zero or a combination of the following values:
  787. - **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before detection.
  788. - **CALIB_CB_EXHAUSTIVE ** Run an exhaustive search to improve detection rate.
  789. - **CALIB_CB_ACCURACY ** Up sample input image to improve sub-pixel accuracy due to aliasing effects.
  790. This should be used if an accurate camera calibration is required.
  791. The function is analog to findchessboardCorners but uses a localized radon
  792. transformation approximated by box filters being more robust to all sort of
  793. noise, faster on larger images and is able to directly return the sub-pixel
  794. position of the internal chessboard corners. The Method is based on the paper
  795. @cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
  796. Calibration" demonstrating that the returned sub-pixel positions are more
  797. accurate than the one returned by cornerSubPix allowing a precise camera
  798. calibration for demanding applications.
  799. @note The function requires a white boarder with roughly the same width as one
  800. of the checkerboard fields around the whole board to improve the detection in
  801. various environments. In addition, because of the localized radon
  802. transformation it is beneficial to use round corners for the field corners
  803. which are located on the outside of the board. The following figure illustrates
  804. a sample checkerboard optimized for the detection. However, any other checkerboard
  805. can be used as well.
  806. ![Checkerboard](pics/checkerboard_radon.png)
  807. */
  808. CV_EXPORTS_W bool findChessboardCornersSB(InputArray image,Size patternSize, OutputArray corners,int flags=0);
  809. //! finds subpixel-accurate positions of the chessboard corners
  810. CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
  811. /** @brief Renders the detected chessboard corners.
  812. @param image Destination image. It must be an 8-bit color image.
  813. @param patternSize Number of inner corners per a chessboard row and column
  814. (patternSize = cv::Size(points_per_row,points_per_column)).
  815. @param corners Array of detected corners, the output of findChessboardCorners.
  816. @param patternWasFound Parameter indicating whether the complete board was found or not. The
  817. return value of findChessboardCorners should be passed here.
  818. The function draws individual chessboard corners detected either as red circles if the board was not
  819. found, or as colored corners connected with lines if the board was found.
  820. */
  821. CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
  822. InputArray corners, bool patternWasFound );
  823. /** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
  824. @param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
  825. @param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters.
  826. \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
  827. @param distCoeffs Input vector of distortion coefficients
  828. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
  829. 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
  830. @param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from
  831. the model coordinate system to the camera coordinate system.
  832. @param tvec Translation vector.
  833. @param length Length of the painted axes in the same unit than tvec (usually in meters).
  834. @param thickness Line thickness of the painted axes.
  835. This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
  836. OX is drawn in red, OY in green and OZ in blue.
  837. */
  838. CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
  839. InputArray rvec, InputArray tvec, float length, int thickness=3);
  840. struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
  841. {
  842. CV_WRAP CirclesGridFinderParameters();
  843. CV_PROP_RW cv::Size2f densityNeighborhoodSize;
  844. CV_PROP_RW float minDensity;
  845. CV_PROP_RW int kmeansAttempts;
  846. CV_PROP_RW int minDistanceToAddKeypoint;
  847. CV_PROP_RW int keypointScale;
  848. CV_PROP_RW float minGraphConfidence;
  849. CV_PROP_RW float vertexGain;
  850. CV_PROP_RW float vertexPenalty;
  851. CV_PROP_RW float existingVertexGain;
  852. CV_PROP_RW float edgeGain;
  853. CV_PROP_RW float edgePenalty;
  854. CV_PROP_RW float convexHullFactor;
  855. CV_PROP_RW float minRNGEdgeSwitchDist;
  856. enum GridType
  857. {
  858. SYMMETRIC_GRID, ASYMMETRIC_GRID
  859. };
  860. GridType gridType;
  861. CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
  862. CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from predicion. Used by CALIB_CB_CLUSTERING.
  863. };
  864. #ifndef DISABLE_OPENCV_3_COMPATIBILITY
  865. typedef CirclesGridFinderParameters CirclesGridFinderParameters2;
  866. #endif
  867. /** @brief Finds centers in the grid of circles.
  868. @param image grid view of input circles; it must be an 8-bit grayscale or color image.
  869. @param patternSize number of circles per row and column
  870. ( patternSize = Size(points_per_row, points_per_colum) ).
  871. @param centers output array of detected centers.
  872. @param flags various operation flags that can be one of the following values:
  873. - **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
  874. - **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
  875. - **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
  876. perspective distortions but much more sensitive to background clutter.
  877. @param blobDetector feature detector that finds blobs like dark circles on light background.
  878. @param parameters struct for finding circles in a grid pattern.
  879. The function attempts to determine whether the input image contains a grid of circles. If it is, the
  880. function locates centers of the circles. The function returns a non-zero value if all of the centers
  881. have been found and they have been placed in a certain order (row by row, left to right in every
  882. row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
  883. Sample usage of detecting and drawing the centers of circles: :
  884. @code
  885. Size patternsize(7,7); //number of centers
  886. Mat gray = ....; //source image
  887. vector<Point2f> centers; //this will be filled by the detected centers
  888. bool patternfound = findCirclesGrid(gray, patternsize, centers);
  889. drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
  890. @endcode
  891. @note The function requires white space (like a square-thick border, the wider the better) around
  892. the board to make the detection more robust in various environments.
  893. */
  894. CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
  895. OutputArray centers, int flags,
  896. const Ptr<FeatureDetector> &blobDetector,
  897. const CirclesGridFinderParameters& parameters);
  898. /** @overload */
  899. CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
  900. OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
  901. const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
  902. /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
  903. @param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
  904. the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
  905. vector contains as many elements as the number of the pattern views. If the same calibration pattern
  906. is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
  907. possible to use partially occluded patterns, or even different patterns in different views. Then,
  908. the vectors will be different. The points are 3D, but since they are in a pattern coordinate system,
  909. then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that
  910. Z-coordinate of each input object point is 0.
  911. In the old interface all the vectors of object points from different views are concatenated
  912. together.
  913. @param imagePoints In the new interface it is a vector of vectors of the projections of calibration
  914. pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
  915. objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i.
  916. In the old interface all the vectors of object points from different views are concatenated
  917. together.
  918. @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
  919. @param cameraMatrix Output 3x3 floating-point camera matrix
  920. \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
  921. and/or CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
  922. initialized before calling the function.
  923. @param distCoeffs Output vector of distortion coefficients
  924. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
  925. 4, 5, 8, 12 or 14 elements.
  926. @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view
  927. (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
  928. k-th translation vector (see the next output parameter description) brings the calibration pattern
  929. from the model coordinate space (in which object points are specified) to the world coordinate
  930. space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
  931. @param tvecs Output vector of translation vectors estimated for each pattern view.
  932. @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
  933. Order of deviations values:
  934. \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
  935. s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
  936. @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
  937. Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
  938. \f$R_i, T_i\f$ are concatenated 1x3 vectors.
  939. @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
  940. @param flags Different flags that may be zero or a combination of the following values:
  941. - **CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
  942. fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
  943. center ( imageSize is used), and focal distances are computed in a least-squares fashion.
  944. Note, that if intrinsic parameters are known, there is no need to use this function just to
  945. estimate extrinsic parameters. Use solvePnP instead.
  946. - **CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
  947. optimization. It stays at the center or at a different location specified when
  948. CALIB_USE_INTRINSIC_GUESS is set too.
  949. - **CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
  950. ratio fx/fy stays the same as in the input cameraMatrix . When
  951. CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
  952. ignored, only their ratio is computed and used further.
  953. - **CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
  954. to zeros and stay zero.
  955. - **CALIB_FIX_K1,...,CALIB_FIX_K6** The corresponding radial distortion
  956. coefficient is not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is
  957. set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
  958. - **CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
  959. backward compatibility, this extra flag should be explicitly specified to make the
  960. calibration function use the rational model and return 8 coefficients. If the flag is not
  961. set, the function computes and returns only 5 distortion coefficients.
  962. - **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
  963. backward compatibility, this extra flag should be explicitly specified to make the
  964. calibration function use the thin prism model and return 12 coefficients. If the flag is not
  965. set, the function computes and returns only 5 distortion coefficients.
  966. - **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
  967. the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
  968. supplied distCoeffs matrix is used. Otherwise, it is set to 0.
  969. - **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
  970. backward compatibility, this extra flag should be explicitly specified to make the
  971. calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
  972. set, the function computes and returns only 5 distortion coefficients.
  973. - **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
  974. the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
  975. supplied distCoeffs matrix is used. Otherwise, it is set to 0.
  976. @param criteria Termination criteria for the iterative optimization algorithm.
  977. @return the overall RMS re-projection error.
  978. The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
  979. views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
  980. points and their corresponding 2D projections in each view must be specified. That may be achieved
  981. by using an object with a known geometry and easily detectable feature points. Such an object is
  982. called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
  983. a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
  984. (when CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
  985. patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
  986. be used as long as initial cameraMatrix is provided.
