123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603 |
- #if !UNITY_WSA_10_0
- using UnityEngine;
- using UnityEngine.SceneManagement;
- using System;
- using System.Linq;
- using System.Collections;
- using System.Collections.Generic;
- using OpenCVForUnity.CoreModule;
- using OpenCVForUnity.DnnModule;
- using OpenCVForUnity.ImgprocModule;
- using OpenCVForUnity.UnityUtils;
- using OpenCVForUnity.ImgcodecsModule;
- namespace OpenCVForUnityExample
- {
- /// <summary>
- /// Dnn ObjectDetection Example
- /// Referring to https://github.com/opencv/opencv/blob/master/samples/dnn/object_detection.cpp.
- /// </summary>
- public class DnnObjectDetectionExample : MonoBehaviour
- {
- [TooltipAttribute ("Path to input image.")]
- public string input;
- [TooltipAttribute ("Path to a binary file of model contains trained weights. It could be a file with extensions .caffemodel (Caffe), .pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet).")]
- public string model;
- [TooltipAttribute ("Path to a text file of model contains network configuration. It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet).")]
- public string config;
- [TooltipAttribute ("Optional path to a text file with names of classes to label detected objects.")]
- public string classes;
- [TooltipAttribute ("Optional list of classes to label detected objects.")]
- public List<string> classesList;
- [TooltipAttribute ("Confidence threshold.")]
- public float confThreshold;
- [TooltipAttribute ("Non-maximum suppression threshold.")]
- public float nmsThreshold;
- [TooltipAttribute ("Preprocess input image by multiplying on a scale factor.")]
- public float scale;
- [TooltipAttribute ("Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces.")]
- public Scalar mean;
- [TooltipAttribute ("Indicate that model works with RGB input images instead BGR ones.")]
- public bool swapRB;
- [TooltipAttribute ("Preprocess input image by resizing to a specific width.")]
- public int inpWidth;
- [TooltipAttribute ("Preprocess input image by resizing to a specific height.")]
- public int inpHeight;
- //yolov3
- // string input = "004545.jpg";
- // public string input = "person.jpg";
- // public string model = "yolov3-tiny.weights";
- // public string config = "yolov3-tiny.cfg";
- // // string model = "yolov2-tiny.weights";
- // // string config = "yolov2-tiny.cfg";
- // public string classes = "coco.names";
- //
- //
- // public float confThreshold = 0.24f;
- // public float nmsThreshold = 0.24f;
- // public float scale = 1f / 255f;
- // public Scalar mean = new Scalar (0, 0, 0);
- // public bool swapRB = false;
- // public int inpWidth = 416;
- // public int inpHeight = 416;
- //
- // List<string> classNames;
- // //MobileNetSSD
- // string input = "004545.jpg";
- // // string input = "person.jpg";
- // string model = "MobileNetSSD_deploy.caffemodel";
- // string config = "MobileNetSSD_deploy.prototxt";
- // string classes;
- // // string classes = "coco.names";
- //
- // float confThreshold = 0.2f;
- // float nmsThreshold = 0.2f;
- // float scale = 2f / 255f;
- // Scalar mean = new Scalar (127.5, 127.5, 127.5);
- // bool swapRB = false;
- // int inpWidth = 300;
- // int inpHeight = 300;
- //
- // List<string> classNames = new List<string>(new string[]{"background",
