1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108 |
- using OpenCVForUnity.CoreModule;
- using OpenCVForUnity.UtilsModule;
- using System;
- using System.Collections.Generic;
- using System.Runtime.InteropServices;
- namespace OpenCVForUnity.MlModule
- {
- // C++: class TrainData
- /**
- * Class encapsulating training data.
- *
- * Please note that the class only specifies the interface of training data, but not implementation.
- * All the statistical model classes in _ml_ module accepts Ptr<TrainData> as parameter. In other
- * words, you can create your own class derived from TrainData and pass smart pointer to the instance
- * of this class into StatModel::train.
- *
- * SEE: REF: ml_intro_data
- */
- public class TrainData : DisposableOpenCVObject
- {
- protected override void Dispose(bool disposing)
- {
- try
- {
- if (disposing)
- {
- }
- if (IsEnabledDispose)
- {
- if (nativeObj != IntPtr.Zero)
- ml_TrainData_delete(nativeObj);
- nativeObj = IntPtr.Zero;
- }
- }
- finally
- {
- base.Dispose(disposing);
- }
- }
- protected internal TrainData(IntPtr addr) : base(addr) { }
- public IntPtr getNativeObjAddr() { return nativeObj; }
- // internal usage only
- public static TrainData __fromPtr__(IntPtr addr) { return new TrainData(addr); }
- //
- // C++: int cv::ml::TrainData::getLayout()
- //
- public int getLayout()
- {
- ThrowIfDisposed();
- return ml_TrainData_getLayout_10(nativeObj);
- }
- //
- // C++: int cv::ml::TrainData::getNTrainSamples()
- //
- public int getNTrainSamples()
- {
- ThrowIfDisposed();
- return ml_TrainData_getNTrainSamples_10(nativeObj);
- }
- //
- // C++: int cv::ml::TrainData::getNTestSamples()
- //
- public int getNTestSamples()
- {
- ThrowIfDisposed();
- return ml_TrainData_getNTestSamples_10(nativeObj);
- }
- //
- // C++: int cv::ml::TrainData::getNSamples()
- //
- public int getNSamples()
- {
- ThrowIfDisposed();
- return ml_TrainData_getNSamples_10(nativeObj);
- }
- //
- // C++: int cv::ml::TrainData::getNVars()
- //
- public int getNVars()
- {
- ThrowIfDisposed();
- return ml_TrainData_getNVars_10(nativeObj);
- }
- //
- // C++: int cv::ml::TrainData::getNAllVars()
- //
- public int getNAllVars()
- {
- ThrowIfDisposed();
- return ml_TrainData_getNAllVars_10(nativeObj);
- }
- //
- // C++: void cv::ml::TrainData::getSample(Mat varIdx, int sidx, float* buf)
- //
- public void getSample(Mat varIdx, int sidx, float buf)
- {
- ThrowIfDisposed();
- if (varIdx != null) varIdx.ThrowIfDisposed();
- ml_TrainData_getSample_10(nativeObj, varIdx.nativeObj, sidx, buf);
- }
- //
- // C++: Mat cv::ml::TrainData::getSamples()
- //
- public Mat getSamples()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getSamples_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getMissing()
- //
- public Mat getMissing()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getMissing_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getTrainSamples(int layout = ROW_SAMPLE, bool compressSamples = true, bool compressVars = true)
- //
- /**
- * Returns matrix of train samples
- *
- * param layout The requested layout. If it's different from the initial one, the matrix is
- * transposed. See ml::SampleTypes.
- * param compressSamples if true, the function returns only the training samples (specified by
- * sampleIdx)
- * param compressVars if true, the function returns the shorter training samples, containing only
- * the active variables.
- *
- * In current implementation the function tries to avoid physical data copying and returns the
- * matrix stored inside TrainData (unless the transposition or compression is needed).
- * return automatically generated
- */
- public Mat getTrainSamples(int layout, bool compressSamples, bool compressVars)
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTrainSamples_10(nativeObj, layout, compressSamples, compressVars)));
- }
- /**
- * Returns matrix of train samples
- *
- * param layout The requested layout. If it's different from the initial one, the matrix is
- * transposed. See ml::SampleTypes.
- * param compressSamples if true, the function returns only the training samples (specified by
- * sampleIdx)
- * the active variables.
- *
- * In current implementation the function tries to avoid physical data copying and returns the
- * matrix stored inside TrainData (unless the transposition or compression is needed).