  987. The algorithm performs the following steps:
  988. - Compute the initial intrinsic parameters (the option only available for planar calibration
  989. patterns) or read them from the input parameters. The distortion coefficients are all set to
  990. zeros initially unless some of CALIB_FIX_K? are specified.
  991. - Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
  992. done using solvePnP .
  993. - Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
  994. that is, the total sum of squared distances between the observed feature points imagePoints and
  995. the projected (using the current estimates for camera parameters and the poses) object points
  996. objectPoints. See projectPoints for details.
  997. @note
  998. If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
  999. calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
  1000. (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)),
  1001. then you have probably used patternSize=cvSize(rows,cols) instead of using
  1002. patternSize=cvSize(cols,rows) in findChessboardCorners .
  1003. @sa
  1004. calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
  1005. */
  1006. CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
  1007. InputArrayOfArrays imagePoints, Size imageSize,
  1008. InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
  1009. OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
  1010. OutputArray stdDeviationsIntrinsics,
  1011. OutputArray stdDeviationsExtrinsics,
  1012. OutputArray perViewErrors,
  1013. int flags = 0, TermCriteria criteria = TermCriteria(
  1014. TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
  1015. /** @overload */
  1016. CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
  1017. InputArrayOfArrays imagePoints, Size imageSize,
  1018. InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
  1019. OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
  1020. int flags = 0, TermCriteria criteria = TermCriteria(
  1021. TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
  1022. /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
  1023. This function is an extension of calibrateCamera() with the method of releasing object which was
  1024. proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
  1025. targets (calibration plates), this method can dramatically improve the precision of the estimated
  1026. camera parameters. Both the object-releasing method and standard method are supported by this
  1027. function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
  1028. calibrateCamera() is a wrapper for this function.
  1029. @param objectPoints Vector of vectors of calibration pattern points in the calibration pattern
  1030. coordinate space. See calibrateCamera() for details. If the method of releasing object to be used,
  1031. the identical calibration board must be used in each view and it must be fully visible, and all
  1032. objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
  1033. target has to be rigid, or at least static if the camera (rather than the calibration target) is
  1034. shifted for grabbing images.**
  1035. @param imagePoints Vector of vectors of the projections of calibration pattern points. See
  1036. calibrateCamera() for details.
  1037. @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
  1038. @param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
  1039. a switch for calibration method selection. If object-releasing method to be used, pass in the
  1040. parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
  1041. make standard calibration method selected. Usually the top-right corner point of the calibration
  1042. board grid is recommended to be fixed when object-releasing method being utilized. According to
  1043. \cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
  1044. and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
  1045. newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
  1046. @param cameraMatrix Output 3x3 floating-point camera matrix. See calibrateCamera() for details.
  1047. @param distCoeffs Output vector of distortion coefficients. See calibrateCamera() for details.
  1048. @param rvecs Output vector of rotation vectors estimated for each pattern view. See calibrateCamera()
  1049. for details.
  1050. @param tvecs Output vector of translation vectors estimated for each pattern view.
  1051. @param newObjPoints The updated output vector of calibration pattern points. The coordinates might
  1052. be scaled based on three fixed points. The returned coordinates are accurate only if the above
  1053. mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
  1054. is ignored with standard calibration method.
  1055. @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
  1056. See calibrateCamera() for details.
  1057. @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
  1058. See calibrateCamera() for details.
  1059. @param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates
  1060. of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
  1061. parameter is ignored with standard calibration method.
  1062. @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
  1063. @param flags Different flags that may be zero or a combination of some predefined values. See
  1064. calibrateCamera() for details. If the method of releasing object is used, the calibration time may
  1065. be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
  1066. less precise and less stable in some rare cases.
  1067. @param criteria Termination criteria for the iterative optimization algorithm.
  1068. @return the overall RMS re-projection error.
  1069. The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
  1070. views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
  1071. calibrateCamera() for other detailed explanations.
  1072. @sa
  1073. calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
  1074. */
  1075. CV_EXPORTS_AS(calibrateCameraROExtended) double calibrateCameraRO( InputArrayOfArrays objectPoints,
  1076. InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
  1077. InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
  1078. OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
  1079. OutputArray newObjPoints,
  1080. OutputArray stdDeviationsIntrinsics,
  1081. OutputArray stdDeviationsExtrinsics,
  1082. OutputArray stdDeviationsObjPoints,
  1083. OutputArray perViewErrors,
  1084. int flags = 0, TermCriteria criteria = TermCriteria(
  1085. TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
  1086. /** @overload */
  1087. CV_EXPORTS_W double calibrateCameraRO( InputArrayOfArrays objectPoints,
  1088. InputArrayOfArrays imagePoints, Size imageSize, int iFixedPoint,
  1089. InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
  1090. OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
  1091. OutputArray newObjPoints,
  1092. int flags = 0, TermCriteria criteria = TermCriteria(
  1093. TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
  1094. /** @brief Computes useful camera characteristics from the camera matrix.
  1095. @param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or
  1096. stereoCalibrate .
  1097. @param imageSize Input image size in pixels.
  1098. @param apertureWidth Physical width in mm of the sensor.
  1099. @param apertureHeight Physical height in mm of the sensor.
  1100. @param fovx Output field of view in degrees along the horizontal sensor axis.
  1101. @param fovy Output field of view in degrees along the vertical sensor axis.
  1102. @param focalLength Focal length of the lens in mm.
  1103. @param principalPoint Principal point in mm.
  1104. @param aspectRatio \f$f_y/f_x\f$
  1105. The function computes various useful camera characteristics from the previously estimated camera
  1106. matrix.
  1107. @note
  1108. Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
  1109. the chessboard pitch (it can thus be any value).
  1110. */
  1111. CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
  1112. double apertureWidth, double apertureHeight,
  1113. CV_OUT double& fovx, CV_OUT double& fovy,
  1114. CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
  1115. CV_OUT double& aspectRatio );
  1116. /** @brief Calibrates the stereo camera.
  1117. @param objectPoints Vector of vectors of the calibration pattern points.
  1118. @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
  1119. observed by the first camera.
  1120. @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
  1121. observed by the second camera.
  1122. @param cameraMatrix1 Input/output first camera matrix:
  1123. \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
  1124. any of CALIB_USE_INTRINSIC_GUESS , CALIB_FIX_ASPECT_RATIO ,
  1125. CALIB_FIX_INTRINSIC , or CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
  1126. matrix components must be initialized. See the flags description for details.
  1127. @param distCoeffs1 Input/output vector of distortion coefficients
  1128. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
  1129. 4, 5, 8, 12 or 14 elements. The output vector length depends on the flags.
  1130. @param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1
  1131. @param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter
  1132. is similar to distCoeffs1 .
  1133. @param imageSize Size of the image used only to initialize intrinsic camera matrix.
  1134. @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
  1135. @param T Output translation vector between the coordinate systems of the cameras.
  1136. @param E Output essential matrix.
  1137. @param F Output fundamental matrix.
  1138. @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
  1139. @param flags Different flags that may be zero or a combination of the following values:
  1140. - **CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
  1141. matrices are estimated.
  1142. - **CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
  1143. according to the specified flags. Initial values are provided by the user.
  1144. - **CALIB_USE_EXTRINSIC_GUESS** R, T contain valid initial values that are optimized further.
  1145. Otherwise R, T are initialized to the median value of the pattern views (each dimension separately).
  1146. - **CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
  1147. - **CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
  1148. - **CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
  1149. .
  1150. - **CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
  1151. - **CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
  1152. zeros and fix there.
  1153. - **CALIB_FIX_K1,...,CALIB_FIX_K6** Do not change the corresponding radial
  1154. distortion coefficient during the optimization. If CALIB_USE_INTRINSIC_GUESS is set,
  1155. the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
  1156. - **CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
  1157. compatibility, this extra flag should be explicitly specified to make the calibration
  1158. function use the rational model and return 8 coefficients. If the flag is not set, the
  1159. function computes and returns only 5 distortion coefficients.
  1160. - **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
  1161. backward compatibility, this extra flag should be explicitly specified to make the
  1162. calibration function use the thin prism model and return 12 coefficients. If the flag is not
  1163. set, the function computes and returns only 5 distortion coefficients.
  1164. - **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
  1165. the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
  1166. supplied distCoeffs matrix is used. Otherwise, it is set to 0.
  1167. - **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
  1168. backward compatibility, this extra flag should be explicitly specified to make the
  1169. calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
  1170. set, the function computes and returns only 5 distortion coefficients.
  1171. - **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
  1172. the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
  1173. supplied distCoeffs matrix is used. Otherwise, it is set to 0.
  1174. @param criteria Termination criteria for the iterative optimization algorithm.
  1175. The function estimates transformation between two cameras making a stereo pair. If you have a stereo
  1176. camera where the relative position and orientation of two cameras is fixed, and if you computed
  1177. poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2),
  1178. respectively (this can be done with solvePnP ), then those poses definitely relate to each other.