- // "aeroplane", "bicycle", "bird", "boat",
- // "bottle", "bus", "car", "cat", "chair",
- // "cow", "diningtable", "dog", "horse",
- // "motorbike", "person", "pottedplant",
- // "sheep", "sofa", "train", "tvmonitor"
- // });
- // // List<string> classNames;
- // //ResnetSSDFaceDetection
- // string input = "grace_hopper_227.png";
- // // string input = "person.jpg";
- // string model = "res10_300x300_ssd_iter_140000.caffemodel";
- // string config = "deploy.prototxt";
- // // string model = "yolov2-tiny.weights";
- // // string config = "yolov2-tiny.cfg";
- // string classes;
- //
- //
- // float confThreshold = 0.5f;
- // float nmsThreshold = 0.5f;
- // float scale = 1f;
- // Scalar mean = new Scalar (104, 177, 123);
- // bool swapRB = false;
- // int inpWidth = 300;
- // int inpHeight = 300;
- //
- // List<string> classNames;
- List<string> classNames;
- List<string> outBlobNames;
- List<string> outBlobTypes;
- string classes_filepath;
- string input_filepath;
- string config_filepath;
- string model_filepath;
- #if UNITY_WEBGL && !UNITY_EDITOR
- IEnumerator getFilePath_Coroutine;
- #endif
- // Use this for initialization
- void Start ()
- {
- #if UNITY_WEBGL && !UNITY_EDITOR
- getFilePath_Coroutine = GetFilePath ();
- StartCoroutine (getFilePath_Coroutine);
- #else
- classes_filepath = Utils.getFilePath ("dnn/" + classes);
- input_filepath = Utils.getFilePath ("dnn/" + input);
- config_filepath = Utils.getFilePath ("dnn/" + config);
- model_filepath = Utils.getFilePath ("dnn/" + model);
- Run ();
- #endif
- }
- #if UNITY_WEBGL && !UNITY_EDITOR
- private IEnumerator GetFilePath ()
- {
- if (!string.IsNullOrEmpty (classes)) {
- var getFilePathAsync_0_Coroutine = Utils.getFilePathAsync ("dnn/" + classes, (result) => {
- classes_filepath = result;
- });
- yield return getFilePathAsync_0_Coroutine;
- }
- if (!string.IsNullOrEmpty (input)) {
- var getFilePathAsync_1_Coroutine = Utils.getFilePathAsync ("dnn/" + input, (result) => {
- input_filepath = result;
- });
- yield return getFilePathAsync_1_Coroutine;
- }
- if (!string.IsNullOrEmpty (config)) {
- var getFilePathAsync_2_Coroutine = Utils.getFilePathAsync ("dnn/" + config, (result) => {
- config_filepath = result;
- });
- yield return getFilePathAsync_2_Coroutine;
- }
- if (!string.IsNullOrEmpty (model)) {
- var getFilePathAsync_3_Coroutine = Utils.getFilePathAsync ("dnn/" + model, (result) => {
- model_filepath = result;
- });
- yield return getFilePathAsync_3_Coroutine;
- }
- getFilePath_Coroutine = null;
- Run ();
- }
- #endif
- // Use this for initialization
- void Run ()
- {
-
- //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
- Utils.setDebugMode (true);
- if (!string.IsNullOrEmpty (classes)) {
- classNames = readClassNames (classes_filepath);
- #if !UNITY_WSA_10_0
- if (classNames == null) {
- Debug.LogError (classes_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
- }
- #endif
- } else if (classesList.Count > 0) {
- classNames = classesList;
- }
- Mat img = Imgcodecs.imread (input_filepath);
- #if !UNITY_WSA_10_0
- if (img.empty ()) {
- Debug.LogError (input_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
- img = new Mat (424, 640, CvType.CV_8UC3, new Scalar (0, 0, 0));
- }
- #endif
- //Adust Quad.transform.localScale.