- * return automatically generated
- */
- public Mat getTrainSamples(int layout, bool compressSamples)
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTrainSamples_11(nativeObj, layout, compressSamples)));
- }
- /**
- * Returns matrix of train samples
- *
- * param layout The requested layout. If it's different from the initial one, the matrix is
- * transposed. See ml::SampleTypes.
- * sampleIdx)
- * the active variables.
- *
- * In current implementation the function tries to avoid physical data copying and returns the
- * matrix stored inside TrainData (unless the transposition or compression is needed).
- * return automatically generated
- */
- public Mat getTrainSamples(int layout)
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTrainSamples_12(nativeObj, layout)));
- }
- /**
- * Returns matrix of train samples
- *
- * transposed. See ml::SampleTypes.
- * sampleIdx)
- * the active variables.
- *
- * In current implementation the function tries to avoid physical data copying and returns the
- * matrix stored inside TrainData (unless the transposition or compression is needed).
- * return automatically generated
- */
- public Mat getTrainSamples()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTrainSamples_13(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getTrainResponses()
- //
- /**
- * Returns the vector of responses
- *
- * The function returns ordered or the original categorical responses. Usually it's used in
- * regression algorithms.
- * return automatically generated
- */
- public Mat getTrainResponses()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTrainResponses_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getTrainNormCatResponses()
- //
- /**
- * Returns the vector of normalized categorical responses
- *
- * The function returns vector of responses. Each response is integer from {code 0} to `<number of
- * classes>-1`. The actual label value can be retrieved then from the class label vector, see
- * TrainData::getClassLabels.
- * return automatically generated
- */
- public Mat getTrainNormCatResponses()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTrainNormCatResponses_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getTestResponses()
- //
- public Mat getTestResponses()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTestResponses_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getTestNormCatResponses()
- //
- public Mat getTestNormCatResponses()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTestNormCatResponses_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getResponses()
- //
- public Mat getResponses()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getResponses_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getNormCatResponses()
- //
- public Mat getNormCatResponses()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getNormCatResponses_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getSampleWeights()
- //
- public Mat getSampleWeights()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getSampleWeights_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getTrainSampleWeights()
- //
- public Mat getTrainSampleWeights()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTrainSampleWeights_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getTestSampleWeights()
- //
- public Mat getTestSampleWeights()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTestSampleWeights_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getVarIdx()
- //
- public Mat getVarIdx()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getVarIdx_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getVarType()
- //
- public Mat getVarType()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getVarType_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getVarSymbolFlags()
- //
- public Mat getVarSymbolFlags()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getVarSymbolFlags_10(nativeObj)));
- }
- //
- // C++: int cv::ml::TrainData::getResponseType()
- //
- public int getResponseType()
- {
- ThrowIfDisposed();
- return ml_TrainData_getResponseType_10(nativeObj);
- }
- //
- // C++: Mat cv::ml::TrainData::getTrainSampleIdx()
- //
- public Mat getTrainSampleIdx()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTrainSampleIdx_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getTestSampleIdx()
- //
- public Mat getTestSampleIdx()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTestSampleIdx_10(nativeObj)));
- }
- //
- // C++: void cv::ml::TrainData::getValues(int vi, Mat sidx, float* values)
- //
- public void getValues(int vi, Mat sidx, float values)
- {
- ThrowIfDisposed();
- if (sidx != null) sidx.ThrowIfDisposed();
- ml_TrainData_getValues_10(nativeObj, vi, sidx.nativeObj, values);
- }
- //
- // C++: Mat cv::ml::TrainData::getDefaultSubstValues()
- //
- public Mat getDefaultSubstValues()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getDefaultSubstValues_10(nativeObj)));
- }
- //
- // C++: int cv::ml::TrainData::getCatCount(int vi)
- //
- public int getCatCount(int vi)
- {
- ThrowIfDisposed();
- return ml_TrainData_getCatCount_10(nativeObj, vi);
- }
- //
- // C++: Mat cv::ml::TrainData::getClassLabels()
- //
- /**
- * Returns the vector of class labels
- *
- * The function returns vector of unique labels occurred in the responses.