  1179. This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only
  1180. need to know the position and orientation of the second camera relative to the first camera. This is
  1181. what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:
  1182. \f[R_2=R*R_1\f]
  1183. \f[T_2=R*T_1 + T,\f]
  1184. Optionally, it computes the essential matrix E:
  1185. \f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]
  1186. where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function
  1187. can also compute the fundamental matrix F:
  1188. \f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]
  1189. Besides the stereo-related information, the function can also perform a full calibration of each of
  1190. two cameras. However, due to the high dimensionality of the parameter space and noise in the input
  1191. data, the function can diverge from the correct solution. If the intrinsic parameters can be
  1192. estimated with high accuracy for each of the cameras individually (for example, using
  1193. calibrateCamera ), you are recommended to do so and then pass CALIB_FIX_INTRINSIC flag to the
  1194. function along with the computed intrinsic parameters. Otherwise, if all the parameters are
  1195. estimated at once, it makes sense to restrict some parameters, for example, pass
  1196. CALIB_SAME_FOCAL_LENGTH and CALIB_ZERO_TANGENT_DIST flags, which is usually a
  1197. reasonable assumption.
  1198. Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
  1199. points in all the available views from both cameras. The function returns the final value of the
  1200. re-projection error.
  1201. */
  1202. CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints,
  1203. InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
  1204. InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
  1205. InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
  1206. Size imageSize, InputOutputArray R,InputOutputArray T, OutputArray E, OutputArray F,
  1207. OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
  1208. TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
  1209. /// @overload
  1210. CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
  1211. InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
  1212. InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
  1213. InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
  1214. Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
  1215. int flags = CALIB_FIX_INTRINSIC,
  1216. TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
  1217. /** @brief Computes rectification transforms for each head of a calibrated stereo camera.
  1218. @param cameraMatrix1 First camera matrix.
  1219. @param distCoeffs1 First camera distortion parameters.
  1220. @param cameraMatrix2 Second camera matrix.
  1221. @param distCoeffs2 Second camera distortion parameters.
  1222. @param imageSize Size of the image used for stereo calibration.
  1223. @param R Rotation matrix between the coordinate systems of the first and the second cameras.
  1224. @param T Translation vector between coordinate systems of the cameras.
  1225. @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
  1226. @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
  1227. @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
  1228. camera.
  1229. @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
  1230. camera.
  1231. @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
  1232. @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
  1233. the function makes the principal points of each camera have the same pixel coordinates in the
  1234. rectified views. And if the flag is not set, the function may still shift the images in the
  1235. horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
  1236. useful image area.
  1237. @param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
  1238. scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
  1239. images are zoomed and shifted so that only valid pixels are visible (no black areas after
  1240. rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
  1241. pixels from the original images from the cameras are retained in the rectified images (no source
  1242. image pixels are lost). Obviously, any intermediate value yields an intermediate result between
  1243. those two extreme cases.
  1244. @param newImageSize New image resolution after rectification. The same size should be passed to
  1245. initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
  1246. is passed (default), it is set to the original imageSize . Setting it to larger value can help you
  1247. preserve details in the original image, especially when there is a big radial distortion.
  1248. @param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
  1249. are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
  1250. (see the picture below).
  1251. @param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
  1252. are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
  1253. (see the picture below).
  1254. The function computes the rotation matrices for each camera that (virtually) make both camera image
  1255. planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
  1256. the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
  1257. as input. As output, it provides two rotation matrices and also two projection matrices in the new
  1258. coordinates. The function distinguishes the following two cases:
  1259. - **Horizontal stereo**: the first and the second camera views are shifted relative to each other
  1260. mainly along the x axis (with possible small vertical shift). In the rectified images, the
  1261. corresponding epipolar lines in the left and right cameras are horizontal and have the same
  1262. y-coordinate. P1 and P2 look like:
  1263. \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
  1264. \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
  1265. where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
  1266. CALIB_ZERO_DISPARITY is set.
  1267. - **Vertical stereo**: the first and the second camera views are shifted relative to each other
  1268. mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
  1269. lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
  1270. \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
  1271. \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
  1272. where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
  1273. set.
  1274. As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
  1275. matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
  1276. initialize the rectification map for each camera.
  1277. See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
  1278. the corresponding image regions. This means that the images are well rectified, which is what most
  1279. stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
  1280. their interiors are all valid pixels.
  1281. ![image](pics/stereo_undistort.jpg)
  1282. */
  1283. CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
  1284. InputArray cameraMatrix2, InputArray distCoeffs2,
  1285. Size imageSize, InputArray R, InputArray T,
  1286. OutputArray R1, OutputArray R2,
  1287. OutputArray P1, OutputArray P2,
  1288. OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
  1289. double alpha = -1, Size newImageSize = Size(),
  1290. CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
  1291. /** @brief Computes a rectification transform for an uncalibrated stereo camera.
  1292. @param points1 Array of feature points in the first image.
  1293. @param points2 The corresponding points in the second image. The same formats as in
  1294. findFundamentalMat are supported.
  1295. @param F Input fundamental matrix. It can be computed from the same set of point pairs using
  1296. findFundamentalMat .
  1297. @param imgSize Size of the image.
  1298. @param H1 Output rectification homography matrix for the first image.
  1299. @param H2 Output rectification homography matrix for the second image.
  1300. @param threshold Optional threshold used to filter out the outliers. If the parameter is greater
  1301. than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
  1302. for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
  1303. rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
  1304. The function computes the rectification transformations without knowing intrinsic parameters of the
  1305. cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
  1306. related difference from stereoRectify is that the function outputs not the rectification
  1307. transformations in the object (3D) space, but the planar perspective transformations encoded by the
  1308. homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
  1309. @note
  1310. While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
  1311. depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
  1312. it would be better to correct it before computing the fundamental matrix and calling this
  1313. function. For example, distortion coefficients can be estimated for each head of stereo camera
  1314. separately by using calibrateCamera . Then, the images can be corrected using undistort , or
  1315. just the point coordinates can be corrected with undistortPoints .
  1316. */
  1317. CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
  1318. InputArray F, Size imgSize,
  1319. OutputArray H1, OutputArray H2,
  1320. double threshold = 5 );
  1321. //! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
  1322. CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
  1323. InputArray cameraMatrix2, InputArray distCoeffs2,
  1324. InputArray cameraMatrix3, InputArray distCoeffs3,
  1325. InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
  1326. Size imageSize, InputArray R12, InputArray T12,
  1327. InputArray R13, InputArray T13,
  1328. OutputArray R1, OutputArray R2, OutputArray R3,
  1329. OutputArray P1, OutputArray P2, OutputArray P3,
  1330. OutputArray Q, double alpha, Size newImgSize,
  1331. CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
  1332. /** @brief Returns the new camera matrix based on the free scaling parameter.
  1333. @param cameraMatrix Input camera matrix.
  1334. @param distCoeffs Input vector of distortion coefficients
  1335. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
  1336. 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
  1337. assumed.
  1338. @param imageSize Original image size.
  1339. @param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
  1340. valid) and 1 (when all the source image pixels are retained in the undistorted image). See
  1341. stereoRectify for details.
  1342. @param newImgSize Image size after rectification. By default, it is set to imageSize .
  1343. @param validPixROI Optional output rectangle that outlines all-good-pixels region in the
  1344. undistorted image. See roi1, roi2 description in stereoRectify .
  1345. @param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
  1346. principal point should be at the image center or not. By default, the principal point is chosen to
  1347. best fit a subset of the source image (determined by alpha) to the corrected image.
  1348. @return new_camera_matrix Output new camera matrix.
  1349. The function computes and returns the optimal new camera matrix based on the free scaling parameter.
  1350. By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
  1351. image pixels if there is valuable information in the corners alpha=1 , or get something in between.
  1352. When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
  1353. "virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
  1354. coefficients, the computed new camera matrix, and newImageSize should be passed to
  1355. initUndistortRectifyMap to produce the maps for remap .
  1356. */
  1357. CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
  1358. Size imageSize, double alpha, Size newImgSize = Size(),
  1359. CV_OUT Rect* validPixROI = 0,
  1360. bool centerPrincipalPoint = false);
  1361. /** @brief Converts points from Euclidean to homogeneous space.
  1362. @param src Input vector of N-dimensional points.
  1363. @param dst Output vector of N+1-dimensional points.
  1364. The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
  1365. point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
  1366. */
  1367. CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
  1368. /** @brief Converts points from homogeneous to Euclidean space.
  1369. @param src Input vector of N-dimensional points.
  1370. @param dst Output vector of N-1-dimensional points.
  1371. The function converts points homogeneous to Euclidean space using perspective projection. That is,
  1372. each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
  1373. output point coordinates will be (0,0,0,...).
  1374. */
  1375. CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
  1376. /** @brief Converts points to/from homogeneous coordinates.
  1377. @param src Input array or vector of 2D, 3D, or 4D points.
  1378. @param dst Output vector of 2D, 3D, or 4D points.
  1379. The function converts 2D or 3D points from/to homogeneous coordinates by calling either
  1380. convertPointsToHomogeneous or convertPointsFromHomogeneous.
