123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515 |
- using OpenCVForUnity.Calib3dModule;
- using OpenCVForUnity.CoreModule;
- using OpenCVForUnity.UtilsModule;
- using System;
- using System.Collections.Generic;
- using System.Runtime.InteropServices;
- namespace OpenCVForUnity.XimgprocModule
- {
- // C++: class Ximgproc
- public class Ximgproc
- {
- // C++: enum cv.ximgproc.AngleRangeOption
- public const int ARO_0_45 = 0;
- public const int ARO_45_90 = 1;
- public const int ARO_90_135 = 2;
- public const int ARO_315_0 = 3;
- public const int ARO_315_45 = 4;
- public const int ARO_45_135 = 5;
- public const int ARO_315_135 = 6;
- public const int ARO_CTR_HOR = 7;
- public const int ARO_CTR_VER = 8;
- // C++: enum cv.ximgproc.EdgeAwareFiltersList
- public const int DTF_NC = 0;
- public const int DTF_IC = 1;
- public const int DTF_RF = 2;
- public const int GUIDED_FILTER = 3;
- public const int AM_FILTER = 4;
- // C++: enum cv.ximgproc.HoughDeskewOption
- public const int HDO_RAW = 0;
- public const int HDO_DESKEW = 1;
- // C++: enum cv.ximgproc.HoughOp
- public const int FHT_MIN = 0;
- public const int FHT_MAX = 1;
- public const int FHT_ADD = 2;
- public const int FHT_AVE = 3;
- // C++: enum cv.ximgproc.LocalBinarizationMethods
- public const int BINARIZATION_NIBLACK = 0;
- public const int BINARIZATION_SAUVOLA = 1;
- public const int BINARIZATION_WOLF = 2;
- public const int BINARIZATION_NICK = 3;
- // C++: enum cv.ximgproc.SLICType
- public const int SLIC = 100;
- public const int SLICO = 101;
- public const int MSLIC = 102;
- // C++: enum cv.ximgproc.ThinningTypes
- public const int THINNING_ZHANGSUEN = 0;
- public const int THINNING_GUOHALL = 1;
- // C++: enum cv.ximgproc.WMFWeightType
- public const int WMF_EXP = 1;
- public const int WMF_IV1 = 1 << 1;
- public const int WMF_IV2 = 1 << 2;
- public const int WMF_COS = 1 << 3;
- public const int WMF_JAC = 1 << 4;
- public const int WMF_OFF = 1 << 5;
- //
- // C++: void cv::ximgproc::niBlackThreshold(Mat _src, Mat& _dst, double maxValue, int type, int blockSize, double k, int binarizationMethod = BINARIZATION_NIBLACK, double r = 128)
- //
- /**
- * Performs thresholding on input images using Niblack's technique or some of the
- * popular variations it inspired.
- *
- * The function transforms a grayscale image to a binary image according to the formulae:
- * <ul>
- * <li>
- * <b>THRESH_BINARY</b>
- * \(dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\)
- * </li>
- * <li>
- * <b>THRESH_BINARY_INV</b>
- * \(dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\)
- * where \(T(x,y)\) is a threshold calculated individually for each pixel.
- * </li>
- * </ul>
- *
- * The threshold value \(T(x, y)\) is determined based on the binarization method chosen. For
- * classic Niblack, it is the mean minus \( k \) times standard deviation of
- * \(\texttt{blockSize} \times\texttt{blockSize}\) neighborhood of \((x, y)\).
- *
- * The function can't process the image in-place.
- *
- * param _src Source 8-bit single-channel image.
- * param _dst Destination image of the same size and the same type as src.
- * param maxValue Non-zero value assigned to the pixels for which the condition is satisfied,
- * used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
- * param type Thresholding type, see cv::ThresholdTypes.
- * param blockSize Size of a pixel neighborhood that is used to calculate a threshold value
- * for the pixel: 3, 5, 7, and so on.
- * param k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
- * normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
- * the mean.
- * param binarizationMethod Binarization method to use. By default, Niblack's technique is used.
- * Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.
- * param r The user-adjustable parameter used by Sauvola's technique. This is the dynamic range
- * of standard deviation.
- * SEE: threshold, adaptiveThreshold
- */
- public static void niBlackThreshold(Mat _src, Mat _dst, double maxValue, int type, int blockSize, double k, int binarizationMethod, double r)
- {
- if (_src != null) _src.ThrowIfDisposed();
- if (_dst != null) _dst.ThrowIfDisposed();
- ximgproc_Ximgproc_niBlackThreshold_10(_src.nativeObj, _dst.nativeObj, maxValue, type, blockSize, k, binarizationMethod, r);
- }
- /**
- * Performs thresholding on input images using Niblack's technique or some of the
- * popular variations it inspired.
- *
- * The function transforms a grayscale image to a binary image according to the formulae:
- * <ul>
- * <li>
- * <b>THRESH_BINARY</b>
- * \(dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\)
- * </li>
- * <li>
- * <b>THRESH_BINARY_INV</b>
- * \(dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\)
- * where \(T(x,y)\) is a threshold calculated individually for each pixel.
- * </li>
- * </ul>
- *
- * The threshold value \(T(x, y)\) is determined based on the binarization method chosen. For
- * classic Niblack, it is the mean minus \( k \) times standard deviation of
- * \(\texttt{blockSize} \times\texttt{blockSize}\) neighborhood of \((x, y)\).
- *
- * The function can't process the image in-place.
- *
- * param _src Source 8-bit single-channel image.
- * param _dst Destination image of the same size and the same type as src.
- * param maxValue Non-zero value assigned to the pixels for which the condition is satisfied,
- * used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
- * param type Thresholding type, see cv::ThresholdTypes.
- * param blockSize Size of a pixel neighborhood that is used to calculate a threshold value
- * for the pixel: 3, 5, 7, and so on.
- * param k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
- * normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
- * the mean.
- * param binarizationMethod Binarization method to use. By default, Niblack's technique is used.
- * Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.
- * of standard deviation.
- * SEE: threshold, adaptiveThreshold
- */
- public static void niBlackThreshold(Mat _src, Mat _dst, double maxValue, int type, int blockSize, double k, int binarizationMethod)
- {
- if (_src != null) _src.ThrowIfDisposed();
- if (_dst != null) _dst.ThrowIfDisposed();
- ximgproc_Ximgproc_niBlackThreshold_11(_src.nativeObj, _dst.nativeObj, maxValue, type, blockSize, k, binarizationMethod);
- }
- /**
- * Performs thresholding on input images using Niblack's technique or some of the
- * popular variations it inspired.
- *
- * The function transforms a grayscale image to a binary image according to the formulae:
- * <ul>
- * <li>
- * <b>THRESH_BINARY</b>
- * \(dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\)
- * </li>
- * <li>
- * <b>THRESH_BINARY_INV</b>
- * \(dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\)
- * where \(T(x,y)\) is a threshold calculated individually for each pixel.
- * </li>
- * </ul>
- *
- * The threshold value \(T(x, y)\) is determined based on the binarization method chosen. For
- * classic Niblack, it is the mean minus \( k \) times standard deviation of
- * \(\texttt{blockSize} \times\texttt{blockSize}\) neighborhood of \((x, y)\).
- *
- * The function can't process the image in-place.
- *
- * param _src Source 8-bit single-channel image.
- * param _dst Destination image of the same size and the same type as src.
- * param maxValue Non-zero value assigned to the pixels for which the condition is satisfied,
- * used with the THRESH_BINARY and THRESH_BINARY_INV thresholding types.
- * param type Thresholding type, see cv::ThresholdTypes.
- * param blockSize Size of a pixel neighborhood that is used to calculate a threshold value
- * for the pixel: 3, 5, 7, and so on.
- * param k The user-adjustable parameter used by Niblack and inspired techniques. For Niblack, this is
- * normally a value between 0 and 1 that is multiplied with the standard deviation and subtracted from
- * the mean.
- * Other techniques can be specified, see cv::ximgproc::LocalBinarizationMethods.
- * of standard deviation.
- * SEE: threshold, adaptiveThreshold
- */
- public static void niBlackThreshold(Mat _src, Mat _dst, double maxValue, int type, int blockSize, double k)
- {
- if (_src != null) _src.ThrowIfDisposed();
- if (_dst != null) _dst.ThrowIfDisposed();
- ximgproc_Ximgproc_niBlackThreshold_12(_src.nativeObj, _dst.nativeObj, maxValue, type, blockSize, k);
- }
- //
- // C++: void cv::ximgproc::thinning(Mat src, Mat& dst, int thinningType = THINNING_ZHANGSUEN)
- //
- /**
- * Applies a binary blob thinning operation, to achieve a skeletization of the input image.
- *
- * The function transforms a binary blob image into a skeletized form using the technique of Zhang-Suen.
- *
- * param src Source 8-bit single-channel image, containing binary blobs, with blobs having 255 pixel values.
- * param dst Destination image of the same size and the same type as src. The function can work in-place.
- * param thinningType Value that defines which thinning algorithm should be used. See cv::ximgproc::ThinningTypes
- */
- public static void thinning(Mat src, Mat dst, int thinningType)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_thinning_10(src.nativeObj, dst.nativeObj, thinningType);
- }
- /**
- * Applies a binary blob thinning operation, to achieve a skeletization of the input image.
- *
- * The function transforms a binary blob image into a skeletized form using the technique of Zhang-Suen.
- *
- * param src Source 8-bit single-channel image, containing binary blobs, with blobs having 255 pixel values.
- * param dst Destination image of the same size and the same type as src. The function can work in-place.
- */
- public static void thinning(Mat src, Mat dst)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_thinning_11(src.nativeObj, dst.nativeObj);
- }
- //
- // C++: void cv::ximgproc::anisotropicDiffusion(Mat src, Mat& dst, float alpha, float K, int niters)
- //
- /**
- * Performs anisotropic diffusion on an image.
- *
- * The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation:
- *
- * \({\frac {\partial I}{\partial t}}={\mathrm {div}}\left(c(x,y,t)\nabla I\right)=\nabla c\cdot \nabla I+c(x,y,t)\Delta I\)
- *
- * Suggested functions for c(x,y,t) are:
- *
- * \(c\left(\|\nabla I\|\right)=e^{{-\left(\|\nabla I\|/K\right)^{2}}}\)
- *
- * or
- *
- * \( c\left(\|\nabla I\|\right)={\frac {1}{1+\left({\frac {\|\nabla I\|}{K}}\right)^{2}}} \)
- *
- * param src Source image with 3 channels.
- * param dst Destination image of the same size and the same number of channels as src .
- * param alpha The amount of time to step forward by on each iteration (normally, it's between 0 and 1).
- * param K sensitivity to the edges
- * param niters The number of iterations
- */
- public static void anisotropicDiffusion(Mat src, Mat dst, float alpha, float K, int niters)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_anisotropicDiffusion_10(src.nativeObj, dst.nativeObj, alpha, K, niters);
- }
- //
- // C++: void cv::ximgproc::createQuaternionImage(Mat img, Mat& qimg)
- //
- /**
- * creates a quaternion image.
- *
- * param img automatically generated
- * param qimg automatically generated
- */
- public static void createQuaternionImage(Mat img, Mat qimg)
- {
- if (img != null) img.ThrowIfDisposed();
- if (qimg != null) qimg.ThrowIfDisposed();
- ximgproc_Ximgproc_createQuaternionImage_10(img.nativeObj, qimg.nativeObj);
- }
- //
- // C++: void cv::ximgproc::qconj(Mat qimg, Mat& qcimg)
- //
- /**
- * calculates conjugate of a quaternion image.
- *
- * param qimg automatically generated
- * param qcimg automatically generated
- */
- public static void qconj(Mat qimg, Mat qcimg)
- {
- if (qimg != null) qimg.ThrowIfDisposed();
- if (qcimg != null) qcimg.ThrowIfDisposed();
- ximgproc_Ximgproc_qconj_10(qimg.nativeObj, qcimg.nativeObj);
- }
- //
- // C++: void cv::ximgproc::qunitary(Mat qimg, Mat& qnimg)
- //
- /**
- * divides each element by its modulus.
- *
- * param qimg automatically generated
- * param qnimg automatically generated
- */
- public static void qunitary(Mat qimg, Mat qnimg)
- {
- if (qimg != null) qimg.ThrowIfDisposed();
- if (qnimg != null) qnimg.ThrowIfDisposed();
- ximgproc_Ximgproc_qunitary_10(qimg.nativeObj, qnimg.nativeObj);
- }
- //
- // C++: void cv::ximgproc::qmultiply(Mat src1, Mat src2, Mat& dst)
- //
- /**
- * Calculates the per-element quaternion product of two arrays
- *
- * param src1 automatically generated
- * param src2 automatically generated
- * param dst automatically generated
- */
- public static void qmultiply(Mat src1, Mat src2, Mat dst)
- {
- if (src1 != null) src1.ThrowIfDisposed();
- if (src2 != null) src2.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_qmultiply_10(src1.nativeObj, src2.nativeObj, dst.nativeObj);
- }
- //
- // C++: void cv::ximgproc::qdft(Mat img, Mat& qimg, int flags, bool sideLeft)
- //
- /**
- * Performs a forward or inverse Discrete quaternion Fourier transform of a 2D quaternion array.
- *
- * param img automatically generated
- * param qimg automatically generated
- * param flags automatically generated
- * param sideLeft automatically generated
- */
- public static void qdft(Mat img, Mat qimg, int flags, bool sideLeft)
- {
- if (img != null) img.ThrowIfDisposed();
- if (qimg != null) qimg.ThrowIfDisposed();
- ximgproc_Ximgproc_qdft_10(img.nativeObj, qimg.nativeObj, flags, sideLeft);
- }
- //
- // C++: void cv::ximgproc::colorMatchTemplate(Mat img, Mat templ, Mat& result)
- //
- /**
- * Compares a color template against overlapped color image regions.