- * return automatically generated
- */
- public Mat getClassLabels()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getClassLabels_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getCatOfs()
- //
- public Mat getCatOfs()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getCatOfs_10(nativeObj)));
- }
- //
- // C++: Mat cv::ml::TrainData::getCatMap()
- //
- public Mat getCatMap()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getCatMap_10(nativeObj)));
- }
- //
- // C++: void cv::ml::TrainData::setTrainTestSplit(int count, bool shuffle = true)
- //
- /**
- * Splits the training data into the training and test parts
- * SEE: TrainData::setTrainTestSplitRatio
- * param count automatically generated
- * param shuffle automatically generated
- */
- public void setTrainTestSplit(int count, bool shuffle)
- {
- ThrowIfDisposed();
- ml_TrainData_setTrainTestSplit_10(nativeObj, count, shuffle);
- }
- /**
- * Splits the training data into the training and test parts
- * SEE: TrainData::setTrainTestSplitRatio
- * param count automatically generated
- */
- public void setTrainTestSplit(int count)
- {
- ThrowIfDisposed();
- ml_TrainData_setTrainTestSplit_11(nativeObj, count);
- }
- //
- // C++: void cv::ml::TrainData::setTrainTestSplitRatio(double ratio, bool shuffle = true)
- //
- /**
- * Splits the training data into the training and test parts
- *
- * The function selects a subset of specified relative size and then returns it as the training
- * set. If the function is not called, all the data is used for training. Please, note that for
- * each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test
- * subset can be retrieved and processed as well.
- * SEE: TrainData::setTrainTestSplit
- * param ratio automatically generated
- * param shuffle automatically generated
- */
- public void setTrainTestSplitRatio(double ratio, bool shuffle)
- {
- ThrowIfDisposed();
- ml_TrainData_setTrainTestSplitRatio_10(nativeObj, ratio, shuffle);
- }
- /**
- * Splits the training data into the training and test parts
- *
- * The function selects a subset of specified relative size and then returns it as the training
- * set. If the function is not called, all the data is used for training. Please, note that for
- * each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test
- * subset can be retrieved and processed as well.
- * SEE: TrainData::setTrainTestSplit
- * param ratio automatically generated
- */
- public void setTrainTestSplitRatio(double ratio)
- {
- ThrowIfDisposed();
- ml_TrainData_setTrainTestSplitRatio_11(nativeObj, ratio);
- }
- //
- // C++: void cv::ml::TrainData::shuffleTrainTest()
- //
- public void shuffleTrainTest()
- {
- ThrowIfDisposed();
- ml_TrainData_shuffleTrainTest_10(nativeObj);
- }
- //
- // C++: Mat cv::ml::TrainData::getTestSamples()
- //
- /**
- * Returns matrix of test samples
- * return automatically generated
- */
- public Mat getTestSamples()
- {
- ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getTestSamples_10(nativeObj)));
- }
- //
- // C++: void cv::ml::TrainData::getNames(vector_String names)
- //
- /**
- * Returns vector of symbolic names captured in loadFromCSV()
- * param names automatically generated
- */
- public void getNames(List<string> names)
- {
- ThrowIfDisposed();
- Mat names_mat = Converters.vector_String_to_Mat(names);
- ml_TrainData_getNames_10(nativeObj, names_mat.nativeObj);
- }
- //
- // C++: static Mat cv::ml::TrainData::getSubVector(Mat vec, Mat idx)
- //
- /**
- * Extract from 1D vector elements specified by passed indexes.
- * param vec input vector (supported types: CV_32S, CV_32F, CV_64F)
- * param idx 1D index vector
- * return automatically generated
- */
- public static Mat getSubVector(Mat vec, Mat idx)
- {
- if (vec != null) vec.ThrowIfDisposed();
- if (idx != null) idx.ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getSubVector_10(vec.nativeObj, idx.nativeObj)));
- }
- //
- // C++: static Mat cv::ml::TrainData::getSubMatrix(Mat matrix, Mat idx, int layout)
- //
- /**
- * Extract from matrix rows/cols specified by passed indexes.
- * param matrix input matrix (supported types: CV_32S, CV_32F, CV_64F)
- * param idx 1D index vector
- * param layout specifies to extract rows (cv::ml::ROW_SAMPLES) or to extract columns (cv::ml::COL_SAMPLES)
- * return automatically generated
- */
- public static Mat getSubMatrix(Mat matrix, Mat idx, int layout)
- {
- if (matrix != null) matrix.ThrowIfDisposed();
- if (idx != null) idx.ThrowIfDisposed();
- return new Mat(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_getSubMatrix_10(matrix.nativeObj, idx.nativeObj, layout)));
- }
- //
- // C++: static Ptr_TrainData cv::ml::TrainData::create(Mat samples, int layout, Mat responses, Mat varIdx = Mat(), Mat sampleIdx = Mat(), Mat sampleWeights = Mat(), Mat varType = Mat())
- //
- /**
- * Creates training data from in-memory arrays.