  1381. @note The function is obsolete. Use one of the previous two functions instead.
  1382. */
  1383. CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
  1384. /** @brief Calculates a fundamental matrix from the corresponding points in two images.
  1385. @param points1 Array of N points from the first image. The point coordinates should be
  1386. floating-point (single or double precision).
  1387. @param points2 Array of the second image points of the same size and format as points1 .
  1388. @param method Method for computing a fundamental matrix.
  1389. - **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
  1390. - **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
  1391. - **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
  1392. - **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
  1393. @param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
  1394. line in pixels, beyond which the point is considered an outlier and is not used for computing the
  1395. final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
  1396. point localization, image resolution, and the image noise.
  1397. @param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
  1398. of confidence (probability) that the estimated matrix is correct.
  1399. @param mask
  1400. The epipolar geometry is described by the following equation:
  1401. \f[[p_2; 1]^T F [p_1; 1] = 0\f]
  1402. where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
  1403. second images, respectively.
  1404. The function calculates the fundamental matrix using one of four methods listed above and returns
  1405. the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
  1406. algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
  1407. matrices sequentially).
  1408. The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
  1409. epipolar lines corresponding to the specified points. It can also be passed to
  1410. stereoRectifyUncalibrated to compute the rectification transformation. :
  1411. @code
  1412. // Example. Estimation of fundamental matrix using the RANSAC algorithm
  1413. int point_count = 100;
  1414. vector<Point2f> points1(point_count);
  1415. vector<Point2f> points2(point_count);
  1416. // initialize the points here ...
  1417. for( int i = 0; i < point_count; i++ )
  1418. {
  1419. points1[i] = ...;
  1420. points2[i] = ...;
  1421. }
  1422. Mat fundamental_matrix =
  1423. findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
  1424. @endcode
  1425. */
  1426. CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
  1427. int method = FM_RANSAC,
  1428. double ransacReprojThreshold = 3., double confidence = 0.99,
  1429. OutputArray mask = noArray() );
  1430. /** @overload */
  1431. CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
  1432. OutputArray mask, int method = FM_RANSAC,
  1433. double ransacReprojThreshold = 3., double confidence = 0.99 );
  1434. /** @brief Calculates an essential matrix from the corresponding points in two images.
  1435. @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
  1436. be floating-point (single or double precision).
  1437. @param points2 Array of the second image points of the same size and format as points1 .
  1438. @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
  1439. Note that this function assumes that points1 and points2 are feature points from cameras with the
  1440. same camera matrix.
  1441. @param method Method for computing an essential matrix.
  1442. - **RANSAC** for the RANSAC algorithm.
  1443. - **LMEDS** for the LMedS algorithm.
  1444. @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
  1445. confidence (probability) that the estimated matrix is correct.
  1446. @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
  1447. line in pixels, beyond which the point is considered an outlier and is not used for computing the
  1448. final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
  1449. point localization, image resolution, and the image noise.
  1450. @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
  1451. for the other points. The array is computed only in the RANSAC and LMedS methods.
  1452. This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
  1453. @cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
  1454. \f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
  1455. where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
  1456. second images, respectively. The result of this function may be passed further to
  1457. decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
  1458. */
  1459. CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
  1460. InputArray cameraMatrix, int method = RANSAC,
  1461. double prob = 0.999, double threshold = 1.0,
  1462. OutputArray mask = noArray() );
  1463. /** @overload
  1464. @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
  1465. be floating-point (single or double precision).
  1466. @param points2 Array of the second image points of the same size and format as points1 .
  1467. @param focal focal length of the camera. Note that this function assumes that points1 and points2
  1468. are feature points from cameras with same focal length and principal point.
  1469. @param pp principal point of the camera.
  1470. @param method Method for computing a fundamental matrix.
  1471. - **RANSAC** for the RANSAC algorithm.
  1472. - **LMEDS** for the LMedS algorithm.
  1473. @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
  1474. line in pixels, beyond which the point is considered an outlier and is not used for computing the
  1475. final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
  1476. point localization, image resolution, and the image noise.
  1477. @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
  1478. confidence (probability) that the estimated matrix is correct.
  1479. @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
  1480. for the other points. The array is computed only in the RANSAC and LMedS methods.
  1481. This function differs from the one above that it computes camera matrix from focal length and
  1482. principal point:
  1483. \f[K =
  1484. \begin{bmatrix}
  1485. f & 0 & x_{pp} \\
  1486. 0 & f & y_{pp} \\
  1487. 0 & 0 & 1
  1488. \end{bmatrix}\f]
  1489. */
  1490. CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
  1491. double focal = 1.0, Point2d pp = Point2d(0, 0),
  1492. int method = RANSAC, double prob = 0.999,
  1493. double threshold = 1.0, OutputArray mask = noArray() );
  1494. /** @brief Decompose an essential matrix to possible rotations and translation.
  1495. @param E The input essential matrix.
  1496. @param R1 One possible rotation matrix.
  1497. @param R2 Another possible rotation matrix.
  1498. @param t One possible translation.
  1499. This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4
  1500. possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By
  1501. decomposing E, you can only get the direction of the translation, so the function returns unit t.
  1502. */
  1503. CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
  1504. /** @brief Recover relative camera rotation and translation from an estimated essential matrix and the
  1505. corresponding points in two images, using cheirality check. Returns the number of inliers which pass
  1506. the check.
  1507. @param E The input essential matrix.
  1508. @param points1 Array of N 2D points from the first image. The point coordinates should be
  1509. floating-point (single or double precision).
  1510. @param points2 Array of the second image points of the same size and format as points1 .
  1511. @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
  1512. Note that this function assumes that points1 and points2 are feature points from cameras with the
  1513. same camera matrix.
  1514. @param R Recovered relative rotation.
  1515. @param t Recovered relative translation.
  1516. @param mask Input/output mask for inliers in points1 and points2.
  1517. : If it is not empty, then it marks inliers in points1 and points2 for then given essential
  1518. matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
  1519. which pass the cheirality check.
  1520. This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible
  1521. pose hypotheses by doing cheirality check. The cheirality check basically means that the
  1522. triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 .
  1523. This function can be used to process output E and mask from findEssentialMat. In this scenario,
  1524. points1 and points2 are the same input for findEssentialMat. :
  1525. @code
  1526. // Example. Estimation of fundamental matrix using the RANSAC algorithm
  1527. int point_count = 100;
  1528. vector<Point2f> points1(point_count);
  1529. vector<Point2f> points2(point_count);
  1530. // initialize the points here ...
  1531. for( int i = 0; i < point_count; i++ )
  1532. {
  1533. points1[i] = ...;
  1534. points2[i] = ...;
  1535. }
  1536. // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
  1537. Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
  1538. Mat E, R, t, mask;
  1539. E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
  1540. recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
  1541. @endcode
  1542. */
  1543. CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
  1544. InputArray cameraMatrix, OutputArray R, OutputArray t,
  1545. InputOutputArray mask = noArray() );
  1546. /** @overload
  1547. @param E The input essential matrix.
  1548. @param points1 Array of N 2D points from the first image. The point coordinates should be
  1549. floating-point (single or double precision).
  1550. @param points2 Array of the second image points of the same size and format as points1 .
  1551. @param R Recovered relative rotation.
  1552. @param t Recovered relative translation.
  1553. @param focal Focal length of the camera. Note that this function assumes that points1 and points2
  1554. are feature points from cameras with same focal length and principal point.
  1555. @param pp principal point of the camera.
  1556. @param mask Input/output mask for inliers in points1 and points2.
  1557. : If it is not empty, then it marks inliers in points1 and points2 for then given essential
  1558. matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
  1559. which pass the cheirality check.
  1560. This function differs from the one above that it computes camera matrix from focal length and
  1561. principal point:
  1562. \f[K =
  1563. \begin{bmatrix}
  1564. f & 0 & x_{pp} \\
  1565. 0 & f & y_{pp} \\
  1566. 0 & 0 & 1
  1567. \end{bmatrix}\f]
  1568. */
  1569. CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
  1570. OutputArray R, OutputArray t,
  1571. double focal = 1.0, Point2d pp = Point2d(0, 0),
  1572. InputOutputArray mask = noArray() );
  1573. /** @overload
  1574. @param E The input essential matrix.
  1575. @param points1 Array of N 2D points from the first image. The point coordinates should be
  1576. floating-point (single or double precision).
  1577. @param points2 Array of the second image points of the same size and format as points1.
  1578. @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
  1579. Note that this function assumes that points1 and points2 are feature points from cameras with the
  1580. same camera matrix.
  1581. @param R Recovered relative rotation.
  1582. @param t Recovered relative translation.
  1583. @param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite points).
  1584. @param mask Input/output mask for inliers in points1 and points2.
  1585. : If it is not empty, then it marks inliers in points1 and points2 for then given essential
  1586. matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
  1587. which pass the cheirality check.
  1588. @param triangulatedPoints 3d points which were reconstructed by triangulation.