- gameObject.transform.localScale = new Vector3 (img.width (), img.height (), 1);
- Debug.Log ("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation);
- float imageWidth = img.width ();
- float imageHeight = img.height ();
- float widthScale = (float)Screen.width / imageWidth;
- float heightScale = (float)Screen.height / imageHeight;
- if (widthScale < heightScale) {
- Camera.main.orthographicSize = (imageWidth * (float)Screen.height / (float)Screen.width) / 2;
- } else {
- Camera.main.orthographicSize = imageHeight / 2;
- }
- Net net = null;
- if (string.IsNullOrEmpty (config_filepath) || string.IsNullOrEmpty (model_filepath)) {
- Debug.LogError (config_filepath + " or " + model_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". ");
- } else {
- //! [Initialize network]
- net = Dnn.readNet (model_filepath, config_filepath);
- //! [Initialize network]
- }
- if (net == null) {
-
- Imgproc.putText (img, "model file is not loaded.", new Point (5, img.rows () - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar (255, 255, 255), 2, Imgproc.LINE_AA, false);
- Imgproc.putText (img, "Please read console message.", new Point (5, img.rows () - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar (255, 255, 255), 2, Imgproc.LINE_AA, false);
- } else {
- outBlobNames = getOutputsNames (net);
- // for (int i = 0; i < outBlobNames.Count; i++) {
- // Debug.Log ("names [" + i + "] " + outBlobNames [i]);
- // }
- outBlobTypes = getOutputsTypes (net);
- // for (int i = 0; i < outBlobTypes.Count; i++) {
- // Debug.Log ("types [" + i + "] " + outBlobTypes [i]);
- // }
- // Create a 4D blob from a frame.
- Size inpSize = new Size (inpWidth > 0 ? inpWidth : img.cols (),
- inpHeight > 0 ? inpHeight : img.rows ());
- Mat blob = Dnn.blobFromImage (img, scale, inpSize, mean, swapRB, false);
- // Run a model.
- net.setInput (blob);
- if (net.getLayer (new DictValue (0)).outputNameToIndex ("im_info") != -1) { // Faster-RCNN or R-FCN
- Imgproc.resize (img, img, inpSize);
- Mat imInfo = new Mat (1, 3, CvType.CV_32FC1);
- imInfo.put (0, 0, new float[] {
- (float)inpSize.height,
- (float)inpSize.width,
- 1.6f
- });
- net.setInput (imInfo, "im_info");
- }
- TickMeter tm = new TickMeter ();
- tm.start ();
- List<Mat> outs = new List<Mat> ();
- net.forward (outs, outBlobNames);
- tm.stop ();
- Debug.Log ("Inference time, ms: " + tm.getTimeMilli ());
- postprocess (img, outs, net);
- for (int i = 0; i < outs.Count; i++) {
- outs [i].Dispose ();
- }
- blob.Dispose ();
- net.Dispose ();
- }
-
- Imgproc.cvtColor (img, img, Imgproc.COLOR_BGR2RGB);
- Texture2D texture = new Texture2D (img.cols (), img.rows (), TextureFormat.RGBA32, false);
- Utils.matToTexture2D (img, texture);
- gameObject.GetComponent<Renderer> ().material.mainTexture = texture;
- Utils.setDebugMode (false);
- }
-
- // Update is called once per frame
- void Update ()
- {
- }
- /// <summary>
- /// Raises the disable event.
- /// </summary>
- void OnDisable ()
- {
- #if UNITY_WEBGL && !UNITY_EDITOR
- if (getFilePath_Coroutine != null) {
- StopCoroutine (getFilePath_Coroutine);
- ((IDisposable)getFilePath_Coroutine).Dispose ();
- }
- #endif
- }
- /// <summary>
- /// Raises the back button click event.
- /// </summary>
- public void OnBackButtonClick ()
- {
- SceneManager.LoadScene ("OpenCVForUnityExample");
- }
- /// <summary>
- /// Reads the class names.
- /// </summary>
- /// <returns>The class names.</returns>
- /// <param name="filename">Filename.</param>
- private List<string> readClassNames (string filename)
- {
- List<string> classNames = new List<string> ();
- System.IO.StreamReader cReader = null;
- try {
- cReader = new System.IO.StreamReader (filename, System.Text.Encoding.Default);
- while (cReader.Peek () >= 0) {
- string name = cReader.ReadLine ();
- classNames.Add (name);
- }
- } catch (System.Exception ex) {
- Debug.LogError (ex.Message);
- return null;
- } finally {
- if (cReader != null)
- cReader.Close ();
- }
- return classNames;
- }
- /// <summary>
- /// Postprocess the specified frame, outs and net.