- *
- * param img automatically generated
- * param templ automatically generated
- * param result automatically generated
- */
- public static void colorMatchTemplate(Mat img, Mat templ, Mat result)
- {
- if (img != null) img.ThrowIfDisposed();
- if (templ != null) templ.ThrowIfDisposed();
- if (result != null) result.ThrowIfDisposed();
- ximgproc_Ximgproc_colorMatchTemplate_10(img.nativeObj, templ.nativeObj, result.nativeObj);
- }
- //
- // C++: void cv::ximgproc::GradientDericheY(Mat op, Mat& dst, double alpha, double omega)
- //
- /**
- * Applies Y Deriche filter to an image.
- *
- * For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
- *
- *
- * param op automatically generated
- * param dst automatically generated
- * param alpha automatically generated
- * param omega automatically generated
- */
- public static void GradientDericheY(Mat op, Mat dst, double alpha, double omega)
- {
- if (op != null) op.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_GradientDericheY_10(op.nativeObj, dst.nativeObj, alpha, omega);
- }
- //
- // C++: void cv::ximgproc::GradientDericheX(Mat op, Mat& dst, double alpha, double omega)
- //
- /**
- * Applies X Deriche filter to an image.
- *
- * For more details about this implementation, please see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5736&rep=rep1&type=pdf
- *
- *
- * param op automatically generated
- * param dst automatically generated
- * param alpha automatically generated
- * param omega automatically generated
- */
- public static void GradientDericheX(Mat op, Mat dst, double alpha, double omega)
- {
- if (op != null) op.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_GradientDericheX_10(op.nativeObj, dst.nativeObj, alpha, omega);
- }
- //
- // C++: Ptr_DisparityWLSFilter cv::ximgproc::createDisparityWLSFilter(Ptr_StereoMatcher matcher_left)
- //
- /**
- * Convenience factory method that creates an instance of DisparityWLSFilter and sets up all the relevant
- * filter parameters automatically based on the matcher instance. Currently supports only StereoBM and StereoSGBM.
- *
- * param matcher_left stereo matcher instance that will be used with the filter
- * return automatically generated
- */
- public static DisparityWLSFilter createDisparityWLSFilter(StereoMatcher matcher_left)
- {
- if (matcher_left != null) matcher_left.ThrowIfDisposed();
- return DisparityWLSFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createDisparityWLSFilter_10(matcher_left.getNativeObjAddr())));
- }
- //
- // C++: Ptr_StereoMatcher cv::ximgproc::createRightMatcher(Ptr_StereoMatcher matcher_left)
- //
- /**
- * Convenience method to set up the matcher for computing the right-view disparity map
- * that is required in case of filtering with confidence.
- *
- * param matcher_left main stereo matcher instance that will be used with the filter
- * return automatically generated
- */
- public static StereoMatcher createRightMatcher(StereoMatcher matcher_left)
- {
- if (matcher_left != null) matcher_left.ThrowIfDisposed();
- return StereoMatcher.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createRightMatcher_10(matcher_left.getNativeObjAddr())));
- }
- //
- // C++: Ptr_DisparityWLSFilter cv::ximgproc::createDisparityWLSFilterGeneric(bool use_confidence)
- //
- /**
- * More generic factory method, create instance of DisparityWLSFilter and execute basic
- * initialization routines. When using this method you will need to set-up the ROI, matchers and
- * other parameters by yourself.
- *
- * param use_confidence filtering with confidence requires two disparity maps (for the left and right views) and is
- * approximately two times slower. However, quality is typically significantly better.
- * return automatically generated
- */
- public static DisparityWLSFilter createDisparityWLSFilterGeneric(bool use_confidence)
- {
- return DisparityWLSFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createDisparityWLSFilterGeneric_10(use_confidence)));
- }
- //
- // C++: int cv::ximgproc::readGT(String src_path, Mat& dst)
- //
- /**
- * Function for reading ground truth disparity maps. Supports basic Middlebury
- * and MPI-Sintel formats. Note that the resulting disparity map is scaled by 16.
- *
- * param src_path path to the image, containing ground-truth disparity map
- *
- * param dst output disparity map, CV_16S depth
- *
- * return returns zero if successfully read the ground truth
- */
- public static int readGT(string src_path, Mat dst)
- {
- if (dst != null) dst.ThrowIfDisposed();
- return ximgproc_Ximgproc_readGT_10(src_path, dst.nativeObj);
- }
- //
- // C++: double cv::ximgproc::computeMSE(Mat GT, Mat src, Rect ROI)
- //
- /**
- * Function for computing mean square error for disparity maps
- *
- * param GT ground truth disparity map
- *
- * param src disparity map to evaluate
- *
- * param ROI region of interest
- *
- * return returns mean square error between GT and src
- */
- public static double computeMSE(Mat GT, Mat src, Rect ROI)
- {
- if (GT != null) GT.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- return ximgproc_Ximgproc_computeMSE_10(GT.nativeObj, src.nativeObj, ROI.x, ROI.y, ROI.width, ROI.height);
- }
- //
- // C++: double cv::ximgproc::computeBadPixelPercent(Mat GT, Mat src, Rect ROI, int thresh = 24)
- //
- /**
- * Function for computing the percent of "bad" pixels in the disparity map
- * (pixels where error is higher than a specified threshold)
- *
- * param GT ground truth disparity map
- *
- * param src disparity map to evaluate
- *
- * param ROI region of interest
- *
- * param thresh threshold used to determine "bad" pixels
- *
- * return returns mean square error between GT and src
- */
- public static double computeBadPixelPercent(Mat GT, Mat src, Rect ROI, int thresh)
- {
- if (GT != null) GT.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- return ximgproc_Ximgproc_computeBadPixelPercent_10(GT.nativeObj, src.nativeObj, ROI.x, ROI.y, ROI.width, ROI.height, thresh);
- }
- /**
- * Function for computing the percent of "bad" pixels in the disparity map
- * (pixels where error is higher than a specified threshold)
- *
- * param GT ground truth disparity map
- *
- * param src disparity map to evaluate
- *
- * param ROI region of interest
- *
- *
- * return returns mean square error between GT and src
- */
- public static double computeBadPixelPercent(Mat GT, Mat src, Rect ROI)
- {
- if (GT != null) GT.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- return ximgproc_Ximgproc_computeBadPixelPercent_11(GT.nativeObj, src.nativeObj, ROI.x, ROI.y, ROI.width, ROI.height);
- }
- //
- // C++: void cv::ximgproc::getDisparityVis(Mat src, Mat& dst, double scale = 1.0)
- //
- /**
- * Function for creating a disparity map visualization (clamped CV_8U image)
- *
- * param src input disparity map (CV_16S depth)
- *
- * param dst output visualization
- *
- * param scale disparity map will be multiplied by this value for visualization
- */
- public static void getDisparityVis(Mat src, Mat dst, double scale)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_getDisparityVis_10(src.nativeObj, dst.nativeObj, scale);
- }
- /**
- * Function for creating a disparity map visualization (clamped CV_8U image)
- *
- * param src input disparity map (CV_16S depth)
- *
- * param dst output visualization
- *
- */
- public static void getDisparityVis(Mat src, Mat dst)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_getDisparityVis_11(src.nativeObj, dst.nativeObj);
- }
- //
- // C++: Ptr_EdgeBoxes cv::ximgproc::createEdgeBoxes(float alpha = 0.65f, float beta = 0.75f, float eta = 1, float minScore = 0.01f, int maxBoxes = 10000, float edgeMinMag = 0.1f, float edgeMergeThr = 0.5f, float clusterMinMag = 0.5f, float maxAspectRatio = 3, float minBoxArea = 1000, float gamma = 2, float kappa = 1.5f)
- //
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * param minScore min score of boxes to detect.
- * param maxBoxes max number of boxes to detect.
- * param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- * param maxAspectRatio max aspect ratio of boxes.
- * param minBoxArea minimum area of boxes.
- * param gamma affinity sensitivity.
- * param kappa scale sensitivity.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag, float maxAspectRatio, float minBoxArea, float gamma, float kappa)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_10(alpha, beta, eta, minScore, maxBoxes, edgeMinMag, edgeMergeThr, clusterMinMag, maxAspectRatio, minBoxArea, gamma, kappa)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * param minScore min score of boxes to detect.
- * param maxBoxes max number of boxes to detect.
- * param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- * param maxAspectRatio max aspect ratio of boxes.
- * param minBoxArea minimum area of boxes.
- * param gamma affinity sensitivity.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag, float maxAspectRatio, float minBoxArea, float gamma)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_11(alpha, beta, eta, minScore, maxBoxes, edgeMinMag, edgeMergeThr, clusterMinMag, maxAspectRatio, minBoxArea, gamma)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * param minScore min score of boxes to detect.
- * param maxBoxes max number of boxes to detect.
- * param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- * param maxAspectRatio max aspect ratio of boxes.
- * param minBoxArea minimum area of boxes.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag, float maxAspectRatio, float minBoxArea)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_12(alpha, beta, eta, minScore, maxBoxes, edgeMinMag, edgeMergeThr, clusterMinMag, maxAspectRatio, minBoxArea)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * param minScore min score of boxes to detect.
- * param maxBoxes max number of boxes to detect.
- * param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- * param maxAspectRatio max aspect ratio of boxes.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag, float maxAspectRatio)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_13(alpha, beta, eta, minScore, maxBoxes, edgeMinMag, edgeMergeThr, clusterMinMag, maxAspectRatio)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * param minScore min score of boxes to detect.
- * param maxBoxes max number of boxes to detect.
- * param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * param clusterMinMag cluster min magnitude. Increase to trade off accuracy for speed.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_14(alpha, beta, eta, minScore, maxBoxes, edgeMinMag, edgeMergeThr, clusterMinMag)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * param minScore min score of boxes to detect.
- * param maxBoxes max number of boxes to detect.
- * param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * param edgeMergeThr edge merge threshold. Increase to trade off accuracy for speed.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_15(alpha, beta, eta, minScore, maxBoxes, edgeMinMag, edgeMergeThr)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * param minScore min score of boxes to detect.
- * param maxBoxes max number of boxes to detect.
- * param edgeMinMag edge min magnitude. Increase to trade off accuracy for speed.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_16(alpha, beta, eta, minScore, maxBoxes, edgeMinMag)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * param minScore min score of boxes to detect.
- * param maxBoxes max number of boxes to detect.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore, int maxBoxes)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_17(alpha, beta, eta, minScore, maxBoxes)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * param minScore min score of boxes to detect.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta, float minScore)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_18(alpha, beta, eta, minScore)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * param eta adaptation rate for nms threshold.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta, float eta)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_19(alpha, beta, eta)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * param beta nms threshold for object proposals.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha, float beta)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_110(alpha, beta)));
- }
- /**
- * Creates a Edgeboxes
- *
- * param alpha step size of sliding window search.
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes(float alpha)
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_111(alpha)));
- }
- /**
- * Creates a Edgeboxes
- *
- * return automatically generated
- */
- public static EdgeBoxes createEdgeBoxes()
- {
- return EdgeBoxes.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeBoxes_112()));
- }
- //
- // C++: void cv::ximgproc::edgePreservingFilter(Mat src, Mat& dst, int d, double threshold)
- //
- /**
- * Smoothes an image using the Edge-Preserving filter.
- *
- * The function smoothes Gaussian noise as well as salt & pepper noise.
- * For more details about this implementation, please see
- * [ReiWoe18] Reich, S. and Wörgötter, F. and Dellen, B. (2018). A Real-Time Edge-Preserving Denoising Filter. Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP): Visapp, 85-94, 4. DOI: 10.5220/0006509000850094.
- *
- * param src Source 8-bit 3-channel image.
- * param dst Destination image of the same size and type as src.
- * param d Diameter of each pixel neighborhood that is used during filtering. Must be greater or equal 3.
- * param threshold Threshold, which distinguishes between noise, outliers, and data.
- */
- public static void edgePreservingFilter(Mat src, Mat dst, int d, double threshold)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_edgePreservingFilter_10(src.nativeObj, dst.nativeObj, d, threshold);
- }
- //
- // C++: Ptr_EdgeDrawing cv::ximgproc::createEdgeDrawing()
- //
- /**
- * Creates a smart pointer to a EdgeDrawing object and initializes it
- * return automatically generated
- */
- public static EdgeDrawing createEdgeDrawing()
- {
- return EdgeDrawing.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeDrawing_10()));
- }
- //
- // C++: Ptr_DTFilter cv::ximgproc::createDTFilter(Mat guide, double sigmaSpatial, double sigmaColor, int mode = DTF_NC, int numIters = 3)
- //
- /**
- * Factory method, create instance of DTFilter and produce initialization routines.
- *
- * param guide guided image (used to build transformed distance, which describes edge structure of
- * guided image).
- *
- * param sigmaSpatial \({\sigma}_H\) parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- *
- * param sigmaColor \({\sigma}_r\) parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- *
- * param mode one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
- * filtering 2D signals in the article.
- *
- * param numIters optional number of iterations used for filtering, 3 is quite enough.
- *
- * For more details about Domain Transform filter parameters, see the original article CITE: Gastal11 and
- * [Domain Transform filter homepage](http://www.inf.ufrgs.br/~eslgastal/DomainTransform/).
- * return automatically generated
- */
- public static DTFilter createDTFilter(Mat guide, double sigmaSpatial, double sigmaColor, int mode, int numIters)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return DTFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createDTFilter_10(guide.nativeObj, sigmaSpatial, sigmaColor, mode, numIters)));
- }
- /**
- * Factory method, create instance of DTFilter and produce initialization routines.
- *
- * param guide guided image (used to build transformed distance, which describes edge structure of
- * guided image).
- *
- * param sigmaSpatial \({\sigma}_H\) parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- *
- * param sigmaColor \({\sigma}_r\) parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- *
- * param mode one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
- * filtering 2D signals in the article.
- *
- *
- * For more details about Domain Transform filter parameters, see the original article CITE: Gastal11 and
- * [Domain Transform filter homepage](http://www.inf.ufrgs.br/~eslgastal/DomainTransform/).