  1589. */
  1590. CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
  1591. InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
  1592. OutputArray triangulatedPoints = noArray());
  1593. /** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
  1594. @param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
  1595. vector\<Point2f\> .
  1596. @param whichImage Index of the image (1 or 2) that contains the points .
  1597. @param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
  1598. @param lines Output vector of the epipolar lines corresponding to the points in the other image.
  1599. Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
  1600. For every point in one of the two images of a stereo pair, the function finds the equation of the
  1601. corresponding epipolar line in the other image.
  1602. From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
  1603. image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
  1604. \f[l^{(2)}_i = F p^{(1)}_i\f]
  1605. And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
  1606. \f[l^{(1)}_i = F^T p^{(2)}_i\f]
  1607. Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
  1608. */
  1609. CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
  1610. InputArray F, OutputArray lines );
  1611. /** @brief Reconstructs points by triangulation.
  1612. @param projMatr1 3x4 projection matrix of the first camera.
  1613. @param projMatr2 3x4 projection matrix of the second camera.
  1614. @param projPoints1 2xN array of feature points in the first image. In case of c++ version it can
  1615. be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
  1616. @param projPoints2 2xN array of corresponding points in the second image. In case of c++ version
  1617. it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
  1618. @param points4D 4xN array of reconstructed points in homogeneous coordinates.
  1619. The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their
  1620. observations with a stereo camera. Projections matrices can be obtained from stereoRectify.
  1621. @note
  1622. Keep in mind that all input data should be of float type in order for this function to work.
  1623. @sa
  1624. reprojectImageTo3D
  1625. */
  1626. CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
  1627. InputArray projPoints1, InputArray projPoints2,
  1628. OutputArray points4D );
  1629. /** @brief Refines coordinates of corresponding points.
  1630. @param F 3x3 fundamental matrix.
  1631. @param points1 1xN array containing the first set of points.
  1632. @param points2 1xN array containing the second set of points.
  1633. @param newPoints1 The optimized points1.
  1634. @param newPoints2 The optimized points2.
  1635. The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
  1636. For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
  1637. computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
  1638. error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
  1639. geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
  1640. \f$newPoints2^T * F * newPoints1 = 0\f$ .
  1641. */
  1642. CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
  1643. OutputArray newPoints1, OutputArray newPoints2 );
  1644. /** @brief Filters off small noise blobs (speckles) in the disparity map
  1645. @param img The input 16-bit signed disparity image
  1646. @param newVal The disparity value used to paint-off the speckles
  1647. @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
  1648. affected by the algorithm
  1649. @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
  1650. blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
  1651. disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
  1652. account when specifying this parameter value.
  1653. @param buf The optional temporary buffer to avoid memory allocation within the function.
  1654. */
  1655. CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
  1656. int maxSpeckleSize, double maxDiff,
  1657. InputOutputArray buf = noArray() );
  1658. //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
  1659. CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
  1660. int minDisparity, int numberOfDisparities,
  1661. int SADWindowSize );
  1662. //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
  1663. CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
  1664. int minDisparity, int numberOfDisparities,
  1665. int disp12MaxDisp = 1 );
  1666. /** @brief Reprojects a disparity image to 3D space.
  1667. @param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
  1668. floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
  1669. fractional bits.
  1670. @param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
  1671. element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
  1672. map.
  1673. @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
  1674. @param handleMissingValues Indicates, whether the function should handle missing values (i.e.
  1675. points where the disparity was not computed). If handleMissingValues=true, then pixels with the
  1676. minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
  1677. to 3D points with a very large Z value (currently set to 10000).
  1678. @param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
  1679. depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
  1680. The function transforms a single-channel disparity map to a 3-channel image representing a 3D
  1681. surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
  1682. computes:
  1683. \f[\begin{array}{l} [X \; Y \; Z \; W]^T = \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]
  1684. The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by
  1685. stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use
  1686. perspectiveTransform .
  1687. */
  1688. CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
  1689. OutputArray _3dImage, InputArray Q,
  1690. bool handleMissingValues = false,
  1691. int ddepth = -1 );
  1692. /** @brief Calculates the Sampson Distance between two points.
  1693. The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
  1694. \f[
  1695. sd( \texttt{pt1} , \texttt{pt2} )=
  1696. \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
  1697. {((\texttt{F} \cdot \texttt{pt1})(0))^2 +
  1698. ((\texttt{F} \cdot \texttt{pt1})(1))^2 +
  1699. ((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
  1700. ((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
  1701. \f]
  1702. The fundamental matrix may be calculated using the cv::findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
  1703. @param pt1 first homogeneous 2d point
  1704. @param pt2 second homogeneous 2d point
  1705. @param F fundamental matrix
  1706. @return The computed Sampson distance.
  1707. */
  1708. CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
  1709. /** @brief Computes an optimal affine transformation between two 3D point sets.
  1710. It computes
  1711. \f[
  1712. \begin{bmatrix}
  1713. x\\
  1714. y\\
  1715. z\\
  1716. \end{bmatrix}
  1717. =
  1718. \begin{bmatrix}
  1719. a_{11} & a_{12} & a_{13}\\
  1720. a_{21} & a_{22} & a_{23}\\
  1721. a_{31} & a_{32} & a_{33}\\
  1722. \end{bmatrix}
  1723. \begin{bmatrix}
  1724. X\\
  1725. Y\\
  1726. Z\\
  1727. \end{bmatrix}
  1728. +
  1729. \begin{bmatrix}
  1730. b_1\\
  1731. b_2\\
  1732. b_3\\
  1733. \end{bmatrix}
  1734. \f]
  1735. @param src First input 3D point set containing \f$(X,Y,Z)\f$.
  1736. @param dst Second input 3D point set containing \f$(x,y,z)\f$.
  1737. @param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form
  1738. \f[
  1739. \begin{bmatrix}
  1740. a_{11} & a_{12} & a_{13} & b_1\\
  1741. a_{21} & a_{22} & a_{23} & b_2\\
  1742. a_{31} & a_{32} & a_{33} & b_3\\
  1743. \end{bmatrix}
  1744. \f]
  1745. @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
  1746. @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
  1747. an inlier.
  1748. @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
  1749. between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
  1750. significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
  1751. The function estimates an optimal 3D affine transformation between two 3D point sets using the
  1752. RANSAC algorithm.
  1753. */
  1754. CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
  1755. OutputArray out, OutputArray inliers,
  1756. double ransacThreshold = 3, double confidence = 0.99);
  1757. /** @brief Computes an optimal affine transformation between two 2D point sets.
  1758. It computes
  1759. \f[
  1760. \begin{bmatrix}
  1761. x\\
  1762. y\\
  1763. \end{bmatrix}
  1764. =
  1765. \begin{bmatrix}
  1766. a_{11} & a_{12}\\
  1767. a_{21} & a_{22}\\
  1768. \end{bmatrix}
  1769. \begin{bmatrix}
  1770. X\\
  1771. Y\\
  1772. \end{bmatrix}
  1773. +
  1774. \begin{bmatrix}
  1775. b_1\\
  1776. b_2\\
  1777. \end{bmatrix}
  1778. \f]
  1779. @param from First input 2D point set containing \f$(X,Y)\f$.
  1780. @param to Second input 2D point set containing \f$(x,y)\f$.
  1781. @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
  1782. @param method Robust method used to compute transformation. The following methods are possible:
  1783. - cv::RANSAC - RANSAC-based robust method
  1784. - cv::LMEDS - Least-Median robust method
  1785. RANSAC is the default method.
  1786. @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
  1787. a point as an inlier. Applies only to RANSAC.
  1788. @param maxIters The maximum number of robust method iterations.
  1789. @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
  1790. between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
  1791. significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
  1792. @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
  1793. Passing 0 will disable refining, so the output matrix will be output of robust method.
  1794. @return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
  1795. could not be estimated. The returned matrix has the following form:
  1796. \f[
  1797. \begin{bmatrix}
  1798. a_{11} & a_{12} & b_1\\
  1799. a_{21} & a_{22} & b_2\\
  1800. \end{bmatrix}
  1801. \f]
  1802. The function estimates an optimal 2D affine transformation between two 2D point sets using the
  1803. selected robust algorithm.
  1804. The computed transformation is then refined further (using only inliers) with the
  1805. Levenberg-Marquardt method to reduce the re-projection error even more.
  1806. @note
  1807. The RANSAC method can handle practically any ratio of outliers but needs a threshold to
  1808. distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
  1809. correctly only when there are more than 50% of inliers.
  1810. @sa estimateAffinePartial2D, getAffineTransform
  1811. */
  1812. CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
  1813. int method = RANSAC, double ransacReprojThreshold = 3,
  1814. size_t maxIters = 2000, double confidence = 0.99,
  1815. size_t refineIters = 10);
  1816. /** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
  1817. two 2D point sets.
  1818. @param from First input 2D point set.
  1819. @param to Second input 2D point set.
  1820. @param inliers Output vector indicating which points are inliers.