- /// </summary>
- /// <param name="frame">Frame.</param>
- /// <param name="outs">Outs.</param>
- /// <param name="net">Net.</param>
- private void postprocess (Mat frame, List<Mat> outs, Net net)
- {
- string outLayerType = outBlobTypes [0];
- List<int> classIdsList = new List<int> ();
- List<float> confidencesList = new List<float> ();
- List<OpenCVForUnity.CoreModule.Rect> boxesList = new List<OpenCVForUnity.CoreModule.Rect> ();
- if (net.getLayer (new DictValue (0)).outputNameToIndex ("im_info") != -1) { // Faster-RCNN or R-FCN
- // Network produces output blob with a shape 1x1xNx7 where N is a number of
- // detections and an every detection is a vector of values
- // [batchId, classId, confidence, left, top, right, bottom]
- if (outs.Count == 1) {
- outs [0] = outs [0].reshape (1, (int)outs [0].total () / 7);
- // Debug.Log ("outs[i].ToString() " + outs [0].ToString ());
- float[] data = new float[7];
- for (int i = 0; i < outs [0].rows (); i++) {
- outs [0].get (i, 0, data);
- float confidence = data [2];
- if (confidence > confThreshold) {
- int class_id = (int)(data [1]);
- int left = (int)(data [3] * frame.cols ());
- int top = (int)(data [4] * frame.rows ());
- int right = (int)(data [5] * frame.cols ());
- int bottom = (int)(data [6] * frame.rows ());
- int width = right - left + 1;
- int height = bottom - top + 1;
- classIdsList.Add ((int)(class_id) - 0);
- confidencesList.Add ((float)confidence);
- boxesList.Add (new OpenCVForUnity.CoreModule.Rect (left, top, width, height));
- }
- }
- }
- } else if (outLayerType == "DetectionOutput") {
- // Network produces output blob with a shape 1x1xNx7 where N is a number of
- // detections and an every detection is a vector of values
- // [batchId, classId, confidence, left, top, right, bottom]
- if (outs.Count == 1) {
- outs [0] = outs [0].reshape (1, (int)outs [0].total () / 7);
- // Debug.Log ("outs[i].ToString() " + outs [0].ToString ());
- float[] data = new float[7];
- for (int i = 0; i < outs [0].rows (); i++) {
- outs [0].get (i, 0, data);
- float confidence = data [2];
- if (confidence > confThreshold) {
- int class_id = (int)(data [1]);
- int left = (int)(data [3] * frame.cols ());
- int top = (int)(data [4] * frame.rows ());
- int right = (int)(data [5] * frame.cols ());
- int bottom = (int)(data [6] * frame.rows ());
- int width = right - left + 1;
- int height = bottom - top + 1;
-
- classIdsList.Add ((int)(class_id) - 0);
- confidencesList.Add ((float)confidence);
- boxesList.Add (new OpenCVForUnity.CoreModule.Rect (left, top, width, height));
- }
- }
- }
- } else if (outLayerType == "Region") {
- for (int i = 0; i < outs.Count; ++i) {
- // Network produces output blob with a shape NxC where N is a number of
- // detected objects and C is a number of classes + 4 where the first 4
- // numbers are [center_x, center_y, width, height]
- // Debug.Log ("outs[i].ToString() "+outs[i].ToString());
- float[] positionData = new float[5];
- float[] confidenceData = new float[outs [i].cols () - 5];
- for (int p = 0; p < outs [i].rows (); p++) {
-
- outs [i].get (p, 0, positionData);
-
- outs [i].get (p, 5, confidenceData);
-
- int maxIdx = confidenceData.Select ((val, idx) => new { V = val, I = idx }).Aggregate ((max, working) => (max.V > working.V) ? max : working).I;
- float confidence = confidenceData [maxIdx];
-
- if (confidence > confThreshold) {
-
- int centerX = (int)(positionData [0] * frame.cols ());
