123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- using OpenCVForUnity.CoreModule;
- using OpenCVForUnity.ImgprocModule;
- using OpenCVForUnity.MlModule;
- using OpenCVForUnity.UnityUtils;
- using UnityEngine;
- using UnityEngine.SceneManagement;
- namespace OpenCVForUnityExample
- {
- /// <summary>
- /// KNN Example
- /// An example to understand the concepts of the k-Nearest Neighbour (kNN) algorithm.
- /// https://docs.opencv.org/4.x/d5/d26/tutorial_py_knn_understanding.html
- /// </summary>
- public class KNNExample : MonoBehaviour
- {
- // Use this for initialization
- void Start()
- {
- //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
- Utils.setDebugMode(true);
- // Feature set containing (x,y) values of 25 known/training data
- Mat trainData = new Mat(25, 2, CvType.CV_32FC1);
- using (Mat trainDataInt = new Mat(25, 2, CvType.CV_16SC1))
- {
- Core.randu(trainDataInt, 0, 100); // random values
- trainDataInt.convertTo(trainData, CvType.CV_32FC1);
- }
- //Debug.Log(trainData.dump());
- // Label each one either Red or Blue with numbers 0 and 1
- Mat responses = new Mat(25, 1, CvType.CV_32FC1);
- using (Mat responsesInt = new Mat(25, 1, CvType.CV_16SC1))
- {
- Core.randu(responsesInt, 0, 2); // random values
- responsesInt.convertTo(responses, CvType.CV_32FC1);
- }
- //Debug.Log(responses.dump());
- KNearest knn = KNearest.create();
- knn.train(trainData, Ml.ROW_SAMPLE, responses);
- Mat newcomer = new Mat(1, 2, CvType.CV_32FC1, new Scalar(50, 50));
- Mat results = new Mat();
- Mat neighbours = new Mat();
- Mat dist = new Mat();
- knn.findNearest(newcomer, 3, results, neighbours, dist);
- Mat plotMat = new Mat(500, 500, CvType.CV_8UC4, new Scalar(255, 255, 255, 255));
- // Take Red neighbours and plot them
- // Take Blue neighbours and plot them
- for (int i = 0; i < trainData.rows(); i++)
- {
- bool red = ((int)responses.get(i, 0)[0] == 0);
- double x = trainData.get(i, 0)[0];
- double y = trainData.get(i, 1)[0];
- Imgproc.circle(plotMat, new Point(x * 5f, y * 5f), 5, red ? new Scalar(255, 0, 0, 255) : new Scalar(0, 0, 255, 255), -1);
- }
- // Plot newcomer and the neighbours distance circle
- Imgproc.circle(plotMat, new Point(50f * 5f, 50f * 5f), 5, new Scalar(0, 255, 0, 255), -1);
- Imgproc.circle(plotMat, new Point(50f * 5f, 50f * 5f), (int)(Mathf.Sqrt((float)dist.get(0, 2)[0]) * 5f), new Scalar(0, 255, 0, 255), 1);
- Debug.Log("0:Red / 1:Blue");
- Debug.Log("result: " + results.dump());
- Debug.Log("neighbours: " + neighbours.dump());
- Debug.Log("distance: " + dist.dump());
- Imgproc.putText(plotMat, "0:Red / 1:Blue", new Point(5, 30), Imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(0, 0, 0, 255));
- Imgproc.putText(plotMat, "result: " + results.dump(), new Point(5, 65), Imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(0, 0, 0, 255));
- Imgproc.putText(plotMat, "neighbours: " + neighbours.dump(), new Point(5, 100), Imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(0, 0, 0, 255));
- Imgproc.putText(plotMat, "distance: " + dist.dump(), new Point(5, 135), Imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(0, 0, 0, 255));
- Texture2D texture = new Texture2D(plotMat.cols(), plotMat.rows(), TextureFormat.RGBA32, false);
- Utils.matToTexture2D(plotMat, texture);
- gameObject.GetComponent<Renderer>().material.mainTexture = texture;
- Utils.setDebugMode(false);
- }
- // Update is called once per frame
- void Update()
- {
- }
- /// <summary>
- /// Raises the back button click event.
- /// </summary>
- public void OnBackButtonClick()
- {
- SceneManager.LoadScene("OpenCVForUnityExample");
- }
- }
- }
|