  1821. @param method Robust method used to compute transformation. The following methods are possible:
  1822. - cv::RANSAC - RANSAC-based robust method
  1823. - cv::LMEDS - Least-Median robust method
  1824. RANSAC is the default method.
  1825. @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
  1826. a point as an inlier. Applies only to RANSAC.
  1827. @param maxIters The maximum number of robust method iterations.
  1828. @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
  1829. between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
  1830. significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
  1831. @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
  1832. Passing 0 will disable refining, so the output matrix will be output of robust method.
  1833. @return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
  1834. empty matrix if transformation could not be estimated.
  1835. The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
  1836. combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
  1837. estimation.
  1838. The computed transformation is then refined further (using only inliers) with the
  1839. Levenberg-Marquardt method to reduce the re-projection error even more.
  1840. Estimated transformation matrix is:
  1841. \f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
  1842. \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
  1843. \end{bmatrix} \f]
  1844. Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
  1845. translations in \f$ x, y \f$ axes respectively.
  1846. @note
  1847. The RANSAC method can handle practically any ratio of outliers but need a threshold to
  1848. distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
  1849. correctly only when there are more than 50% of inliers.
  1850. @sa estimateAffine2D, getAffineTransform
  1851. */
  1852. CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
  1853. int method = RANSAC, double ransacReprojThreshold = 3,
  1854. size_t maxIters = 2000, double confidence = 0.99,
  1855. size_t refineIters = 10);
  1856. /** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp
  1857. An example program with homography decomposition.
  1858. Check @ref tutorial_homography "the corresponding tutorial" for more details.
  1859. */
  1860. /** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
  1861. @param H The input homography matrix between two images.
  1862. @param K The input intrinsic camera calibration matrix.
  1863. @param rotations Array of rotation matrices.
  1864. @param translations Array of translation matrices.
  1865. @param normals Array of plane normal matrices.
  1866. This function extracts relative camera motion between two views observing a planar object from the
  1867. homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function
  1868. may return up to four mathematical solution sets. At least two of the solutions may further be
  1869. invalidated if point correspondences are available by applying positive depth constraint (all points
  1870. must be in front of the camera). The decomposition method is described in detail in @cite Malis .
  1871. */
  1872. CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
  1873. InputArray K,
  1874. OutputArrayOfArrays rotations,
  1875. OutputArrayOfArrays translations,
  1876. OutputArrayOfArrays normals);
  1877. /** @brief Filters homography decompositions based on additional information.
  1878. @param rotations Vector of rotation matrices.
  1879. @param normals Vector of plane normal matrices.
  1880. @param beforePoints Vector of (rectified) visible reference points before the homography is applied
  1881. @param afterPoints Vector of (rectified) visible reference points after the homography is applied
  1882. @param possibleSolutions Vector of int indices representing the viable solution set after filtering
  1883. @param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the findHomography function
  1884. This function is intended to filter the output of the decomposeHomographyMat based on additional
  1885. information as described in @cite Malis . The summary of the method: the decomposeHomographyMat function
  1886. returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
  1887. sets of points visible in the camera frame before and after the homography transformation is applied,
  1888. we can determine which are the true potential solutions and which are the opposites by verifying which
  1889. homographies are consistent with all visible reference points being in front of the camera. The inputs
  1890. are left unchanged; the filtered solution set is returned as indices into the existing one.
  1891. */
  1892. CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations,
  1893. InputArrayOfArrays normals,
  1894. InputArray beforePoints,
  1895. InputArray afterPoints,
  1896. OutputArray possibleSolutions,
  1897. InputArray pointsMask = noArray());
  1898. /** @brief The base class for stereo correspondence algorithms.
  1899. */
  1900. class CV_EXPORTS_W StereoMatcher : public Algorithm
  1901. {
  1902. public:
  1903. enum { DISP_SHIFT = 4,
  1904. DISP_SCALE = (1 << DISP_SHIFT)
  1905. };
  1906. /** @brief Computes disparity map for the specified stereo pair
  1907. @param left Left 8-bit single-channel image.
  1908. @param right Right image of the same size and the same type as the left one.
  1909. @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
  1910. like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
  1911. has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
  1912. */
  1913. CV_WRAP virtual void compute( InputArray left, InputArray right,
  1914. OutputArray disparity ) = 0;
  1915. CV_WRAP virtual int getMinDisparity() const = 0;
  1916. CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
  1917. CV_WRAP virtual int getNumDisparities() const = 0;
  1918. CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
  1919. CV_WRAP virtual int getBlockSize() const = 0;
  1920. CV_WRAP virtual void setBlockSize(int blockSize) = 0;
  1921. CV_WRAP virtual int getSpeckleWindowSize() const = 0;
  1922. CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
  1923. CV_WRAP virtual int getSpeckleRange() const = 0;
  1924. CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
  1925. CV_WRAP virtual int getDisp12MaxDiff() const = 0;
  1926. CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
  1927. };
  1928. /** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
  1929. contributed to OpenCV by K. Konolige.
  1930. */
  1931. class CV_EXPORTS_W StereoBM : public StereoMatcher
  1932. {
  1933. public:
  1934. enum { PREFILTER_NORMALIZED_RESPONSE = 0,
  1935. PREFILTER_XSOBEL = 1
  1936. };
  1937. CV_WRAP virtual int getPreFilterType() const = 0;
  1938. CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
  1939. CV_WRAP virtual int getPreFilterSize() const = 0;
  1940. CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
  1941. CV_WRAP virtual int getPreFilterCap() const = 0;
  1942. CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
  1943. CV_WRAP virtual int getTextureThreshold() const = 0;
  1944. CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
  1945. CV_WRAP virtual int getUniquenessRatio() const = 0;
  1946. CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
  1947. CV_WRAP virtual int getSmallerBlockSize() const = 0;
  1948. CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
  1949. CV_WRAP virtual Rect getROI1() const = 0;
  1950. CV_WRAP virtual void setROI1(Rect roi1) = 0;
  1951. CV_WRAP virtual Rect getROI2() const = 0;
  1952. CV_WRAP virtual void setROI2(Rect roi2) = 0;
  1953. /** @brief Creates StereoBM object
  1954. @param numDisparities the disparity search range. For each pixel algorithm will find the best
  1955. disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
  1956. shifted by changing the minimum disparity.
  1957. @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
  1958. (as the block is centered at the current pixel). Larger block size implies smoother, though less
  1959. accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
  1960. chance for algorithm to find a wrong correspondence.
  1961. The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
  1962. a specific stereo pair.
  1963. */
  1964. CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
  1965. };
  1966. /** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
  1967. one as follows:
  1968. - By default, the algorithm is single-pass, which means that you consider only 5 directions
  1969. instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
  1970. algorithm but beware that it may consume a lot of memory.
  1971. - The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
  1972. blocks to single pixels.
  1973. - Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
  1974. sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
  1975. - Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
  1976. example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
  1977. check, quadratic interpolation and speckle filtering).
  1978. @note
  1979. - (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
  1980. at opencv_source_code/samples/python/stereo_match.py
  1981. */
  1982. class CV_EXPORTS_W StereoSGBM : public StereoMatcher
  1983. {
  1984. public:
  1985. enum
  1986. {
  1987. MODE_SGBM = 0,
  1988. MODE_HH = 1,
  1989. MODE_SGBM_3WAY = 2,
  1990. MODE_HH4 = 3
  1991. };
  1992. CV_WRAP virtual int getPreFilterCap() const = 0;
  1993. CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
  1994. CV_WRAP virtual int getUniquenessRatio() const = 0;
  1995. CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
  1996. CV_WRAP virtual int getP1() const = 0;
  1997. CV_WRAP virtual void setP1(int P1) = 0;
  1998. CV_WRAP virtual int getP2() const = 0;
  1999. CV_WRAP virtual void setP2(int P2) = 0;
  2000. CV_WRAP virtual int getMode() const = 0;
  2001. CV_WRAP virtual void setMode(int mode) = 0;
  2002. /** @brief Creates StereoSGBM object
  2003. @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
  2004. rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
  2005. @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
  2006. zero. In the current implementation, this parameter must be divisible by 16.
  2007. @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
  2008. somewhere in the 3..11 range.
  2009. @param P1 The first parameter controlling the disparity smoothness. See below.
  2010. @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
  2011. the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
  2012. between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
  2013. pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
  2014. P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
  2015. 32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
  2016. @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
  2017. disparity check. Set it to a non-positive value to disable the check.
  2018. @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
  2019. computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
  2020. The result values are passed to the Birchfield-Tomasi pixel cost function.
  2021. @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
  2022. value should "win" the second best value to consider the found match correct. Normally, a value
  2023. within the 5-15 range is good enough.
  2024. @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
  2025. and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
  2026. 50-200 range.
  2027. @param speckleRange Maximum disparity variation within each connected component. If you do speckle
  2028. filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
  2029. Normally, 1 or 2 is good enough.
  2030. @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
  2031. algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
  2032. huge for HD-size pictures. By default, it is set to false .
  2033. The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
  2034. set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
  2035. to a custom value.