- * return automatically generated
- */
- public static DTFilter createDTFilter(Mat guide, double sigmaSpatial, double sigmaColor, int mode)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return DTFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createDTFilter_11(guide.nativeObj, sigmaSpatial, sigmaColor, mode)));
- }
- /**
- * Factory method, create instance of DTFilter and produce initialization routines.
- *
- * param guide guided image (used to build transformed distance, which describes edge structure of
- * guided image).
- *
- * param sigmaSpatial \({\sigma}_H\) parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- *
- * param sigmaColor \({\sigma}_r\) parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- *
- * filtering 2D signals in the article.
- *
- *
- * For more details about Domain Transform filter parameters, see the original article CITE: Gastal11 and
- * [Domain Transform filter homepage](http://www.inf.ufrgs.br/~eslgastal/DomainTransform/).
- * return automatically generated
- */
- public static DTFilter createDTFilter(Mat guide, double sigmaSpatial, double sigmaColor)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return DTFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createDTFilter_12(guide.nativeObj, sigmaSpatial, sigmaColor)));
- }
- //
- // C++: void cv::ximgproc::dtFilter(Mat guide, Mat src, Mat& dst, double sigmaSpatial, double sigmaColor, int mode = DTF_NC, int numIters = 3)
- //
- /**
- * Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
- * guided image then use DTFilter interface to avoid extra computations on initialization stage.
- *
- * param guide guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
- * depth and up to 4 channels.
- * param src filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
- * param dst destination image
- * param sigmaSpatial \({\sigma}_H\) parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- * param sigmaColor \({\sigma}_r\) parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- * param mode one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
- * filtering 2D signals in the article.
- * param numIters optional number of iterations used for filtering, 3 is quite enough.
- * SEE: bilateralFilter, guidedFilter, amFilter
- */
- public static void dtFilter(Mat guide, Mat src, Mat dst, double sigmaSpatial, double sigmaColor, int mode, int numIters)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_dtFilter_10(guide.nativeObj, src.nativeObj, dst.nativeObj, sigmaSpatial, sigmaColor, mode, numIters);
- }
- /**
- * Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
- * guided image then use DTFilter interface to avoid extra computations on initialization stage.
- *
- * param guide guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
- * depth and up to 4 channels.
- * param src filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
- * param dst destination image
- * param sigmaSpatial \({\sigma}_H\) parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- * param sigmaColor \({\sigma}_r\) parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- * param mode one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
- * filtering 2D signals in the article.
- * SEE: bilateralFilter, guidedFilter, amFilter
- */
- public static void dtFilter(Mat guide, Mat src, Mat dst, double sigmaSpatial, double sigmaColor, int mode)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_dtFilter_11(guide.nativeObj, src.nativeObj, dst.nativeObj, sigmaSpatial, sigmaColor, mode);
- }
- /**
- * Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
- * guided image then use DTFilter interface to avoid extra computations on initialization stage.
- *
- * param guide guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
- * depth and up to 4 channels.
- * param src filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.
- * param dst destination image
- * param sigmaSpatial \({\sigma}_H\) parameter in the original article, it's similar to the sigma in the
- * coordinate space into bilateralFilter.
- * param sigmaColor \({\sigma}_r\) parameter in the original article, it's similar to the sigma in the
- * color space into bilateralFilter.
- * filtering 2D signals in the article.
- * SEE: bilateralFilter, guidedFilter, amFilter
- */
- public static void dtFilter(Mat guide, Mat src, Mat dst, double sigmaSpatial, double sigmaColor)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_dtFilter_12(guide.nativeObj, src.nativeObj, dst.nativeObj, sigmaSpatial, sigmaColor);
- }
- //
- // C++: Ptr_GuidedFilter cv::ximgproc::createGuidedFilter(Mat guide, int radius, double eps)
- //
- /**
- * Factory method, create instance of GuidedFilter and produce initialization routines.
- *
- * param guide guided image (or array of images) with up to 3 channels, if it have more then 3
- * channels then only first 3 channels will be used.
- *
- * param radius radius of Guided Filter.
- *
- * param eps regularization term of Guided Filter. \({eps}^2\) is similar to the sigma in the color
- * space into bilateralFilter.
- *
- * For more details about Guided Filter parameters, see the original article CITE: Kaiming10 .
- * return automatically generated
- */
- public static GuidedFilter createGuidedFilter(Mat guide, int radius, double eps)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return GuidedFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createGuidedFilter_10(guide.nativeObj, radius, eps)));
- }
- //
- // C++: void cv::ximgproc::guidedFilter(Mat guide, Mat src, Mat& dst, int radius, double eps, int dDepth = -1)
- //
- /**
- * Simple one-line Guided Filter call.
- *
- * If you have multiple images to filter with the same guided image then use GuidedFilter interface to
- * avoid extra computations on initialization stage.
- *
- * param guide guided image (or array of images) with up to 3 channels, if it have more then 3
- * channels then only first 3 channels will be used.
- *
- * param src filtering image with any numbers of channels.
- *
- * param dst output image.
- *
- * param radius radius of Guided Filter.
- *
- * param eps regularization term of Guided Filter. \({eps}^2\) is similar to the sigma in the color
- * space into bilateralFilter.
- *
- * param dDepth optional depth of the output image.
- *
- * SEE: bilateralFilter, dtFilter, amFilter
- */
- public static void guidedFilter(Mat guide, Mat src, Mat dst, int radius, double eps, int dDepth)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_guidedFilter_10(guide.nativeObj, src.nativeObj, dst.nativeObj, radius, eps, dDepth);
- }
- /**
- * Simple one-line Guided Filter call.
- *
- * If you have multiple images to filter with the same guided image then use GuidedFilter interface to
- * avoid extra computations on initialization stage.
- *
- * param guide guided image (or array of images) with up to 3 channels, if it have more then 3
- * channels then only first 3 channels will be used.
- *
- * param src filtering image with any numbers of channels.
- *
- * param dst output image.
- *
- * param radius radius of Guided Filter.
- *
- * param eps regularization term of Guided Filter. \({eps}^2\) is similar to the sigma in the color
- * space into bilateralFilter.
- *
- *
- * SEE: bilateralFilter, dtFilter, amFilter
- */
- public static void guidedFilter(Mat guide, Mat src, Mat dst, int radius, double eps)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_guidedFilter_11(guide.nativeObj, src.nativeObj, dst.nativeObj, radius, eps);
- }
- //
- // C++: Ptr_AdaptiveManifoldFilter cv::ximgproc::createAMFilter(double sigma_s, double sigma_r, bool adjust_outliers = false)
- //
- /**
- * Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.
- *
- * param sigma_s spatial standard deviation.
- *
- * param sigma_r color space standard deviation, it is similar to the sigma in the color space into
- * bilateralFilter.
- *
- * param adjust_outliers optional, specify perform outliers adjust operation or not, (Eq. 9) in the
- * original paper.
- *
- * For more details about Adaptive Manifold Filter parameters, see the original article CITE: Gastal12 .
- *
- * <b>Note:</b> Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
- * color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
- * sigmas in bilateralFilter and dtFilter functions.
- * return automatically generated
- */
- public static AdaptiveManifoldFilter createAMFilter(double sigma_s, double sigma_r, bool adjust_outliers)
- {
- return AdaptiveManifoldFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createAMFilter_10(sigma_s, sigma_r, adjust_outliers)));
- }
- /**
- * Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.
- *
- * param sigma_s spatial standard deviation.
- *
- * param sigma_r color space standard deviation, it is similar to the sigma in the color space into
- * bilateralFilter.
- *
- * original paper.
- *
- * For more details about Adaptive Manifold Filter parameters, see the original article CITE: Gastal12 .
- *
- * <b>Note:</b> Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
- * color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
- * sigmas in bilateralFilter and dtFilter functions.
- * return automatically generated
- */
- public static AdaptiveManifoldFilter createAMFilter(double sigma_s, double sigma_r)
- {
- return AdaptiveManifoldFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createAMFilter_11(sigma_s, sigma_r)));
- }
- //
- // C++: void cv::ximgproc::amFilter(Mat joint, Mat src, Mat& dst, double sigma_s, double sigma_r, bool adjust_outliers = false)
- //
- /**
- * Simple one-line Adaptive Manifold Filter call.
- *
- * param joint joint (also called as guided) image or array of images with any numbers of channels.
- *
- * param src filtering image with any numbers of channels.
- *
- * param dst output image.
- *
- * param sigma_s spatial standard deviation.
- *
- * param sigma_r color space standard deviation, it is similar to the sigma in the color space into
- * bilateralFilter.
- *
- * param adjust_outliers optional, specify perform outliers adjust operation or not, (Eq. 9) in the
- * original paper.
- *
- * <b>Note:</b> Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
- * color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
- * sigmas in bilateralFilter and dtFilter functions. SEE: bilateralFilter, dtFilter, guidedFilter
- */
- public static void amFilter(Mat joint, Mat src, Mat dst, double sigma_s, double sigma_r, bool adjust_outliers)
- {
- if (joint != null) joint.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_amFilter_10(joint.nativeObj, src.nativeObj, dst.nativeObj, sigma_s, sigma_r, adjust_outliers);
- }
- /**
- * Simple one-line Adaptive Manifold Filter call.
- *
- * param joint joint (also called as guided) image or array of images with any numbers of channels.
- *
- * param src filtering image with any numbers of channels.
- *
- * param dst output image.
- *
- * param sigma_s spatial standard deviation.
- *
- * param sigma_r color space standard deviation, it is similar to the sigma in the color space into
- * bilateralFilter.
- *
- * original paper.
- *
- * <b>Note:</b> Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
- * color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
- * sigmas in bilateralFilter and dtFilter functions. SEE: bilateralFilter, dtFilter, guidedFilter
- */
- public static void amFilter(Mat joint, Mat src, Mat dst, double sigma_s, double sigma_r)
- {
- if (joint != null) joint.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_amFilter_11(joint.nativeObj, src.nativeObj, dst.nativeObj, sigma_s, sigma_r);
- }
- //
- // C++: void cv::ximgproc::jointBilateralFilter(Mat joint, Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT)
- //
- /**
- * Applies the joint bilateral filter to an image.
- *
- * param joint Joint 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * param src Source 8-bit or floating-point, 1-channel or 3-channel image with the same depth as joint
- * image.
- *
- * param dst Destination image of the same size and type as src .
- *
- * param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- * param borderType
- *
- * <b>Note:</b> bilateralFilter and jointBilateralFilter use L1 norm to compute difference between colors.
- *
- * SEE: bilateralFilter, amFilter
- */
- public static void jointBilateralFilter(Mat joint, Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace, int borderType)
- {
- if (joint != null) joint.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_jointBilateralFilter_10(joint.nativeObj, src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace, borderType);
- }
- /**
- * Applies the joint bilateral filter to an image.
- *
- * param joint Joint 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * param src Source 8-bit or floating-point, 1-channel or 3-channel image with the same depth as joint
- * image.
- *
- * param dst Destination image of the same size and type as src .
- *
- * param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- * <b>Note:</b> bilateralFilter and jointBilateralFilter use L1 norm to compute difference between colors.
- *
- * SEE: bilateralFilter, amFilter
- */
- public static void jointBilateralFilter(Mat joint, Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace)
- {
- if (joint != null) joint.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_jointBilateralFilter_11(joint.nativeObj, src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace);
- }
- //
- // C++: void cv::ximgproc::bilateralTextureFilter(Mat src, Mat& dst, int fr = 3, int numIter = 1, double sigmaAlpha = -1., double sigmaAvg = -1.)
- //
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * param dst Destination image of the same size and type as src.
- *
- * param fr Radius of kernel to be used for filtering. It should be positive integer
- *
- * param numIter Number of iterations of algorithm, It should be positive integer
- *
- * param sigmaAlpha Controls the sharpness of the weight transition from edges to smooth/texture regions, where
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * param sigmaAvg Range blur parameter for texture blurring. Larger value makes result to be more blurred. When the
- * value is negative, it is automatically calculated as described in the paper.
- *
- * SEE: rollingGuidanceFilter, bilateralFilter
- */
- public static void bilateralTextureFilter(Mat src, Mat dst, int fr, int numIter, double sigmaAlpha, double sigmaAvg)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_bilateralTextureFilter_10(src.nativeObj, dst.nativeObj, fr, numIter, sigmaAlpha, sigmaAvg);
- }
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * param dst Destination image of the same size and type as src.
- *
- * param fr Radius of kernel to be used for filtering. It should be positive integer
- *
- * param numIter Number of iterations of algorithm, It should be positive integer
- *
- * param sigmaAlpha Controls the sharpness of the weight transition from edges to smooth/texture regions, where
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * value is negative, it is automatically calculated as described in the paper.
- *
- * SEE: rollingGuidanceFilter, bilateralFilter
- */
- public static void bilateralTextureFilter(Mat src, Mat dst, int fr, int numIter, double sigmaAlpha)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_bilateralTextureFilter_11(src.nativeObj, dst.nativeObj, fr, numIter, sigmaAlpha);
- }
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * param dst Destination image of the same size and type as src.
- *
- * param fr Radius of kernel to be used for filtering. It should be positive integer
- *
- * param numIter Number of iterations of algorithm, It should be positive integer
- *
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * value is negative, it is automatically calculated as described in the paper.
- *
- * SEE: rollingGuidanceFilter, bilateralFilter
- */
- public static void bilateralTextureFilter(Mat src, Mat dst, int fr, int numIter)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_bilateralTextureFilter_12(src.nativeObj, dst.nativeObj, fr, numIter);
- }
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * param dst Destination image of the same size and type as src.
- *
- * param fr Radius of kernel to be used for filtering. It should be positive integer
- *
- *
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * value is negative, it is automatically calculated as described in the paper.
- *
- * SEE: rollingGuidanceFilter, bilateralFilter
- */
- public static void bilateralTextureFilter(Mat src, Mat dst, int fr)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_bilateralTextureFilter_13(src.nativeObj, dst.nativeObj, fr);
- }
- /**
- * Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
- * For more details about this filter see CITE: Cho2014.