- *
- * param samples matrix of samples. It should have CV_32F type.
- * param layout see ml::SampleTypes.
- * param responses matrix of responses. If the responses are scalar, they should be stored as a
- * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
- * former case the responses are considered as ordered by default; in the latter case - as
- * categorical)
- * param varIdx vector specifying which variables to use for training. It can be an integer vector
- * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
- * active variables.
- * param sampleIdx vector specifying which samples to use for training. It can be an integer
- * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
- * of training samples.
- * param sampleWeights optional vector with weights for each sample. It should have CV_32F type.
- * param varType optional vector of type CV_8U and size `<number_of_variables_in_samples> +
- * <number_of_variables_in_responses>`, containing types of each input and output variable. See
- * ml::VariableTypes.
- * return automatically generated
- */
- public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx, Mat sampleWeights, Mat varType)
- {
- if (samples != null) samples.ThrowIfDisposed();
- if (responses != null) responses.ThrowIfDisposed();
- if (varIdx != null) varIdx.ThrowIfDisposed();
- if (sampleIdx != null) sampleIdx.ThrowIfDisposed();
- if (sampleWeights != null) sampleWeights.ThrowIfDisposed();
- if (varType != null) varType.ThrowIfDisposed();
- return TrainData.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_create_10(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, sampleWeights.nativeObj, varType.nativeObj)));
- }
- /**
- * Creates training data from in-memory arrays.
- *
- * param samples matrix of samples. It should have CV_32F type.
- * param layout see ml::SampleTypes.
- * param responses matrix of responses. If the responses are scalar, they should be stored as a
- * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
- * former case the responses are considered as ordered by default; in the latter case - as
- * categorical)
- * param varIdx vector specifying which variables to use for training. It can be an integer vector
- * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
- * active variables.
- * param sampleIdx vector specifying which samples to use for training. It can be an integer
- * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
- * of training samples.
- * param sampleWeights optional vector with weights for each sample. It should have CV_32F type.
- * <number_of_variables_in_responses>`, containing types of each input and output variable. See
- * ml::VariableTypes.
- * return automatically generated
- */
- public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx, Mat sampleWeights)
- {
- if (samples != null) samples.ThrowIfDisposed();
- if (responses != null) responses.ThrowIfDisposed();
- if (varIdx != null) varIdx.ThrowIfDisposed();
- if (sampleIdx != null) sampleIdx.ThrowIfDisposed();
- if (sampleWeights != null) sampleWeights.ThrowIfDisposed();
- return TrainData.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_create_11(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, sampleWeights.nativeObj)));
- }
- /**
- * Creates training data from in-memory arrays.
- *
- * param samples matrix of samples. It should have CV_32F type.
- * param layout see ml::SampleTypes.
- * param responses matrix of responses. If the responses are scalar, they should be stored as a
- * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
- * former case the responses are considered as ordered by default; in the latter case - as
- * categorical)
- * param varIdx vector specifying which variables to use for training. It can be an integer vector
- * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
- * active variables.
- * param sampleIdx vector specifying which samples to use for training. It can be an integer
- * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
- * of training samples.
- * <number_of_variables_in_responses>`, containing types of each input and output variable. See
- * ml::VariableTypes.
- * return automatically generated
- */
- public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx)
- {
- if (samples != null) samples.ThrowIfDisposed();
- if (responses != null) responses.ThrowIfDisposed();
- if (varIdx != null) varIdx.ThrowIfDisposed();
- if (sampleIdx != null) sampleIdx.ThrowIfDisposed();
- return TrainData.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_create_12(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj)));
- }
- /**
- * Creates training data from in-memory arrays.
- *
- * param samples matrix of samples. It should have CV_32F type.
- * param layout see ml::SampleTypes.
- * param responses matrix of responses. If the responses are scalar, they should be stored as a
- * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
- * former case the responses are considered as ordered by default; in the latter case - as
- * categorical)
- * param varIdx vector specifying which variables to use for training. It can be an integer vector
- * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
- * active variables.
- * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
- * of training samples.
- * <number_of_variables_in_responses>`, containing types of each input and output variable. See
- * ml::VariableTypes.
- * return automatically generated
- */
- public static TrainData create(Mat samples, int layout, Mat responses, Mat varIdx)
- {
- if (samples != null) samples.ThrowIfDisposed();
- if (responses != null) responses.ThrowIfDisposed();
- if (varIdx != null) varIdx.ThrowIfDisposed();
- return TrainData.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_create_13(samples.nativeObj, layout, responses.nativeObj, varIdx.nativeObj)));
- }
- /**
- * Creates training data from in-memory arrays.
- *
- * param samples matrix of samples. It should have CV_32F type.
- * param layout see ml::SampleTypes.
- * param responses matrix of responses. If the responses are scalar, they should be stored as a
- * single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
- * former case the responses are considered as ordered by default; in the latter case - as
- * categorical)
- * (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
- * active variables.
- * vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
- * of training samples.
- * <number_of_variables_in_responses>`, containing types of each input and output variable. See
- * ml::VariableTypes.
- * return automatically generated
- */
- public static TrainData create(Mat samples, int layout, Mat responses)
- {
- if (samples != null) samples.ThrowIfDisposed();
- if (responses != null) responses.ThrowIfDisposed();
- return TrainData.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ml_TrainData_create_14(samples.nativeObj, layout, responses.nativeObj)));
- }
- #if (UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR
- const string LIBNAME = "__Internal";
- #else
- const string LIBNAME = "opencvforunity";
- #endif
- // C++: int cv::ml::TrainData::getLayout()
- [DllImport(LIBNAME)]
- private static extern int ml_TrainData_getLayout_10(IntPtr nativeObj);
- // C++: int cv::ml::TrainData::getNTrainSamples()
- [DllImport(LIBNAME)]
- private static extern int ml_TrainData_getNTrainSamples_10(IntPtr nativeObj);
- // C++: int cv::ml::TrainData::getNTestSamples()
- [DllImport(LIBNAME)]
- private static extern int ml_TrainData_getNTestSamples_10(IntPtr nativeObj);
- // C++: int cv::ml::TrainData::getNSamples()
- [DllImport(LIBNAME)]
- private static extern int ml_TrainData_getNSamples_10(IntPtr nativeObj);
- // C++: int cv::ml::TrainData::getNVars()
- [DllImport(LIBNAME)]
- private static extern int ml_TrainData_getNVars_10(IntPtr nativeObj);
- // C++: int cv::ml::TrainData::getNAllVars()
- [DllImport(LIBNAME)]
- private static extern int ml_TrainData_getNAllVars_10(IntPtr nativeObj);
- // C++: void cv::ml::TrainData::getSample(Mat varIdx, int sidx, float* buf)
- [DllImport(LIBNAME)]
- private static extern void ml_TrainData_getSample_10(IntPtr nativeObj, IntPtr varIdx_nativeObj, int sidx, float buf);
- // C++: Mat cv::ml::TrainData::getSamples()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getSamples_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getMissing()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getMissing_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTrainSamples(int layout = ROW_SAMPLE, bool compressSamples = true, bool compressVars = true)
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTrainSamples_10(IntPtr nativeObj, int layout, [MarshalAs(UnmanagedType.U1)] bool compressSamples, [MarshalAs(UnmanagedType.U1)] bool compressVars);
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTrainSamples_11(IntPtr nativeObj, int layout, [MarshalAs(UnmanagedType.U1)] bool compressSamples);
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTrainSamples_12(IntPtr nativeObj, int layout);
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTrainSamples_13(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTrainResponses()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTrainResponses_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTrainNormCatResponses()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTrainNormCatResponses_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTestResponses()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTestResponses_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTestNormCatResponses()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTestNormCatResponses_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getResponses()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getResponses_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getNormCatResponses()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getNormCatResponses_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getSampleWeights()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getSampleWeights_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTrainSampleWeights()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTrainSampleWeights_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTestSampleWeights()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTestSampleWeights_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getVarIdx()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getVarIdx_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getVarType()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getVarType_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getVarSymbolFlags()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getVarSymbolFlags_10(IntPtr nativeObj);