  2036. */
  2037. CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
  2038. int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
  2039. int preFilterCap = 0, int uniquenessRatio = 0,
  2040. int speckleWindowSize = 0, int speckleRange = 0,
  2041. int mode = StereoSGBM::MODE_SGBM);
  2042. };
  2043. //! cv::undistort mode
  2044. enum UndistortTypes
  2045. {
  2046. PROJ_SPHERICAL_ORTHO = 0,
  2047. PROJ_SPHERICAL_EQRECT = 1
  2048. };
  2049. /** @brief Transforms an image to compensate for lens distortion.
  2050. The function transforms an image to compensate radial and tangential lens distortion.
  2051. The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
  2052. (with bilinear interpolation). See the former function for details of the transformation being
  2053. performed.
  2054. Those pixels in the destination image, for which there is no correspondent pixels in the source
  2055. image, are filled with zeros (black color).
  2056. A particular subset of the source image that will be visible in the corrected image can be regulated
  2057. by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
  2058. newCameraMatrix depending on your requirements.
  2059. The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
  2060. the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
  2061. f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
  2062. the same.
  2063. @param src Input (distorted) image.
  2064. @param dst Output (corrected) image that has the same size and type as src .
  2065. @param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
  2066. @param distCoeffs Input vector of distortion coefficients
  2067. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
  2068. of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
  2069. @param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as
  2070. cameraMatrix but you may additionally scale and shift the result by using a different matrix.
  2071. */
  2072. CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
  2073. InputArray cameraMatrix,
  2074. InputArray distCoeffs,
  2075. InputArray newCameraMatrix = noArray() );
  2076. /** @brief Computes the undistortion and rectification transformation map.
  2077. The function computes the joint undistortion and rectification transformation and represents the
  2078. result in the form of maps for remap. The undistorted image looks like original, as if it is
  2079. captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
  2080. monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
  2081. #getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
  2082. newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
  2083. Also, this new camera is oriented differently in the coordinate space, according to R. That, for
  2084. example, helps to align two heads of a stereo camera so that the epipolar lines on both images
  2085. become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
  2086. The function actually builds the maps for the inverse mapping algorithm that is used by remap. That
  2087. is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
  2088. computes the corresponding coordinates in the source image (that is, in the original image from
  2089. camera). The following process is applied:
  2090. \f[
  2091. \begin{array}{l}
  2092. x \leftarrow (u - {c'}_x)/{f'}_x \\
  2093. y \leftarrow (v - {c'}_y)/{f'}_y \\
  2094. {[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\
  2095. x' \leftarrow X/W \\
  2096. y' \leftarrow Y/W \\
  2097. r^2 \leftarrow x'^2 + y'^2 \\
  2098. x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
  2099. + 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\
  2100. y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
  2101. + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
  2102. s\vecthree{x'''}{y'''}{1} =
  2103. \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
  2104. {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
  2105. {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
  2106. map_x(u,v) \leftarrow x''' f_x + c_x \\
  2107. map_y(u,v) \leftarrow y''' f_y + c_y
  2108. \end{array}
  2109. \f]
  2110. where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
  2111. are the distortion coefficients.
  2112. In case of a stereo camera, this function is called twice: once for each camera head, after
  2113. stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
  2114. was not calibrated, it is still possible to compute the rectification transformations directly from
  2115. the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
  2116. homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
  2117. space. R can be computed from H as
  2118. \f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
  2119. where cameraMatrix can be chosen arbitrarily.
  2120. @param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
  2121. @param distCoeffs Input vector of distortion coefficients
  2122. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
  2123. of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
  2124. @param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
  2125. computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
  2126. is assumed. In cvInitUndistortMap R assumed to be an identity matrix.
  2127. @param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.
  2128. @param size Undistorted image size.
  2129. @param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps
  2130. @param map1 The first output map.
  2131. @param map2 The second output map.
  2132. */
  2133. CV_EXPORTS_W
  2134. void initUndistortRectifyMap(InputArray cameraMatrix, InputArray distCoeffs,
  2135. InputArray R, InputArray newCameraMatrix,
  2136. Size size, int m1type, OutputArray map1, OutputArray map2);
  2137. //! initializes maps for #remap for wide-angle
  2138. CV_EXPORTS
  2139. float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
  2140. Size imageSize, int destImageWidth,
  2141. int m1type, OutputArray map1, OutputArray map2,
  2142. enum UndistortTypes projType = PROJ_SPHERICAL_EQRECT, double alpha = 0);
  2143. static inline
  2144. float initWideAngleProjMap(InputArray cameraMatrix, InputArray distCoeffs,
  2145. Size imageSize, int destImageWidth,
  2146. int m1type, OutputArray map1, OutputArray map2,
  2147. int projType, double alpha = 0)
  2148. {
  2149. return initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth,
  2150. m1type, map1, map2, (UndistortTypes)projType, alpha);
  2151. }
  2152. /** @brief Returns the default new camera matrix.
  2153. The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
  2154. centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
  2155. In the latter case, the new camera matrix will be:
  2156. \f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f]
  2157. where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
  2158. By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
  2159. move the principal point. However, when you work with stereo, it is important to move the principal
  2160. points in both views to the same y-coordinate (which is required by most of stereo correspondence
  2161. algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
  2162. each view where the principal points are located at the center.
  2163. @param cameraMatrix Input camera matrix.
  2164. @param imgsize Camera view image size in pixels.
  2165. @param centerPrincipalPoint Location of the principal point in the new camera matrix. The
  2166. parameter indicates whether this location should be at the image center or not.
  2167. */
  2168. CV_EXPORTS_W
  2169. Mat getDefaultNewCameraMatrix(InputArray cameraMatrix, Size imgsize = Size(),
  2170. bool centerPrincipalPoint = false);
  2171. /** @brief Computes the ideal point coordinates from the observed point coordinates.
  2172. The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
  2173. sparse set of points instead of a raster image. Also the function performs a reverse transformation
  2174. to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
  2175. planar object, it does, up to a translation vector, if the proper R is specified.
  2176. For each observed point coordinate \f$(u, v)\f$ the function computes:
  2177. \f[
  2178. \begin{array}{l}
  2179. x^{"} \leftarrow (u - c_x)/f_x \\
  2180. y^{"} \leftarrow (v - c_y)/f_y \\
  2181. (x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
  2182. {[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
  2183. x \leftarrow X/W \\
  2184. y \leftarrow Y/W \\
  2185. \text{only performed if P is specified:} \\
  2186. u' \leftarrow x {f'}_x + {c'}_x \\
  2187. v' \leftarrow y {f'}_y + {c'}_y
  2188. \end{array}
  2189. \f]
  2190. where *undistort* is an approximate iterative algorithm that estimates the normalized original
  2191. point coordinates out of the normalized distorted point coordinates ("normalized" means that the
  2192. coordinates do not depend on the camera matrix).
  2193. The function can be used for both a stereo camera head or a monocular camera (when R is empty).
  2194. @param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2).
  2195. @param dst Output ideal point coordinates after undistortion and reverse perspective
  2196. transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
  2197. @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
  2198. @param distCoeffs Input vector of distortion coefficients
  2199. \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
  2200. of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
  2201. @param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
  2202. #stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
  2203. @param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
  2204. #stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.
  2205. */
  2206. CV_EXPORTS_W
  2207. void undistortPoints(InputArray src, OutputArray dst,
  2208. InputArray cameraMatrix, InputArray distCoeffs,
  2209. InputArray R = noArray(), InputArray P = noArray());
  2210. /** @overload
  2211. @note Default version of #undistortPoints does 5 iterations to compute undistorted points.
  2212. */
  2213. CV_EXPORTS_AS(undistortPointsIter)
  2214. void undistortPoints(InputArray src, OutputArray dst,
  2215. InputArray cameraMatrix, InputArray distCoeffs,
  2216. InputArray R, InputArray P, TermCriteria criteria);
  2217. //! @} calib3d
  2218. /** @brief The methods in this namespace use a so-called fisheye camera model.
  2219. @ingroup calib3d_fisheye
  2220. */
  2221. namespace fisheye
  2222. {
  2223. //! @addtogroup calib3d_fisheye
  2224. //! @{
  2225. enum{
  2226. CALIB_USE_INTRINSIC_GUESS = 1 << 0,
  2227. CALIB_RECOMPUTE_EXTRINSIC = 1 << 1,
  2228. CALIB_CHECK_COND = 1 << 2,
  2229. CALIB_FIX_SKEW = 1 << 3,
  2230. CALIB_FIX_K1 = 1 << 4,
  2231. CALIB_FIX_K2 = 1 << 5,
  2232. CALIB_FIX_K3 = 1 << 6,
  2233. CALIB_FIX_K4 = 1 << 7,
  2234. CALIB_FIX_INTRINSIC = 1 << 8,
  2235. CALIB_FIX_PRINCIPAL_POINT = 1 << 9
  2236. };
  2237. /** @brief Projects points using fisheye model
  2238. @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
  2239. the number of points in the view.