- *
- * param src Source image whose depth is 8-bit UINT or 32-bit FLOAT
- *
- * param dst Destination image of the same size and type as src.
- *
- *
- *
- * a bigger value means sharper transition. When the value is negative, it is automatically calculated.
- *
- * value is negative, it is automatically calculated as described in the paper.
- *
- * SEE: rollingGuidanceFilter, bilateralFilter
- */
- public static void bilateralTextureFilter(Mat src, Mat dst)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_bilateralTextureFilter_14(src.nativeObj, dst.nativeObj);
- }
- //
- // C++: void cv::ximgproc::rollingGuidanceFilter(Mat src, Mat& dst, int d = -1, double sigmaColor = 25, double sigmaSpace = 3, int numOfIter = 4, int borderType = BORDER_DEFAULT)
- //
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * param dst Destination image of the same size and type as src.
- *
- * param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- * param numOfIter Number of iterations of joint edge-preserving filtering applied on the source image.
- *
- * param borderType
- *
- * <b>Note:</b> rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * SEE: jointBilateralFilter, bilateralFilter, amFilter
- */
- public static void rollingGuidanceFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace, int numOfIter, int borderType)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_rollingGuidanceFilter_10(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace, numOfIter, borderType);
- }
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * param dst Destination image of the same size and type as src.
- *
- * param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- * param numOfIter Number of iterations of joint edge-preserving filtering applied on the source image.
- *
- *
- * <b>Note:</b> rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * SEE: jointBilateralFilter, bilateralFilter, amFilter
- */
- public static void rollingGuidanceFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace, int numOfIter)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_rollingGuidanceFilter_11(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace, numOfIter);
- }
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * param dst Destination image of the same size and type as src.
- *
- * param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- *
- * <b>Note:</b> rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * SEE: jointBilateralFilter, bilateralFilter, amFilter
- */
- public static void rollingGuidanceFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_rollingGuidanceFilter_12(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace);
- }
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * param dst Destination image of the same size and type as src.
- *
- * param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- *
- * <b>Note:</b> rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * SEE: jointBilateralFilter, bilateralFilter, amFilter
- */
- public static void rollingGuidanceFilter(Mat src, Mat dst, int d, double sigmaColor)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_rollingGuidanceFilter_13(src.nativeObj, dst.nativeObj, d, sigmaColor);
- }
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * param dst Destination image of the same size and type as src.
- *
- * param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace .
- *
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- *
- * <b>Note:</b> rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * SEE: jointBilateralFilter, bilateralFilter, amFilter
- */
- public static void rollingGuidanceFilter(Mat src, Mat dst, int d)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_rollingGuidanceFilter_14(src.nativeObj, dst.nativeObj, d);
- }
- /**
- * Applies the rolling guidance filter to an image.
- *
- * For more details, please see CITE: zhang2014rolling
- *
- * param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- *
- * param dst Destination image of the same size and type as src.
- *
- * it is computed from sigmaSpace .
- *
- * farther colors within the pixel neighborhood (see sigmaSpace ) will be mixed together, resulting in
- * larger areas of semi-equal color.
- *
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor ).
- * When d>0 , it specifies the neighborhood size regardless of sigmaSpace . Otherwise, d is
- * proportional to sigmaSpace .
- *
- *
- *
- * <b>Note:</b> rollingGuidanceFilter uses jointBilateralFilter as the edge-preserving filter.
- *
- * SEE: jointBilateralFilter, bilateralFilter, amFilter
- */
- public static void rollingGuidanceFilter(Mat src, Mat dst)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_rollingGuidanceFilter_15(src.nativeObj, dst.nativeObj);
- }
- //
- // C++: Ptr_FastBilateralSolverFilter cv::ximgproc::createFastBilateralSolverFilter(Mat guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda = 128.0, int num_iter = 25, double max_tol = 1e-5)
- //
- /**
- * Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * param lambda smoothness strength parameter for solver.
- *
- * param num_iter number of iterations used for solver, 25 is usually enough.
- *
- * param max_tol convergence tolerance used for solver.
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- * return automatically generated
- */
- public static FastBilateralSolverFilter createFastBilateralSolverFilter(Mat guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return FastBilateralSolverFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastBilateralSolverFilter_10(guide.nativeObj, sigma_spatial, sigma_luma, sigma_chroma, lambda, num_iter, max_tol)));
- }
- /**
- * Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * param lambda smoothness strength parameter for solver.
- *
- * param num_iter number of iterations used for solver, 25 is usually enough.
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- * return automatically generated
- */
- public static FastBilateralSolverFilter createFastBilateralSolverFilter(Mat guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return FastBilateralSolverFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastBilateralSolverFilter_11(guide.nativeObj, sigma_spatial, sigma_luma, sigma_chroma, lambda, num_iter)));
- }
- /**
- * Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * param lambda smoothness strength parameter for solver.
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- * return automatically generated
- */
- public static FastBilateralSolverFilter createFastBilateralSolverFilter(Mat guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return FastBilateralSolverFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastBilateralSolverFilter_12(guide.nativeObj, sigma_spatial, sigma_luma, sigma_chroma, lambda)));
- }
- /**
- * Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- * return automatically generated
- */
- public static FastBilateralSolverFilter createFastBilateralSolverFilter(Mat guide, double sigma_spatial, double sigma_luma, double sigma_chroma)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return FastBilateralSolverFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastBilateralSolverFilter_13(guide.nativeObj, sigma_spatial, sigma_luma, sigma_chroma)));
- }
- //
- // C++: void cv::ximgproc::fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat& dst, double sigma_spatial = 8, double sigma_luma = 8, double sigma_chroma = 8, double lambda = 128.0, int num_iter = 25, double max_tol = 1e-5)
- //
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * param dst destination image.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * param lambda smoothness strength parameter for solver.
- *
- * param num_iter number of iterations used for solver, 25 is usually enough.
- *
- * param max_tol convergence tolerance used for solver.
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * <b>Note:</b> Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- public static void fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat dst, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (confidence != null) confidence.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastBilateralSolverFilter_10(guide.nativeObj, src.nativeObj, confidence.nativeObj, dst.nativeObj, sigma_spatial, sigma_luma, sigma_chroma, lambda, num_iter, max_tol);
- }
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * param dst destination image.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * param lambda smoothness strength parameter for solver.
- *
- * param num_iter number of iterations used for solver, 25 is usually enough.
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * <b>Note:</b> Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- public static void fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat dst, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (confidence != null) confidence.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastBilateralSolverFilter_11(guide.nativeObj, src.nativeObj, confidence.nativeObj, dst.nativeObj, sigma_spatial, sigma_luma, sigma_chroma, lambda, num_iter);
- }
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * param dst destination image.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- * param lambda smoothness strength parameter for solver.
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * <b>Note:</b> Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- public static void fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat dst, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (confidence != null) confidence.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastBilateralSolverFilter_12(guide.nativeObj, src.nativeObj, confidence.nativeObj, dst.nativeObj, sigma_spatial, sigma_luma, sigma_chroma, lambda);
- }
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * param dst destination image.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_chroma parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * <b>Note:</b> Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- public static void fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat dst, double sigma_spatial, double sigma_luma, double sigma_chroma)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (confidence != null) confidence.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastBilateralSolverFilter_13(guide.nativeObj, src.nativeObj, confidence.nativeObj, dst.nativeObj, sigma_spatial, sigma_luma, sigma_chroma);
- }
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * param dst destination image.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- * param sigma_luma parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.
- *
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * <b>Note:</b> Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- public static void fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat dst, double sigma_spatial, double sigma_luma)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (confidence != null) confidence.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastBilateralSolverFilter_14(guide.nativeObj, src.nativeObj, confidence.nativeObj, dst.nativeObj, sigma_spatial, sigma_luma);
- }
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * param dst destination image.
- *
- * param sigma_spatial parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.
- *
- *
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * <b>Note:</b> Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- public static void fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat dst, double sigma_spatial)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (confidence != null) confidence.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastBilateralSolverFilter_15(guide.nativeObj, src.nativeObj, confidence.nativeObj, dst.nativeObj, sigma_spatial);
- }
- /**
- * Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
- * guide then use FastBilateralSolverFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param confidence confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.
- *
- * param dst destination image.
- *
- *
- *
- *
- *
- *
- *
- * For more details about the Fast Bilateral Solver parameters, see the original paper CITE: BarronPoole2016.
- *
- * <b>Note:</b> Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
- */
- public static void fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat dst)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (confidence != null) confidence.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastBilateralSolverFilter_16(guide.nativeObj, src.nativeObj, confidence.nativeObj, dst.nativeObj);
- }
- //
- // C++: Ptr_FastGlobalSmootherFilter cv::ximgproc::createFastGlobalSmootherFilter(Mat guide, double lambda, double sigma_color, double lambda_attenuation = 0.25, int num_iter = 3)
- //
- /**
- * Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param lambda parameter defining the amount of regularization
- *
- * param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- * param num_iter number of iterations used for filtering, 3 is usually enough.
- *
- * For more details about Fast Global Smoother parameters, see the original paper CITE: Min2014. However, please note that
- * there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
- * expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
- * achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
- * propose to dynamically update the guide image after each iteration. To maximize the performance this feature
- * was not implemented here.
- * return automatically generated
- */
- public static FastGlobalSmootherFilter createFastGlobalSmootherFilter(Mat guide, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return FastGlobalSmootherFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastGlobalSmootherFilter_10(guide.nativeObj, lambda, sigma_color, lambda_attenuation, num_iter)));
- }
- /**
- * Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param lambda parameter defining the amount of regularization
- *
- * param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- *
- * For more details about Fast Global Smoother parameters, see the original paper CITE: Min2014. However, please note that
- * there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
- * expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
- * achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
- * propose to dynamically update the guide image after each iteration. To maximize the performance this feature
- * was not implemented here.
- * return automatically generated
- */
- public static FastGlobalSmootherFilter createFastGlobalSmootherFilter(Mat guide, double lambda, double sigma_color, double lambda_attenuation)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return FastGlobalSmootherFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastGlobalSmootherFilter_11(guide.nativeObj, lambda, sigma_color, lambda_attenuation)));
- }
- /**
- * Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param lambda parameter defining the amount of regularization
- *
- * param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- *
- * For more details about Fast Global Smoother parameters, see the original paper CITE: Min2014. However, please note that
- * there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
- * expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
- * achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
- * propose to dynamically update the guide image after each iteration. To maximize the performance this feature
- * was not implemented here.
- * return automatically generated
- */
- public static FastGlobalSmootherFilter createFastGlobalSmootherFilter(Mat guide, double lambda, double sigma_color)
- {
- if (guide != null) guide.ThrowIfDisposed();
- return FastGlobalSmootherFilter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastGlobalSmootherFilter_12(guide.nativeObj, lambda, sigma_color)));
- }
- //
- // C++: void cv::ximgproc::fastGlobalSmootherFilter(Mat guide, Mat src, Mat& dst, double lambda, double sigma_color, double lambda_attenuation = 0.25, int num_iter = 3)
- //
- /**
- * Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
- * guide then use FastGlobalSmootherFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param dst destination image.
- *
- * param lambda parameter defining the amount of regularization
- *
- * param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- * param num_iter number of iterations used for filtering, 3 is usually enough.
- */
- public static void fastGlobalSmootherFilter(Mat guide, Mat src, Mat dst, double lambda, double sigma_color, double lambda_attenuation, int num_iter)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastGlobalSmootherFilter_10(guide.nativeObj, src.nativeObj, dst.nativeObj, lambda, sigma_color, lambda_attenuation, num_iter);
- }
- /**
- * Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
- * guide then use FastGlobalSmootherFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param dst destination image.
- *
- * param lambda parameter defining the amount of regularization
- *
- * param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * param lambda_attenuation internal parameter, defining how much lambda decreases after each iteration. Normally,
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- */
- public static void fastGlobalSmootherFilter(Mat guide, Mat src, Mat dst, double lambda, double sigma_color, double lambda_attenuation)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastGlobalSmootherFilter_11(guide.nativeObj, src.nativeObj, dst.nativeObj, lambda, sigma_color, lambda_attenuation);
- }
- /**
- * Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
- * guide then use FastGlobalSmootherFilter interface to avoid extra computations.
- *
- * param guide image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.
- *
- * param dst destination image.
- *
- * param lambda parameter defining the amount of regularization
- *
- * param sigma_color parameter, that is similar to color space sigma in bilateralFilter.
- *
- * it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.
- *
- */
- public static void fastGlobalSmootherFilter(Mat guide, Mat src, Mat dst, double lambda, double sigma_color)
- {
- if (guide != null) guide.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fastGlobalSmootherFilter_12(guide.nativeObj, src.nativeObj, dst.nativeObj, lambda, sigma_color);
- }
- //
- // C++: void cv::ximgproc::l0Smooth(Mat src, Mat& dst, double lambda = 0.02, double kappa = 2.0)
- //
- /**
- * Global image smoothing via L0 gradient minimization.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
- *
- * param dst destination image.
- *
- * param lambda parameter defining the smooth term weight.
- *
- * param kappa parameter defining the increasing factor of the weight of the gradient data term.
- *
- * For more details about L0 Smoother, see the original paper CITE: xu2011image.
- */
- public static void l0Smooth(Mat src, Mat dst, double lambda, double kappa)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_l0Smooth_10(src.nativeObj, dst.nativeObj, lambda, kappa);
- }
- /**
- * Global image smoothing via L0 gradient minimization.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
- *
- * param dst destination image.
- *
- * param lambda parameter defining the smooth term weight.
- *
- *
- * For more details about L0 Smoother, see the original paper CITE: xu2011image.
- */
- public static void l0Smooth(Mat src, Mat dst, double lambda)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_l0Smooth_11(src.nativeObj, dst.nativeObj, lambda);
- }
- /**
- * Global image smoothing via L0 gradient minimization.