- // C++: int cv::ml::TrainData::getResponseType()
- [DllImport(LIBNAME)]
- private static extern int ml_TrainData_getResponseType_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTrainSampleIdx()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTrainSampleIdx_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTestSampleIdx()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTestSampleIdx_10(IntPtr nativeObj);
- // C++: void cv::ml::TrainData::getValues(int vi, Mat sidx, float* values)
- [DllImport(LIBNAME)]
- private static extern void ml_TrainData_getValues_10(IntPtr nativeObj, int vi, IntPtr sidx_nativeObj, float values);
- // C++: Mat cv::ml::TrainData::getDefaultSubstValues()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getDefaultSubstValues_10(IntPtr nativeObj);
- // C++: int cv::ml::TrainData::getCatCount(int vi)
- [DllImport(LIBNAME)]
- private static extern int ml_TrainData_getCatCount_10(IntPtr nativeObj, int vi);
- // C++: Mat cv::ml::TrainData::getClassLabels()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getClassLabels_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getCatOfs()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getCatOfs_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getCatMap()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getCatMap_10(IntPtr nativeObj);
- // C++: void cv::ml::TrainData::setTrainTestSplit(int count, bool shuffle = true)
- [DllImport(LIBNAME)]
- private static extern void ml_TrainData_setTrainTestSplit_10(IntPtr nativeObj, int count, [MarshalAs(UnmanagedType.U1)] bool shuffle);
- [DllImport(LIBNAME)]
- private static extern void ml_TrainData_setTrainTestSplit_11(IntPtr nativeObj, int count);
- // C++: void cv::ml::TrainData::setTrainTestSplitRatio(double ratio, bool shuffle = true)
- [DllImport(LIBNAME)]
- private static extern void ml_TrainData_setTrainTestSplitRatio_10(IntPtr nativeObj, double ratio, [MarshalAs(UnmanagedType.U1)] bool shuffle);
- [DllImport(LIBNAME)]
- private static extern void ml_TrainData_setTrainTestSplitRatio_11(IntPtr nativeObj, double ratio);
- // C++: void cv::ml::TrainData::shuffleTrainTest()
- [DllImport(LIBNAME)]
- private static extern void ml_TrainData_shuffleTrainTest_10(IntPtr nativeObj);
- // C++: Mat cv::ml::TrainData::getTestSamples()
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getTestSamples_10(IntPtr nativeObj);
- // C++: void cv::ml::TrainData::getNames(vector_String names)
- [DllImport(LIBNAME)]
- private static extern void ml_TrainData_getNames_10(IntPtr nativeObj, IntPtr names_mat_nativeObj);
- // C++: static Mat cv::ml::TrainData::getSubVector(Mat vec, Mat idx)
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getSubVector_10(IntPtr vec_nativeObj, IntPtr idx_nativeObj);
- // C++: static Mat cv::ml::TrainData::getSubMatrix(Mat matrix, Mat idx, int layout)
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_getSubMatrix_10(IntPtr matrix_nativeObj, IntPtr idx_nativeObj, int layout);
- // C++: static Ptr_TrainData cv::ml::TrainData::create(Mat samples, int layout, Mat responses, Mat varIdx = Mat(), Mat sampleIdx = Mat(), Mat sampleWeights = Mat(), Mat varType = Mat())
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_create_10(IntPtr samples_nativeObj, int layout, IntPtr responses_nativeObj, IntPtr varIdx_nativeObj, IntPtr sampleIdx_nativeObj, IntPtr sampleWeights_nativeObj, IntPtr varType_nativeObj);
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_create_11(IntPtr samples_nativeObj, int layout, IntPtr responses_nativeObj, IntPtr varIdx_nativeObj, IntPtr sampleIdx_nativeObj, IntPtr sampleWeights_nativeObj);
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_create_12(IntPtr samples_nativeObj, int layout, IntPtr responses_nativeObj, IntPtr varIdx_nativeObj, IntPtr sampleIdx_nativeObj);
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_create_13(IntPtr samples_nativeObj, int layout, IntPtr responses_nativeObj, IntPtr varIdx_nativeObj);
- [DllImport(LIBNAME)]
- private static extern IntPtr ml_TrainData_create_14(IntPtr samples_nativeObj, int layout, IntPtr responses_nativeObj);
- // native support for java finalize()
- [DllImport(LIBNAME)]
- private static extern void ml_TrainData_delete(IntPtr nativeObj);
- }
- }
|