  2240. @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
  2241. vector\<Point2f\>.
  2242. @param affine
  2243. @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
  2244. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
  2245. @param alpha The skew coefficient.
  2246. @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
  2247. to components of the focal lengths, coordinates of the principal point, distortion coefficients,
  2248. rotation vector, translation vector, and the skew. In the old interface different components of
  2249. the jacobian are returned via different output parameters.
  2250. The function computes projections of 3D points to the image plane given intrinsic and extrinsic
  2251. camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
  2252. image points coordinates (as functions of all the input parameters) with respect to the particular
  2253. parameters, intrinsic and/or extrinsic.
  2254. */
  2255. CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
  2256. InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
  2257. /** @overload */
  2258. CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
  2259. InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
  2260. /** @brief Distorts 2D points using fisheye model.
  2261. @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
  2262. the number of points in the view.
  2263. @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
  2264. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
  2265. @param alpha The skew coefficient.
  2266. @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
  2267. Note that the function assumes the camera matrix of the undistorted points to be identity.
  2268. This means if you want to transform back points undistorted with undistortPoints() you have to
  2269. multiply them with \f$P^{-1}\f$.
  2270. */
  2271. CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
  2272. /** @brief Undistorts 2D points using fisheye model
  2273. @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
  2274. number of points in the view.
  2275. @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
  2276. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
  2277. @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
  2278. 1-channel or 1x1 3-channel
  2279. @param P New camera matrix (3x3) or new projection matrix (3x4)
  2280. @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
  2281. */
  2282. CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
  2283. InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray());
  2284. /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
  2285. distortion is used, if R or P is empty identity matrixes are used.
  2286. @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
  2287. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
  2288. @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
  2289. 1-channel or 1x1 3-channel
  2290. @param P New camera matrix (3x3) or new projection matrix (3x4)
  2291. @param size Undistorted image size.
  2292. @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
  2293. for details.
  2294. @param map1 The first output map.
  2295. @param map2 The second output map.
  2296. */
  2297. CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
  2298. const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
  2299. /** @brief Transforms an image to compensate for fisheye lens distortion.
  2300. @param distorted image with fisheye lens distortion.
  2301. @param undistorted Output image with compensated fisheye lens distortion.
  2302. @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
  2303. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
  2304. @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you
  2305. may additionally scale and shift the result by using a different matrix.
  2306. @param new_size
  2307. The function transforms an image to compensate radial and tangential lens distortion.
  2308. The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
  2309. (with bilinear interpolation). See the former function for details of the transformation being
  2310. performed.
  2311. See below the results of undistortImage.
  2312. - a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
  2313. k_4, k_5, k_6) of distortion were optimized under calibration)
  2314. - b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
  2315. k_3, k_4) of fisheye distortion were optimized under calibration)
  2316. - c\) original image was captured with fisheye lens
  2317. Pictures a) and b) almost the same. But if we consider points of image located far from the center
  2318. of image, we can notice that on image a) these points are distorted.
  2319. ![image](pics/fisheye_undistorted.jpg)
  2320. */
  2321. CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
  2322. InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
  2323. /** @brief Estimates new camera matrix for undistortion or rectification.
  2324. @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
  2325. @param image_size
  2326. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
  2327. @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
  2328. 1-channel or 1x1 3-channel
  2329. @param P New camera matrix (3x3) or new projection matrix (3x4)
  2330. @param balance Sets the new focal length in range between the min focal length and the max focal
  2331. length. Balance is in range of [0, 1].
  2332. @param new_size
  2333. @param fov_scale Divisor for new focal length.
  2334. */
  2335. CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
  2336. OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
  2337. /** @brief Performs camera calibaration
  2338. @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
  2339. coordinate space.
  2340. @param imagePoints vector of vectors of the projections of calibration pattern points.
  2341. imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
  2342. objectPoints[i].size() for each i.
  2343. @param image_size Size of the image used only to initialize the intrinsic camera matrix.
  2344. @param K Output 3x3 floating-point camera matrix
  2345. \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If
  2346. fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be
  2347. initialized before calling the function.
  2348. @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
  2349. @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
  2350. That is, each k-th rotation vector together with the corresponding k-th translation vector (see
  2351. the next output parameter description) brings the calibration pattern from the model coordinate
  2352. space (in which object points are specified) to the world coordinate space, that is, a real
  2353. position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
  2354. @param tvecs Output vector of translation vectors estimated for each pattern view.
  2355. @param flags Different flags that may be zero or a combination of the following values:
  2356. - **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
  2357. fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
  2358. center ( imageSize is used), and focal distances are computed in a least-squares fashion.
  2359. - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
  2360. of intrinsic optimization.
  2361. - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
  2362. - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
  2363. - **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients
  2364. are set to zeros and stay zero.
  2365. - **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
  2366. optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too.
  2367. @param criteria Termination criteria for the iterative optimization algorithm.
  2368. */
  2369. CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
  2370. InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
  2371. TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
  2372. /** @brief Stereo rectification for fisheye camera model
  2373. @param K1 First camera matrix.
  2374. @param D1 First camera distortion parameters.
  2375. @param K2 Second camera matrix.
  2376. @param D2 Second camera distortion parameters.
  2377. @param imageSize Size of the image used for stereo calibration.
  2378. @param R Rotation matrix between the coordinate systems of the first and the second
  2379. cameras.
  2380. @param tvec Translation vector between coordinate systems of the cameras.
  2381. @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
  2382. @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
  2383. @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
  2384. camera.
  2385. @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
  2386. camera.
  2387. @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
  2388. @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
  2389. the function makes the principal points of each camera have the same pixel coordinates in the
  2390. rectified views. And if the flag is not set, the function may still shift the images in the
  2391. horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
  2392. useful image area.
  2393. @param newImageSize New image resolution after rectification. The same size should be passed to
  2394. initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
  2395. is passed (default), it is set to the original imageSize . Setting it to larger value can help you
  2396. preserve details in the original image, especially when there is a big radial distortion.
  2397. @param balance Sets the new focal length in range between the min focal length and the max focal
  2398. length. Balance is in range of [0, 1].
  2399. @param fov_scale Divisor for new focal length.
  2400. */
  2401. CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
  2402. OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
  2403. double balance = 0.0, double fov_scale = 1.0);
  2404. /** @brief Performs stereo calibration
  2405. @param objectPoints Vector of vectors of the calibration pattern points.
  2406. @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
  2407. observed by the first camera.
  2408. @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
  2409. observed by the second camera.
  2410. @param K1 Input/output first camera matrix:
  2411. \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
  2412. any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CALIB_FIX_INTRINSIC are specified,
  2413. some or all of the matrix components must be initialized.
  2414. @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
  2415. @param K2 Input/output second camera matrix. The parameter is similar to K1 .
  2416. @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
  2417. similar to D1 .
  2418. @param imageSize Size of the image used only to initialize intrinsic camera matrix.
  2419. @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
  2420. @param T Output translation vector between the coordinate systems of the cameras.
  2421. @param flags Different flags that may be zero or a combination of the following values:
  2422. - **fisheye::CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
  2423. are estimated.
  2424. - **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
  2425. fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
  2426. center (imageSize is used), and focal distances are computed in a least-squares fashion.
  2427. - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
  2428. of intrinsic optimization.
  2429. - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
  2430. - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
  2431. - **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
  2432. zero.
  2433. @param criteria Termination criteria for the iterative optimization algorithm.
  2434. */
  2435. CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
  2436. InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
  2437. OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
  2438. TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
  2439. //! @} calib3d_fisheye
  2440. } // end namespace fisheye
  2441. } //end namespace cv
  2442. #if 0 //def __cplusplus
  2443. //////////////////////////////////////////////////////////////////////////////////////////
  2444. class CV_EXPORTS CvLevMarq
  2445. {
  2446. public:
  2447. CvLevMarq();
  2448. CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
  2449. cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
  2450. bool completeSymmFlag=false );
  2451. ~CvLevMarq();
  2452. void init( int nparams, int nerrs, CvTermCriteria criteria=
  2453. cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
  2454. bool completeSymmFlag=false );
  2455. bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
  2456. bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
  2457. void clear();
  2458. void step();
  2459. enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
  2460. cv::Ptr<CvMat> mask;
  2461. cv::Ptr<CvMat> prevParam;
  2462. cv::Ptr<CvMat> param;
  2463. cv::Ptr<CvMat> J;
  2464. cv::Ptr<CvMat> err;
  2465. cv::Ptr<CvMat> JtJ;
  2466. cv::Ptr<CvMat> JtJN;
  2467. cv::Ptr<CvMat> JtErr;
  2468. cv::Ptr<CvMat> JtJV;
  2469. cv::Ptr<CvMat> JtJW;
  2470. double prevErrNorm, errNorm;
  2471. int lambdaLg10;
  2472. CvTermCriteria criteria;
  2473. int state;
  2474. int iters;
  2475. bool completeSymmFlag;
  2476. int solveMethod;
  2477. };
  2478. #endif
  2479. #endif