- *
- * param src source image for filtering with unsigned 8-bit or signed 16-bit or floating-point depth.
- *
- * param dst destination image.
- *
- *
- *
- * For more details about L0 Smoother, see the original paper CITE: xu2011image.
- */
- public static void l0Smooth(Mat src, Mat dst)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_l0Smooth_12(src.nativeObj, dst.nativeObj);
- }
- //
- // C++: void cv::ximgproc::covarianceEstimation(Mat src, Mat& dst, int windowRows, int windowCols)
- //
- /**
- * Computes the estimated covariance matrix of an image using the sliding
- * window forumlation.
- *
- * param src The source image. Input image must be of a complex type.
- * param dst The destination estimated covariance matrix. Output matrix will be size (windowRows*windowCols, windowRows*windowCols).
- * param windowRows The number of rows in the window.
- * param windowCols The number of cols in the window.
- * The window size parameters control the accuracy of the estimation.
- * The sliding window moves over the entire image from the top-left corner
- * to the bottom right corner. Each location of the window represents a sample.
- * If the window is the size of the image, then this gives the exact covariance matrix.
- * For all other cases, the sizes of the window will impact the number of samples
- * and the number of elements in the estimated covariance matrix.
- */
- public static void covarianceEstimation(Mat src, Mat dst, int windowRows, int windowCols)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_covarianceEstimation_10(src.nativeObj, dst.nativeObj, windowRows, windowCols);
- }
- //
- // C++: void cv::ximgproc::FastHoughTransform(Mat src, Mat& dst, int dstMatDepth, int angleRange = ARO_315_135, int op = FHT_ADD, int makeSkew = HDO_DESKEW)
- //
- /**
- * Calculates 2D Fast Hough transform of an image.
- *
- * The function calculates the fast Hough transform for full, half or quarter
- * range of angles.
- * param src automatically generated
- * param dst automatically generated
- * param dstMatDepth automatically generated
- * param angleRange automatically generated
- * param op automatically generated
- * param makeSkew automatically generated
- */
- public static void FastHoughTransform(Mat src, Mat dst, int dstMatDepth, int angleRange, int op, int makeSkew)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_FastHoughTransform_10(src.nativeObj, dst.nativeObj, dstMatDepth, angleRange, op, makeSkew);
- }
- /**
- * Calculates 2D Fast Hough transform of an image.
- *
- * The function calculates the fast Hough transform for full, half or quarter
- * range of angles.
- * param src automatically generated
- * param dst automatically generated
- * param dstMatDepth automatically generated
- * param angleRange automatically generated
- * param op automatically generated
- */
- public static void FastHoughTransform(Mat src, Mat dst, int dstMatDepth, int angleRange, int op)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_FastHoughTransform_11(src.nativeObj, dst.nativeObj, dstMatDepth, angleRange, op);
- }
- /**
- * Calculates 2D Fast Hough transform of an image.
- *
- * The function calculates the fast Hough transform for full, half or quarter
- * range of angles.
- * param src automatically generated
- * param dst automatically generated
- * param dstMatDepth automatically generated
- * param angleRange automatically generated
- */
- public static void FastHoughTransform(Mat src, Mat dst, int dstMatDepth, int angleRange)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_FastHoughTransform_12(src.nativeObj, dst.nativeObj, dstMatDepth, angleRange);
- }
- /**
- * Calculates 2D Fast Hough transform of an image.
- *
- * The function calculates the fast Hough transform for full, half or quarter
- * range of angles.
- * param src automatically generated
- * param dst automatically generated
- * param dstMatDepth automatically generated
- */
- public static void FastHoughTransform(Mat src, Mat dst, int dstMatDepth)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_FastHoughTransform_13(src.nativeObj, dst.nativeObj, dstMatDepth);
- }
- //
- // C++: Vec4i cv::ximgproc::HoughPoint2Line(Point houghPoint, Mat srcImgInfo, int angleRange = ARO_315_135, int makeSkew = HDO_DESKEW, int rules = RO_IGNORE_BORDERS)
- //
- // Return type 'Vec4i' is not supported, skipping the function
- //
- // C++: Ptr_FastLineDetector cv::ximgproc::createFastLineDetector(int length_threshold = 10, float distance_threshold = 1.414213562f, double canny_th1 = 50.0, double canny_th2 = 50.0, int canny_aperture_size = 3, bool do_merge = false)
- //
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * param length_threshold Segment shorter than this will be discarded
- * param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * param canny_th1 First threshold for hysteresis procedure in Canny()
- * param canny_th2 Second threshold for hysteresis procedure in Canny()
- * param canny_aperture_size Aperturesize for the sobel operator in Canny().
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- * param do_merge If true, incremental merging of segments will be performed
- * return automatically generated
- */
- public static FastLineDetector createFastLineDetector(int length_threshold, float distance_threshold, double canny_th1, double canny_th2, int canny_aperture_size, bool do_merge)
- {
- return FastLineDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastLineDetector_10(length_threshold, distance_threshold, canny_th1, canny_th2, canny_aperture_size, do_merge)));
- }
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * param length_threshold Segment shorter than this will be discarded
- * param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * param canny_th1 First threshold for hysteresis procedure in Canny()
- * param canny_th2 Second threshold for hysteresis procedure in Canny()
- * param canny_aperture_size Aperturesize for the sobel operator in Canny().
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- * return automatically generated
- */
- public static FastLineDetector createFastLineDetector(int length_threshold, float distance_threshold, double canny_th1, double canny_th2, int canny_aperture_size)
- {
- return FastLineDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastLineDetector_11(length_threshold, distance_threshold, canny_th1, canny_th2, canny_aperture_size)));
- }
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * param length_threshold Segment shorter than this will be discarded
- * param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * param canny_th1 First threshold for hysteresis procedure in Canny()
- * param canny_th2 Second threshold for hysteresis procedure in Canny()
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- * return automatically generated
- */
- public static FastLineDetector createFastLineDetector(int length_threshold, float distance_threshold, double canny_th1, double canny_th2)
- {
- return FastLineDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastLineDetector_12(length_threshold, distance_threshold, canny_th1, canny_th2)));
- }
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * param length_threshold Segment shorter than this will be discarded
- * param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * param canny_th1 First threshold for hysteresis procedure in Canny()
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- * return automatically generated
- */
- public static FastLineDetector createFastLineDetector(int length_threshold, float distance_threshold, double canny_th1)
- {
- return FastLineDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastLineDetector_13(length_threshold, distance_threshold, canny_th1)));
- }
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * param length_threshold Segment shorter than this will be discarded
- * param distance_threshold A point placed from a hypothesis line
- * segment farther than this will be regarded as an outlier
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- * return automatically generated
- */
- public static FastLineDetector createFastLineDetector(int length_threshold, float distance_threshold)
- {
- return FastLineDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastLineDetector_14(length_threshold, distance_threshold)));
- }
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * param length_threshold Segment shorter than this will be discarded
- * segment farther than this will be regarded as an outlier
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- * return automatically generated
- */
- public static FastLineDetector createFastLineDetector(int length_threshold)
- {
- return FastLineDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastLineDetector_15(length_threshold)));
- }
- /**
- * Creates a smart pointer to a FastLineDetector object and initializes it
- *
- * segment farther than this will be regarded as an outlier
- * If zero, Canny() is not applied and the input image is taken as an edge image.
- * return automatically generated
- */
- public static FastLineDetector createFastLineDetector()
- {
- return FastLineDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createFastLineDetector_16()));
- }
- //
- // C++: void cv::ximgproc::findEllipses(Mat image, Mat& ellipses, float scoreThreshold = 0.7f, float reliabilityThreshold = 0.5f, float centerDistanceThreshold = 0.05f)
- //
- /**
- * Finds ellipses fastly in an image using projective invariant pruning.
- *
- * The function detects ellipses in images using projective invariant pruning.
- * For more details about this implementation, please see CITE: jia2017fast
- * Jia, Qi et al, (2017).
- * A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
- *
- * param image input image, could be gray or color.
- * param ellipses output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.
- * param scoreThreshold float, the threshold of ellipse score.
- * param reliabilityThreshold float, the threshold of reliability.
- * param centerDistanceThreshold float, the threshold of center distance.
- */
- public static void findEllipses(Mat image, Mat ellipses, float scoreThreshold, float reliabilityThreshold, float centerDistanceThreshold)
- {
- if (image != null) image.ThrowIfDisposed();
- if (ellipses != null) ellipses.ThrowIfDisposed();
- ximgproc_Ximgproc_findEllipses_10(image.nativeObj, ellipses.nativeObj, scoreThreshold, reliabilityThreshold, centerDistanceThreshold);
- }
- /**
- * Finds ellipses fastly in an image using projective invariant pruning.
- *
- * The function detects ellipses in images using projective invariant pruning.
- * For more details about this implementation, please see CITE: jia2017fast
- * Jia, Qi et al, (2017).
- * A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
- *
- * param image input image, could be gray or color.
- * param ellipses output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.
- * param scoreThreshold float, the threshold of ellipse score.
- * param reliabilityThreshold float, the threshold of reliability.
- */
- public static void findEllipses(Mat image, Mat ellipses, float scoreThreshold, float reliabilityThreshold)
- {
- if (image != null) image.ThrowIfDisposed();
- if (ellipses != null) ellipses.ThrowIfDisposed();
- ximgproc_Ximgproc_findEllipses_11(image.nativeObj, ellipses.nativeObj, scoreThreshold, reliabilityThreshold);
- }
- /**
- * Finds ellipses fastly in an image using projective invariant pruning.
- *
- * The function detects ellipses in images using projective invariant pruning.
- * For more details about this implementation, please see CITE: jia2017fast
- * Jia, Qi et al, (2017).
- * A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
- *
- * param image input image, could be gray or color.
- * param ellipses output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.
- * param scoreThreshold float, the threshold of ellipse score.
- */
- public static void findEllipses(Mat image, Mat ellipses, float scoreThreshold)
- {
- if (image != null) image.ThrowIfDisposed();
- if (ellipses != null) ellipses.ThrowIfDisposed();
- ximgproc_Ximgproc_findEllipses_12(image.nativeObj, ellipses.nativeObj, scoreThreshold);
- }
- /**
- * Finds ellipses fastly in an image using projective invariant pruning.
- *
- * The function detects ellipses in images using projective invariant pruning.
- * For more details about this implementation, please see CITE: jia2017fast
- * Jia, Qi et al, (2017).
- * A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
- *
- * param image input image, could be gray or color.
- * param ellipses output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.
- */
- public static void findEllipses(Mat image, Mat ellipses)
- {
- if (image != null) image.ThrowIfDisposed();
- if (ellipses != null) ellipses.ThrowIfDisposed();
- ximgproc_Ximgproc_findEllipses_13(image.nativeObj, ellipses.nativeObj);
- }
- //
- // C++: void cv::ximgproc::fourierDescriptor(Mat src, Mat& dst, int nbElt = -1, int nbFD = -1)
- //
- /**
- * Fourier descriptors for planed closed curves
- *
- * For more details about this implementation, please see CITE: PersoonFu1977
- *
- *
- * param src automatically generated
- * param dst automatically generated
- * param nbElt automatically generated
- * param nbFD automatically generated
- */
- public static void fourierDescriptor(Mat src, Mat dst, int nbElt, int nbFD)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fourierDescriptor_10(src.nativeObj, dst.nativeObj, nbElt, nbFD);
- }
- /**
- * Fourier descriptors for planed closed curves
- *
- * For more details about this implementation, please see CITE: PersoonFu1977
- *
- *
- * param src automatically generated
- * param dst automatically generated
- * param nbElt automatically generated
- */
- public static void fourierDescriptor(Mat src, Mat dst, int nbElt)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fourierDescriptor_11(src.nativeObj, dst.nativeObj, nbElt);
- }
- /**
- * Fourier descriptors for planed closed curves
- *
- * For more details about this implementation, please see CITE: PersoonFu1977
- *
- *
- * param src automatically generated
- * param dst automatically generated
- */
- public static void fourierDescriptor(Mat src, Mat dst)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_fourierDescriptor_12(src.nativeObj, dst.nativeObj);
- }
- //
- // C++: void cv::ximgproc::transformFD(Mat src, Mat t, Mat& dst, bool fdContour = true)
- //
- /**
- * transform a contour
- *
- *
- * param src automatically generated
- * param t automatically generated
- * param dst automatically generated
- * param fdContour automatically generated
- */
- public static void transformFD(Mat src, Mat t, Mat dst, bool fdContour)
- {
- if (src != null) src.ThrowIfDisposed();
- if (t != null) t.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_transformFD_10(src.nativeObj, t.nativeObj, dst.nativeObj, fdContour);
- }
- /**
- * transform a contour
- *
- *
- * param src automatically generated
- * param t automatically generated
- * param dst automatically generated
- */
- public static void transformFD(Mat src, Mat t, Mat dst)
- {
- if (src != null) src.ThrowIfDisposed();
- if (t != null) t.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_transformFD_11(src.nativeObj, t.nativeObj, dst.nativeObj);
- }
- //
- // C++: void cv::ximgproc::contourSampling(Mat src, Mat& _out, int nbElt)
- //
- /**
- * Contour sampling .
- *
- *
- * param src automatically generated
- * param _out automatically generated
- * param nbElt automatically generated
- */
- public static void contourSampling(Mat src, Mat _out, int nbElt)
- {
- if (src != null) src.ThrowIfDisposed();
- if (_out != null) _out.ThrowIfDisposed();
- ximgproc_Ximgproc_contourSampling_10(src.nativeObj, _out.nativeObj, nbElt);
- }
- //
- // C++: Ptr_ContourFitting cv::ximgproc::createContourFitting(int ctr = 1024, int fd = 16)
- //
- /**
- * create ContourFitting algorithm object
- *
- * param ctr number of Fourier descriptors equal to number of contour points after resampling.
- * param fd Contour defining second shape (Target).