- int centerY = (int)(positionData [1] * frame.rows ());
- int width = (int)(positionData [2] * frame.cols ());
- int height = (int)(positionData [3] * frame.rows ());
- int left = centerX - width / 2;
- int top = centerY - height / 2;
-
- classIdsList.Add (maxIdx);
- confidencesList.Add ((float)confidence);
- boxesList.Add (new OpenCVForUnity.CoreModule.Rect (left, top, width, height));
-
- }
- }
- }
- } else {
- Debug.Log ("Unknown output layer type: " + outLayerType);
- }
- MatOfRect boxes = new MatOfRect ();
- boxes.fromList (boxesList);
- MatOfFloat confidences = new MatOfFloat ();
- confidences.fromList (confidencesList);
- MatOfInt indices = new MatOfInt ();
- Dnn.NMSBoxes (boxes, confidences, confThreshold, nmsThreshold, indices);
- // Debug.Log ("indices.dump () "+indices.dump ());
- // Debug.Log ("indices.ToString () "+indices.ToString());
- for (int i = 0; i < indices.total (); ++i) {
- int idx = (int)indices.get (i, 0) [0];
- OpenCVForUnity.CoreModule.Rect box = boxesList [idx];
- drawPred (classIdsList [idx], confidencesList [idx], box.x, box.y,
- box.x + box.width, box.y + box.height, frame);
- }
-
- indices.Dispose ();
- boxes.Dispose ();
- confidences.Dispose ();
- }
- /// <summary>
- /// Draws the pred.
- /// </summary>
- /// <param name="classId">Class identifier.</param>
- /// <param name="conf">Conf.</param>
- /// <param name="left">Left.</param>
- /// <param name="top">Top.</param>
- /// <param name="right">Right.</param>
- /// <param name="bottom">Bottom.</param>
- /// <param name="frame">Frame.</param>
- private void drawPred (int classId, float conf, int left, int top, int right, int bottom, Mat frame)
- {
- Imgproc.rectangle (frame, new Point (left, top), new Point (right, bottom), new Scalar (0, 255, 0, 255), 2);
- string label = conf.ToString ();
- if (classNames != null && classNames.Count != 0) {
- if (classId < (int)classNames.Count) {
- label = classNames [classId] + ": " + label;
- }
- }
- int[] baseLine = new int[1];
- Size labelSize = Imgproc.getTextSize (label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine);
- top = Mathf.Max (top, (int)labelSize.height);
- Imgproc.rectangle (frame, new Point (left, top - labelSize.height),
- new Point (left + labelSize.width, top + baseLine [0]), Scalar.all (255), Core.FILLED);
- Imgproc.putText (frame, label, new Point (left, top), Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar (0, 0, 0, 255));
- }
- /// <summary>
- /// Gets the outputs names.
- /// </summary>
- /// <returns>The outputs names.</returns>
- /// <param name="net">Net.</param>
- private List<string> getOutputsNames (Net net)
- {
- List<string> names = new List<string> ();
- MatOfInt outLayers = net.getUnconnectedOutLayers ();
- for (int i = 0; i < outLayers.total (); ++i) {
- names.Add (net.getLayer (new DictValue ((int)outLayers.get (i, 0) [0])).get_name ());
- }
- outLayers.Dispose ();
- return names;
- }
- /// <summary>
- /// Gets the outputs types.
- /// </summary>
- /// <returns>The outputs types.</returns>
- /// <param name="net">Net.</param>
- private List<string> getOutputsTypes (Net net)
- {
- List<string> types = new List<string> ();
- MatOfInt outLayers = net.getUnconnectedOutLayers ();
- for (int i = 0; i < outLayers.total (); ++i) {
- types.Add (net.getLayer (new DictValue ((int)outLayers.get (i, 0) [0])).get_type ());
- }
- outLayers.Dispose ();
- return types;
- }
- }
- }
- #endif
|