- * return automatically generated
- */
- public static ContourFitting createContourFitting(int ctr, int fd)
- {
- return ContourFitting.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createContourFitting_10(ctr, fd)));
- }
- /**
- * create ContourFitting algorithm object
- *
- * param ctr number of Fourier descriptors equal to number of contour points after resampling.
- * return automatically generated
- */
- public static ContourFitting createContourFitting(int ctr)
- {
- return ContourFitting.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createContourFitting_11(ctr)));
- }
- /**
- * create ContourFitting algorithm object
- *
- * return automatically generated
- */
- public static ContourFitting createContourFitting()
- {
- return ContourFitting.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createContourFitting_12()));
- }
- //
- // C++: Ptr_SuperpixelLSC cv::ximgproc::createSuperpixelLSC(Mat image, int region_size = 10, float ratio = 0.075f)
- //
- /**
- * Class implementing the LSC (Linear Spectral Clustering) superpixels
- *
- * param image Image to segment
- * param region_size Chooses an average superpixel size measured in pixels
- * param ratio Chooses the enforcement of superpixel compactness factor of superpixel
- *
- * The function initializes a SuperpixelLSC object for the input image. It sets the parameters of
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. An example of LSC is ilustrated in the following picture.
- * For enanched results it is recommended for color images to preprocess image with little gaussian blur
- * with a small 3 x 3 kernel and additional conversion into CieLAB color space.
- *
- * ![image](pics/superpixels_lsc.png)
- * return automatically generated
- */
- public static SuperpixelLSC createSuperpixelLSC(Mat image, int region_size, float ratio)
- {
- if (image != null) image.ThrowIfDisposed();
- return SuperpixelLSC.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelLSC_10(image.nativeObj, region_size, ratio)));
- }
- /**
- * Class implementing the LSC (Linear Spectral Clustering) superpixels
- *
- * param image Image to segment
- * param region_size Chooses an average superpixel size measured in pixels
- *
- * The function initializes a SuperpixelLSC object for the input image. It sets the parameters of
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. An example of LSC is ilustrated in the following picture.
- * For enanched results it is recommended for color images to preprocess image with little gaussian blur
- * with a small 3 x 3 kernel and additional conversion into CieLAB color space.
- *
- * ![image](pics/superpixels_lsc.png)
- * return automatically generated
- */
- public static SuperpixelLSC createSuperpixelLSC(Mat image, int region_size)
- {
- if (image != null) image.ThrowIfDisposed();
- return SuperpixelLSC.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelLSC_11(image.nativeObj, region_size)));
- }
- /**
- * Class implementing the LSC (Linear Spectral Clustering) superpixels
- *
- * param image Image to segment
- *
- * The function initializes a SuperpixelLSC object for the input image. It sets the parameters of
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. An example of LSC is ilustrated in the following picture.
- * For enanched results it is recommended for color images to preprocess image with little gaussian blur
- * with a small 3 x 3 kernel and additional conversion into CieLAB color space.
- *
- * ![image](pics/superpixels_lsc.png)
- * return automatically generated
- */
- public static SuperpixelLSC createSuperpixelLSC(Mat image)
- {
- if (image != null) image.ThrowIfDisposed();
- return SuperpixelLSC.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelLSC_12(image.nativeObj)));
- }
- //
- // C++: void cv::ximgproc::PeiLinNormalization(Mat I, Mat& T)
- //
- public static void PeiLinNormalization(Mat I, Mat T)
- {
- if (I != null) I.ThrowIfDisposed();
- if (T != null) T.ThrowIfDisposed();
- ximgproc_Ximgproc_PeiLinNormalization_10(I.nativeObj, T.nativeObj);
- }
- //
- // C++: void cv::ximgproc::RadonTransform(Mat src, Mat& dst, double theta = 1, double start_angle = 0, double end_angle = 180, bool crop = false, bool norm = false)
- //
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- * param src automatically generated
- * param dst automatically generated
- * param theta automatically generated
- * param start_angle automatically generated
- * param end_angle automatically generated
- * param crop automatically generated
- * param norm automatically generated
- */
- public static void RadonTransform(Mat src, Mat dst, double theta, double start_angle, double end_angle, bool crop, bool norm)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_RadonTransform_10(src.nativeObj, dst.nativeObj, theta, start_angle, end_angle, crop, norm);
- }
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- * param src automatically generated
- * param dst automatically generated
- * param theta automatically generated
- * param start_angle automatically generated
- * param end_angle automatically generated
- * param crop automatically generated
- */
- public static void RadonTransform(Mat src, Mat dst, double theta, double start_angle, double end_angle, bool crop)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_RadonTransform_11(src.nativeObj, dst.nativeObj, theta, start_angle, end_angle, crop);
- }
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- * param src automatically generated
- * param dst automatically generated
- * param theta automatically generated
- * param start_angle automatically generated
- * param end_angle automatically generated
- */
- public static void RadonTransform(Mat src, Mat dst, double theta, double start_angle, double end_angle)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_RadonTransform_12(src.nativeObj, dst.nativeObj, theta, start_angle, end_angle);
- }
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- * param src automatically generated
- * param dst automatically generated
- * param theta automatically generated
- * param start_angle automatically generated
- */
- public static void RadonTransform(Mat src, Mat dst, double theta, double start_angle)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_RadonTransform_13(src.nativeObj, dst.nativeObj, theta, start_angle);
- }
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- * param src automatically generated
- * param dst automatically generated
- * param theta automatically generated
- */
- public static void RadonTransform(Mat src, Mat dst, double theta)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_RadonTransform_14(src.nativeObj, dst.nativeObj, theta);
- }
- /**
- * Calculate Radon Transform of an image.
- *
- * This function calculates the Radon Transform of a given image in any range.
- * See https://engineering.purdue.edu/~malcolm/pct/CTI_Ch03.pdf for detail.
- * If the input type is CV_8U, the output will be CV_32S.
- * If the input type is CV_32F or CV_64F, the output will be CV_64F
- * The output size will be num_of_integral x src_diagonal_length.
- * If crop is selected, the input image will be crop into square then circle,
- * and output size will be num_of_integral x min_edge.
- *
- * param src automatically generated
- * param dst automatically generated
- */
- public static void RadonTransform(Mat src, Mat dst)
- {
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_RadonTransform_15(src.nativeObj, dst.nativeObj);
- }
- //
- // C++: Ptr_ScanSegment cv::ximgproc::createScanSegment(int image_width, int image_height, int num_superpixels, int slices = 8, bool merge_small = true)
- //
- /**
- * Initializes a ScanSegment object.
- *
- * The function initializes a ScanSegment object for the input image. It stores the parameters of
- * the image: image_width and image_height. It also sets the parameters of the F-DBSCAN superpixel
- * algorithm, which are: num_superpixels, threads, and merge_small.
- *
- * param image_width Image width.
- * param image_height Image height.
- * param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size). Use getNumberOfSuperpixels() to
- * get the actual number.
- * param slices Number of processing threads for parallelisation. Setting -1 uses the maximum number
- * of threads. In practice, four threads is enough for smaller images and eight threads for larger ones.
- * param merge_small merge small segments to give the desired number of superpixels. Processing is
- * much faster without merging, but many small segments will be left in the image.
- * return automatically generated
- */
- public static ScanSegment createScanSegment(int image_width, int image_height, int num_superpixels, int slices, bool merge_small)
- {
- return ScanSegment.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createScanSegment_10(image_width, image_height, num_superpixels, slices, merge_small)));
- }
- /**
- * Initializes a ScanSegment object.
- *
- * The function initializes a ScanSegment object for the input image. It stores the parameters of
- * the image: image_width and image_height. It also sets the parameters of the F-DBSCAN superpixel
- * algorithm, which are: num_superpixels, threads, and merge_small.
- *
- * param image_width Image width.
- * param image_height Image height.
- * param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size). Use getNumberOfSuperpixels() to
- * get the actual number.
- * param slices Number of processing threads for parallelisation. Setting -1 uses the maximum number
- * of threads. In practice, four threads is enough for smaller images and eight threads for larger ones.
- * much faster without merging, but many small segments will be left in the image.
- * return automatically generated
- */
- public static ScanSegment createScanSegment(int image_width, int image_height, int num_superpixels, int slices)
- {
- return ScanSegment.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createScanSegment_11(image_width, image_height, num_superpixels, slices)));
- }
- /**
- * Initializes a ScanSegment object.
- *
- * The function initializes a ScanSegment object for the input image. It stores the parameters of
- * the image: image_width and image_height. It also sets the parameters of the F-DBSCAN superpixel
- * algorithm, which are: num_superpixels, threads, and merge_small.
- *
- * param image_width Image width.
- * param image_height Image height.
- * param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size). Use getNumberOfSuperpixels() to
- * get the actual number.
- * of threads. In practice, four threads is enough for smaller images and eight threads for larger ones.
- * much faster without merging, but many small segments will be left in the image.
- * return automatically generated
- */
- public static ScanSegment createScanSegment(int image_width, int image_height, int num_superpixels)
- {
- return ScanSegment.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createScanSegment_12(image_width, image_height, num_superpixels)));
- }
- //
- // C++: Ptr_SuperpixelSEEDS cv::ximgproc::createSuperpixelSEEDS(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior = 2, int histogram_bins = 5, bool double_step = false)
- //
- /**
- * Initializes a SuperpixelSEEDS object.
- *
- * param image_width Image width.
- * param image_height Image height.
- * param image_channels Number of channels of the image.
- * param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
- * get the actual number.
- * param num_levels Number of block levels. The more levels, the more accurate is the segmentation,
- * but needs more memory and CPU time.
- * param prior enable 3x3 shape smoothing term if >0. A larger value leads to smoother shapes. prior
- * must be in the range [0, 5].
- * param histogram_bins Number of histogram bins.
- * param double_step If true, iterate each block level twice for higher accuracy.
- *
- * The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
- * the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
- * superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
- * double_step.
- *
- * The number of levels in num_levels defines the amount of block levels that the algorithm use in the
- * optimization. The initialization is a grid, in which the superpixels are equally distributed through
- * the width and the height of the image. The larger blocks correspond to the superpixel size, and the
- * levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
- * recursively until the smaller block level. An example of initialization of 4 block levels is
- * illustrated in the following figure.
- *
- * ![image](pics/superpixels_blocks.png)
- * return automatically generated
- */
- public static SuperpixelSEEDS createSuperpixelSEEDS(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior, int histogram_bins, bool double_step)
- {
- return SuperpixelSEEDS.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelSEEDS_10(image_width, image_height, image_channels, num_superpixels, num_levels, prior, histogram_bins, double_step)));
- }
- /**
- * Initializes a SuperpixelSEEDS object.
- *
- * param image_width Image width.
- * param image_height Image height.
- * param image_channels Number of channels of the image.
- * param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
- * get the actual number.
- * param num_levels Number of block levels. The more levels, the more accurate is the segmentation,
- * but needs more memory and CPU time.
- * param prior enable 3x3 shape smoothing term if >0. A larger value leads to smoother shapes. prior
- * must be in the range [0, 5].
- * param histogram_bins Number of histogram bins.
- *
- * The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
- * the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
- * superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
- * double_step.
- *
- * The number of levels in num_levels defines the amount of block levels that the algorithm use in the
- * optimization. The initialization is a grid, in which the superpixels are equally distributed through
- * the width and the height of the image. The larger blocks correspond to the superpixel size, and the
- * levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
- * recursively until the smaller block level. An example of initialization of 4 block levels is
- * illustrated in the following figure.
- *
- * ![image](pics/superpixels_blocks.png)
- * return automatically generated
- */
- public static SuperpixelSEEDS createSuperpixelSEEDS(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior, int histogram_bins)
- {
- return SuperpixelSEEDS.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelSEEDS_11(image_width, image_height, image_channels, num_superpixels, num_levels, prior, histogram_bins)));
- }
- /**
- * Initializes a SuperpixelSEEDS object.
- *
- * param image_width Image width.
- * param image_height Image height.
- * param image_channels Number of channels of the image.
- * param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
- * get the actual number.
- * param num_levels Number of block levels. The more levels, the more accurate is the segmentation,
- * but needs more memory and CPU time.
- * param prior enable 3x3 shape smoothing term if >0. A larger value leads to smoother shapes. prior
- * must be in the range [0, 5].
- *
- * The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
- * the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
- * superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
- * double_step.
- *
- * The number of levels in num_levels defines the amount of block levels that the algorithm use in the
- * optimization. The initialization is a grid, in which the superpixels are equally distributed through
- * the width and the height of the image. The larger blocks correspond to the superpixel size, and the
- * levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
- * recursively until the smaller block level. An example of initialization of 4 block levels is
- * illustrated in the following figure.
- *
- * ![image](pics/superpixels_blocks.png)
- * return automatically generated
- */
- public static SuperpixelSEEDS createSuperpixelSEEDS(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior)
- {
- return SuperpixelSEEDS.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelSEEDS_12(image_width, image_height, image_channels, num_superpixels, num_levels, prior)));
- }
- /**
- * Initializes a SuperpixelSEEDS object.
- *
- * param image_width Image width.
- * param image_height Image height.
- * param image_channels Number of channels of the image.
- * param num_superpixels Desired number of superpixels. Note that the actual number may be smaller
- * due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
- * get the actual number.
- * param num_levels Number of block levels. The more levels, the more accurate is the segmentation,
- * but needs more memory and CPU time.
- * must be in the range [0, 5].
- *
- * The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
- * the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
- * superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
- * double_step.
- *
- * The number of levels in num_levels defines the amount of block levels that the algorithm use in the
- * optimization. The initialization is a grid, in which the superpixels are equally distributed through
- * the width and the height of the image. The larger blocks correspond to the superpixel size, and the
- * levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
- * recursively until the smaller block level. An example of initialization of 4 block levels is
- * illustrated in the following figure.
- *
- * ![image](pics/superpixels_blocks.png)
- * return automatically generated
- */
- public static SuperpixelSEEDS createSuperpixelSEEDS(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels)
- {
- return SuperpixelSEEDS.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelSEEDS_13(image_width, image_height, image_channels, num_superpixels, num_levels)));
- }
- //
- // C++: Ptr_GraphSegmentation cv::ximgproc::segmentation::createGraphSegmentation(double sigma = 0.5, float k = 300, int min_size = 100)
- //
- /**
- * Creates a graph based segmentor
- * param sigma The sigma parameter, used to smooth image
- * param k The k parameter of the algorythm
- * param min_size The minimum size of segments
- * return automatically generated
- */
- public static GraphSegmentation createGraphSegmentation(double sigma, float k, int min_size)
- {
- return GraphSegmentation.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createGraphSegmentation_10(sigma, k, min_size)));
- }
- /**
- * Creates a graph based segmentor
- * param sigma The sigma parameter, used to smooth image
- * param k The k parameter of the algorythm
- * return automatically generated
- */
- public static GraphSegmentation createGraphSegmentation(double sigma, float k)
- {
- return GraphSegmentation.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createGraphSegmentation_11(sigma, k)));
- }
- /**
- * Creates a graph based segmentor
- * param sigma The sigma parameter, used to smooth image
- * return automatically generated
- */
- public static GraphSegmentation createGraphSegmentation(double sigma)
- {
- return GraphSegmentation.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createGraphSegmentation_12(sigma)));
- }
- /**
- * Creates a graph based segmentor
- * return automatically generated
- */
- public static GraphSegmentation createGraphSegmentation()
- {
- return GraphSegmentation.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createGraphSegmentation_13()));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentationStrategyColor cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyColor()
- //
- /**
- * Create a new color-based strategy
- * return automatically generated
- */
- public static SelectiveSearchSegmentationStrategyColor createSelectiveSearchSegmentationStrategyColor()
- {
- return SelectiveSearchSegmentationStrategyColor.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyColor_10()));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentationStrategySize cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategySize()
- //
- /**
- * Create a new size-based strategy
- * return automatically generated
- */
- public static SelectiveSearchSegmentationStrategySize createSelectiveSearchSegmentationStrategySize()
- {
- return SelectiveSearchSegmentationStrategySize.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategySize_10()));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentationStrategyTexture cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyTexture()
- //
- /**
- * Create a new size-based strategy
- * return automatically generated
- */
- public static SelectiveSearchSegmentationStrategyTexture createSelectiveSearchSegmentationStrategyTexture()
- {
- return SelectiveSearchSegmentationStrategyTexture.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyTexture_10()));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentationStrategyFill cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyFill()
- //
- /**
- * Create a new fill-based strategy
- * return automatically generated
- */
- public static SelectiveSearchSegmentationStrategyFill createSelectiveSearchSegmentationStrategyFill()
- {
- return SelectiveSearchSegmentationStrategyFill.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyFill_10()));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple()
- //
- /**
- * Create a new multiple strategy
- * return automatically generated
- */
- public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple()
- {
- return SelectiveSearchSegmentationStrategyMultiple.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_10()));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1)
- //
- /**
- * Create a new multiple strategy and set one subtrategy
- * param s1 The first strategy
- * return automatically generated
- */
- public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple(SelectiveSearchSegmentationStrategy s1)
- {
- if (s1 != null) s1.ThrowIfDisposed();
- return SelectiveSearchSegmentationStrategyMultiple.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_11(s1.getNativeObjAddr())));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1, Ptr_SelectiveSearchSegmentationStrategy s2)
- //
- /**
- * Create a new multiple strategy and set two subtrategies, with equal weights
- * param s1 The first strategy
- * param s2 The second strategy
- * return automatically generated
- */
- public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple(SelectiveSearchSegmentationStrategy s1, SelectiveSearchSegmentationStrategy s2)
- {
- if (s1 != null) s1.ThrowIfDisposed();
- if (s2 != null) s2.ThrowIfDisposed();
- return SelectiveSearchSegmentationStrategyMultiple.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_12(s1.getNativeObjAddr(), s2.getNativeObjAddr())));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1, Ptr_SelectiveSearchSegmentationStrategy s2, Ptr_SelectiveSearchSegmentationStrategy s3)
- //
- /**
- * Create a new multiple strategy and set three subtrategies, with equal weights
- * param s1 The first strategy
- * param s2 The second strategy
- * param s3 The third strategy
- * return automatically generated
- */
- public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple(SelectiveSearchSegmentationStrategy s1, SelectiveSearchSegmentationStrategy s2, SelectiveSearchSegmentationStrategy s3)
- {
- if (s1 != null) s1.ThrowIfDisposed();
- if (s2 != null) s2.ThrowIfDisposed();
- if (s3 != null) s3.ThrowIfDisposed();
- return SelectiveSearchSegmentationStrategyMultiple.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_13(s1.getNativeObjAddr(), s2.getNativeObjAddr(), s3.getNativeObjAddr())));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1, Ptr_SelectiveSearchSegmentationStrategy s2, Ptr_SelectiveSearchSegmentationStrategy s3, Ptr_SelectiveSearchSegmentationStrategy s4)
- //
- /**
- * Create a new multiple strategy and set four subtrategies, with equal weights
- * param s1 The first strategy
- * param s2 The second strategy
- * param s3 The third strategy
- * param s4 The forth strategy
- * return automatically generated
- */
- public static SelectiveSearchSegmentationStrategyMultiple createSelectiveSearchSegmentationStrategyMultiple(SelectiveSearchSegmentationStrategy s1, SelectiveSearchSegmentationStrategy s2, SelectiveSearchSegmentationStrategy s3, SelectiveSearchSegmentationStrategy s4)
- {
- if (s1 != null) s1.ThrowIfDisposed();
- if (s2 != null) s2.ThrowIfDisposed();
- if (s3 != null) s3.ThrowIfDisposed();
- if (s4 != null) s4.ThrowIfDisposed();
- return SelectiveSearchSegmentationStrategyMultiple.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_14(s1.getNativeObjAddr(), s2.getNativeObjAddr(), s3.getNativeObjAddr(), s4.getNativeObjAddr())));
- }
- //
- // C++: Ptr_SelectiveSearchSegmentation cv::ximgproc::segmentation::createSelectiveSearchSegmentation()
- //
- /**
- * Create a new SelectiveSearchSegmentation class.
- * return automatically generated
- */
- public static SelectiveSearchSegmentation createSelectiveSearchSegmentation()
- {
- return SelectiveSearchSegmentation.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSelectiveSearchSegmentation_10()));
- }
- //
- // C++: Ptr_SuperpixelSLIC cv::ximgproc::createSuperpixelSLIC(Mat image, int algorithm = SLICO, int region_size = 10, float ruler = 10.0f)
- //
- /**
- * Initialize a SuperpixelSLIC object
- *
- * param image Image to segment
- * param algorithm Chooses the algorithm variant to use:
- * SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
- * while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.
- * param region_size Chooses an average superpixel size measured in pixels
- * param ruler Chooses the enforcement of superpixel smoothness factor of superpixel
- *
- * The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. For enanched results it is recommended for color images to
- * preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
- * CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
- *
- * ![image](pics/superpixels_slic.png)
- * return automatically generated
- */
- public static SuperpixelSLIC createSuperpixelSLIC(Mat image, int algorithm, int region_size, float ruler)
- {
- if (image != null) image.ThrowIfDisposed();
- return SuperpixelSLIC.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelSLIC_10(image.nativeObj, algorithm, region_size, ruler)));
- }
- /**
- * Initialize a SuperpixelSLIC object
- *
- * param image Image to segment
- * param algorithm Chooses the algorithm variant to use:
- * SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
- * while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.
- * param region_size Chooses an average superpixel size measured in pixels
- *
- * The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. For enanched results it is recommended for color images to
- * preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
- * CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
- *
- * ![image](pics/superpixels_slic.png)
- * return automatically generated
- */
- public static SuperpixelSLIC createSuperpixelSLIC(Mat image, int algorithm, int region_size)
- {
- if (image != null) image.ThrowIfDisposed();
- return SuperpixelSLIC.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelSLIC_11(image.nativeObj, algorithm, region_size)));
- }
- /**
- * Initialize a SuperpixelSLIC object
- *
- * param image Image to segment
- * param algorithm Chooses the algorithm variant to use:
- * SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
- * while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.
- *
- * The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. For enanched results it is recommended for color images to
- * preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
- * CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
- *
- * ![image](pics/superpixels_slic.png)
- * return automatically generated
- */
- public static SuperpixelSLIC createSuperpixelSLIC(Mat image, int algorithm)
- {
- if (image != null) image.ThrowIfDisposed();
- return SuperpixelSLIC.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelSLIC_12(image.nativeObj, algorithm)));
- }
- /**
- * Initialize a SuperpixelSLIC object
- *
- * param image Image to segment
- * SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
- * while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.
- *
- * The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
- * superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
- * computing iterations over the given image. For enanched results it is recommended for color images to
- * preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
- * CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
- *
- * ![image](pics/superpixels_slic.png)
- * return automatically generated
- */
- public static SuperpixelSLIC createSuperpixelSLIC(Mat image)
- {
- if (image != null) image.ThrowIfDisposed();
- return SuperpixelSLIC.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createSuperpixelSLIC_13(image.nativeObj)));
- }
- //
- // C++: Ptr_EdgeAwareInterpolator cv::ximgproc::createEdgeAwareInterpolator()
- //
- /**
- * Factory method that creates an instance of the
- * EdgeAwareInterpolator.
- * return automatically generated
- */
- public static EdgeAwareInterpolator createEdgeAwareInterpolator()
- {
- return EdgeAwareInterpolator.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createEdgeAwareInterpolator_10()));
- }
- //
- // C++: Ptr_RICInterpolator cv::ximgproc::createRICInterpolator()
- //
- /**
- * Factory method that creates an instance of the
- * RICInterpolator.
- * return automatically generated
- */
- public static RICInterpolator createRICInterpolator()
- {
- return RICInterpolator.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createRICInterpolator_10()));
- }
- //
- // C++: Ptr_RFFeatureGetter cv::ximgproc::createRFFeatureGetter()
- //
- public static RFFeatureGetter createRFFeatureGetter()
- {
- return RFFeatureGetter.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createRFFeatureGetter_10()));
- }
- //
- // C++: Ptr_StructuredEdgeDetection cv::ximgproc::createStructuredEdgeDetection(String model, Ptr_RFFeatureGetter howToGetFeatures = Ptr<RFFeatureGetter>())
- //
- public static StructuredEdgeDetection createStructuredEdgeDetection(string model, RFFeatureGetter howToGetFeatures)
- {
- if (howToGetFeatures != null) howToGetFeatures.ThrowIfDisposed();
- return StructuredEdgeDetection.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createStructuredEdgeDetection_10(model, howToGetFeatures.getNativeObjAddr())));
- }
- public static StructuredEdgeDetection createStructuredEdgeDetection(string model)
- {
- return StructuredEdgeDetection.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(ximgproc_Ximgproc_createStructuredEdgeDetection_11(model)));
- }
- //
- // C++: void cv::ximgproc::weightedMedianFilter(Mat joint, Mat src, Mat& dst, int r, double sigma = 25.5, int weightType = WMF_EXP, Mat mask = Mat())
- //
- /**
- * Applies weighted median filter to an image.
- *
- * For more details about this implementation, please see CITE: zhang2014100+
- *
- * the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
- *
- * SEE: medianBlur, jointBilateralFilter
- * param joint automatically generated
- * param src automatically generated
- * param dst automatically generated
- * param r automatically generated
- * param sigma automatically generated
- * param weightType automatically generated
- * param mask automatically generated
- */
- public static void weightedMedianFilter(Mat joint, Mat src, Mat dst, int r, double sigma, int weightType, Mat mask)
- {
- if (joint != null) joint.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- if (mask != null) mask.ThrowIfDisposed();
- ximgproc_Ximgproc_weightedMedianFilter_10(joint.nativeObj, src.nativeObj, dst.nativeObj, r, sigma, weightType, mask.nativeObj);
- }
- /**
- * Applies weighted median filter to an image.
- *
- * For more details about this implementation, please see CITE: zhang2014100+
- *
- * the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
- *
- * SEE: medianBlur, jointBilateralFilter
- * param joint automatically generated
- * param src automatically generated
- * param dst automatically generated
- * param r automatically generated
- * param sigma automatically generated
- * param weightType automatically generated
- */
- public static void weightedMedianFilter(Mat joint, Mat src, Mat dst, int r, double sigma, int weightType)
- {
- if (joint != null) joint.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_weightedMedianFilter_11(joint.nativeObj, src.nativeObj, dst.nativeObj, r, sigma, weightType);
- }
- /**
- * Applies weighted median filter to an image.
- *
- * For more details about this implementation, please see CITE: zhang2014100+
- *
- * the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
- *
- * SEE: medianBlur, jointBilateralFilter
- * param joint automatically generated
- * param src automatically generated
- * param dst automatically generated
- * param r automatically generated
- * param sigma automatically generated
- */
- public static void weightedMedianFilter(Mat joint, Mat src, Mat dst, int r, double sigma)
- {
- if (joint != null) joint.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_weightedMedianFilter_12(joint.nativeObj, src.nativeObj, dst.nativeObj, r, sigma);
- }
- /**
- * Applies weighted median filter to an image.
- *
- * For more details about this implementation, please see CITE: zhang2014100+
- *
- * the pixel will be ignored when maintaining the joint-histogram. This is useful for applications like optical flow occlusion handling.
- *
- * SEE: medianBlur, jointBilateralFilter
- * param joint automatically generated
- * param src automatically generated
- * param dst automatically generated
- * param r automatically generated
- */
- public static void weightedMedianFilter(Mat joint, Mat src, Mat dst, int r)
- {
- if (joint != null) joint.ThrowIfDisposed();
- if (src != null) src.ThrowIfDisposed();
- if (dst != null) dst.ThrowIfDisposed();
- ximgproc_Ximgproc_weightedMedianFilter_13(joint.nativeObj, src.nativeObj, dst.nativeObj, r);
- }
- #if (UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR
- const string LIBNAME = "__Internal";
- #else
- const string LIBNAME = "opencvforunity";
- #endif
- // C++: void cv::ximgproc::niBlackThreshold(Mat _src, Mat& _dst, double maxValue, int type, int blockSize, double k, int binarizationMethod = BINARIZATION_NIBLACK, double r = 128)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_niBlackThreshold_10(IntPtr _src_nativeObj, IntPtr _dst_nativeObj, double maxValue, int type, int blockSize, double k, int binarizationMethod, double r);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_niBlackThreshold_11(IntPtr _src_nativeObj, IntPtr _dst_nativeObj, double maxValue, int type, int blockSize, double k, int binarizationMethod);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_niBlackThreshold_12(IntPtr _src_nativeObj, IntPtr _dst_nativeObj, double maxValue, int type, int blockSize, double k);
- // C++: void cv::ximgproc::thinning(Mat src, Mat& dst, int thinningType = THINNING_ZHANGSUEN)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_thinning_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int thinningType);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_thinning_11(IntPtr src_nativeObj, IntPtr dst_nativeObj);
- // C++: void cv::ximgproc::anisotropicDiffusion(Mat src, Mat& dst, float alpha, float K, int niters)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_anisotropicDiffusion_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, float alpha, float K, int niters);
- // C++: void cv::ximgproc::createQuaternionImage(Mat img, Mat& qimg)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_createQuaternionImage_10(IntPtr img_nativeObj, IntPtr qimg_nativeObj);
- // C++: void cv::ximgproc::qconj(Mat qimg, Mat& qcimg)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_qconj_10(IntPtr qimg_nativeObj, IntPtr qcimg_nativeObj);
- // C++: void cv::ximgproc::qunitary(Mat qimg, Mat& qnimg)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_qunitary_10(IntPtr qimg_nativeObj, IntPtr qnimg_nativeObj);
- // C++: void cv::ximgproc::qmultiply(Mat src1, Mat src2, Mat& dst)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_qmultiply_10(IntPtr src1_nativeObj, IntPtr src2_nativeObj, IntPtr dst_nativeObj);
- // C++: void cv::ximgproc::qdft(Mat img, Mat& qimg, int flags, bool sideLeft)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_qdft_10(IntPtr img_nativeObj, IntPtr qimg_nativeObj, int flags, [MarshalAs(UnmanagedType.U1)] bool sideLeft);
- // C++: void cv::ximgproc::colorMatchTemplate(Mat img, Mat templ, Mat& result)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_colorMatchTemplate_10(IntPtr img_nativeObj, IntPtr templ_nativeObj, IntPtr result_nativeObj);
- // C++: void cv::ximgproc::GradientDericheY(Mat op, Mat& dst, double alpha, double omega)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_GradientDericheY_10(IntPtr op_nativeObj, IntPtr dst_nativeObj, double alpha, double omega);
- // C++: void cv::ximgproc::GradientDericheX(Mat op, Mat& dst, double alpha, double omega)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_GradientDericheX_10(IntPtr op_nativeObj, IntPtr dst_nativeObj, double alpha, double omega);
- // C++: Ptr_DisparityWLSFilter cv::ximgproc::createDisparityWLSFilter(Ptr_StereoMatcher matcher_left)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createDisparityWLSFilter_10(IntPtr matcher_left_nativeObj);
- // C++: Ptr_StereoMatcher cv::ximgproc::createRightMatcher(Ptr_StereoMatcher matcher_left)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createRightMatcher_10(IntPtr matcher_left_nativeObj);
- // C++: Ptr_DisparityWLSFilter cv::ximgproc::createDisparityWLSFilterGeneric(bool use_confidence)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createDisparityWLSFilterGeneric_10([MarshalAs(UnmanagedType.U1)] bool use_confidence);
- // C++: int cv::ximgproc::readGT(String src_path, Mat& dst)
- [DllImport(LIBNAME)]
- private static extern int ximgproc_Ximgproc_readGT_10(string src_path, IntPtr dst_nativeObj);
- // C++: double cv::ximgproc::computeMSE(Mat GT, Mat src, Rect ROI)
- [DllImport(LIBNAME)]
- private static extern double ximgproc_Ximgproc_computeMSE_10(IntPtr GT_nativeObj, IntPtr src_nativeObj, int ROI_x, int ROI_y, int ROI_width, int ROI_height);
- // C++: double cv::ximgproc::computeBadPixelPercent(Mat GT, Mat src, Rect ROI, int thresh = 24)
- [DllImport(LIBNAME)]
- private static extern double ximgproc_Ximgproc_computeBadPixelPercent_10(IntPtr GT_nativeObj, IntPtr src_nativeObj, int ROI_x, int ROI_y, int ROI_width, int ROI_height, int thresh);
- [DllImport(LIBNAME)]
- private static extern double ximgproc_Ximgproc_computeBadPixelPercent_11(IntPtr GT_nativeObj, IntPtr src_nativeObj, int ROI_x, int ROI_y, int ROI_width, int ROI_height);
- // C++: void cv::ximgproc::getDisparityVis(Mat src, Mat& dst, double scale = 1.0)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_getDisparityVis_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double scale);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_getDisparityVis_11(IntPtr src_nativeObj, IntPtr dst_nativeObj);
- // C++: Ptr_EdgeBoxes cv::ximgproc::createEdgeBoxes(float alpha = 0.65f, float beta = 0.75f, float eta = 1, float minScore = 0.01f, int maxBoxes = 10000, float edgeMinMag = 0.1f, float edgeMergeThr = 0.5f, float clusterMinMag = 0.5f, float maxAspectRatio = 3, float minBoxArea = 1000, float gamma = 2, float kappa = 1.5f)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_10(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag, float maxAspectRatio, float minBoxArea, float gamma, float kappa);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_11(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag, float maxAspectRatio, float minBoxArea, float gamma);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_12(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag, float maxAspectRatio, float minBoxArea);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_13(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag, float maxAspectRatio);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_14(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr, float clusterMinMag);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_15(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag, float edgeMergeThr);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_16(float alpha, float beta, float eta, float minScore, int maxBoxes, float edgeMinMag);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_17(float alpha, float beta, float eta, float minScore, int maxBoxes);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_18(float alpha, float beta, float eta, float minScore);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_19(float alpha, float beta, float eta);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_110(float alpha, float beta);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_111(float alpha);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeBoxes_112();
- // C++: void cv::ximgproc::edgePreservingFilter(Mat src, Mat& dst, int d, double threshold)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_edgePreservingFilter_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int d, double threshold);
- // C++: Ptr_EdgeDrawing cv::ximgproc::createEdgeDrawing()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeDrawing_10();
- // C++: Ptr_DTFilter cv::ximgproc::createDTFilter(Mat guide, double sigmaSpatial, double sigmaColor, int mode = DTF_NC, int numIters = 3)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createDTFilter_10(IntPtr guide_nativeObj, double sigmaSpatial, double sigmaColor, int mode, int numIters);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createDTFilter_11(IntPtr guide_nativeObj, double sigmaSpatial, double sigmaColor, int mode);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createDTFilter_12(IntPtr guide_nativeObj, double sigmaSpatial, double sigmaColor);
- // C++: void cv::ximgproc::dtFilter(Mat guide, Mat src, Mat& dst, double sigmaSpatial, double sigmaColor, int mode = DTF_NC, int numIters = 3)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_dtFilter_10(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, double sigmaSpatial, double sigmaColor, int mode, int numIters);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_dtFilter_11(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, double sigmaSpatial, double sigmaColor, int mode);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_dtFilter_12(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, double sigmaSpatial, double sigmaColor);
- // C++: Ptr_GuidedFilter cv::ximgproc::createGuidedFilter(Mat guide, int radius, double eps)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createGuidedFilter_10(IntPtr guide_nativeObj, int radius, double eps);
- // C++: void cv::ximgproc::guidedFilter(Mat guide, Mat src, Mat& dst, int radius, double eps, int dDepth = -1)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_guidedFilter_10(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, int radius, double eps, int dDepth);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_guidedFilter_11(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, int radius, double eps);
- // C++: Ptr_AdaptiveManifoldFilter cv::ximgproc::createAMFilter(double sigma_s, double sigma_r, bool adjust_outliers = false)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createAMFilter_10(double sigma_s, double sigma_r, [MarshalAs(UnmanagedType.U1)] bool adjust_outliers);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createAMFilter_11(double sigma_s, double sigma_r);
- // C++: void cv::ximgproc::amFilter(Mat joint, Mat src, Mat& dst, double sigma_s, double sigma_r, bool adjust_outliers = false)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_amFilter_10(IntPtr joint_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, double sigma_s, double sigma_r, [MarshalAs(UnmanagedType.U1)] bool adjust_outliers);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_amFilter_11(IntPtr joint_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, double sigma_s, double sigma_r);
- // C++: void cv::ximgproc::jointBilateralFilter(Mat joint, Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_jointBilateralFilter_10(IntPtr joint_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, int d, double sigmaColor, double sigmaSpace, int borderType);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_jointBilateralFilter_11(IntPtr joint_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, int d, double sigmaColor, double sigmaSpace);
- // C++: void cv::ximgproc::bilateralTextureFilter(Mat src, Mat& dst, int fr = 3, int numIter = 1, double sigmaAlpha = -1., double sigmaAvg = -1.)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_bilateralTextureFilter_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int fr, int numIter, double sigmaAlpha, double sigmaAvg);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_bilateralTextureFilter_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int fr, int numIter, double sigmaAlpha);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_bilateralTextureFilter_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int fr, int numIter);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_bilateralTextureFilter_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int fr);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_bilateralTextureFilter_14(IntPtr src_nativeObj, IntPtr dst_nativeObj);
- // C++: void cv::ximgproc::rollingGuidanceFilter(Mat src, Mat& dst, int d = -1, double sigmaColor = 25, double sigmaSpace = 3, int numOfIter = 4, int borderType = BORDER_DEFAULT)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_rollingGuidanceFilter_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int d, double sigmaColor, double sigmaSpace, int numOfIter, int borderType);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_rollingGuidanceFilter_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int d, double sigmaColor, double sigmaSpace, int numOfIter);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_rollingGuidanceFilter_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int d, double sigmaColor, double sigmaSpace);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_rollingGuidanceFilter_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int d, double sigmaColor);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_rollingGuidanceFilter_14(IntPtr src_nativeObj, IntPtr dst_nativeObj, int d);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_rollingGuidanceFilter_15(IntPtr src_nativeObj, IntPtr dst_nativeObj);
- // C++: Ptr_FastBilateralSolverFilter cv::ximgproc::createFastBilateralSolverFilter(Mat guide, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda = 128.0, int num_iter = 25, double max_tol = 1e-5)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastBilateralSolverFilter_10(IntPtr guide_nativeObj, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastBilateralSolverFilter_11(IntPtr guide_nativeObj, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastBilateralSolverFilter_12(IntPtr guide_nativeObj, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastBilateralSolverFilter_13(IntPtr guide_nativeObj, double sigma_spatial, double sigma_luma, double sigma_chroma);
- // C++: void cv::ximgproc::fastBilateralSolverFilter(Mat guide, Mat src, Mat confidence, Mat& dst, double sigma_spatial = 8, double sigma_luma = 8, double sigma_chroma = 8, double lambda = 128.0, int num_iter = 25, double max_tol = 1e-5)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastBilateralSolverFilter_10(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr confidence_nativeObj, IntPtr dst_nativeObj, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter, double max_tol);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastBilateralSolverFilter_11(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr confidence_nativeObj, IntPtr dst_nativeObj, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda, int num_iter);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastBilateralSolverFilter_12(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr confidence_nativeObj, IntPtr dst_nativeObj, double sigma_spatial, double sigma_luma, double sigma_chroma, double lambda);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastBilateralSolverFilter_13(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr confidence_nativeObj, IntPtr dst_nativeObj, double sigma_spatial, double sigma_luma, double sigma_chroma);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastBilateralSolverFilter_14(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr confidence_nativeObj, IntPtr dst_nativeObj, double sigma_spatial, double sigma_luma);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastBilateralSolverFilter_15(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr confidence_nativeObj, IntPtr dst_nativeObj, double sigma_spatial);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastBilateralSolverFilter_16(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr confidence_nativeObj, IntPtr dst_nativeObj);
- // C++: Ptr_FastGlobalSmootherFilter cv::ximgproc::createFastGlobalSmootherFilter(Mat guide, double lambda, double sigma_color, double lambda_attenuation = 0.25, int num_iter = 3)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastGlobalSmootherFilter_10(IntPtr guide_nativeObj, double lambda, double sigma_color, double lambda_attenuation, int num_iter);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastGlobalSmootherFilter_11(IntPtr guide_nativeObj, double lambda, double sigma_color, double lambda_attenuation);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastGlobalSmootherFilter_12(IntPtr guide_nativeObj, double lambda, double sigma_color);
- // C++: void cv::ximgproc::fastGlobalSmootherFilter(Mat guide, Mat src, Mat& dst, double lambda, double sigma_color, double lambda_attenuation = 0.25, int num_iter = 3)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastGlobalSmootherFilter_10(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, double lambda, double sigma_color, double lambda_attenuation, int num_iter);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastGlobalSmootherFilter_11(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, double lambda, double sigma_color, double lambda_attenuation);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fastGlobalSmootherFilter_12(IntPtr guide_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, double lambda, double sigma_color);
- // C++: void cv::ximgproc::l0Smooth(Mat src, Mat& dst, double lambda = 0.02, double kappa = 2.0)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_l0Smooth_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double lambda, double kappa);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_l0Smooth_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, double lambda);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_l0Smooth_12(IntPtr src_nativeObj, IntPtr dst_nativeObj);
- // C++: void cv::ximgproc::covarianceEstimation(Mat src, Mat& dst, int windowRows, int windowCols)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_covarianceEstimation_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int windowRows, int windowCols);
- // C++: void cv::ximgproc::FastHoughTransform(Mat src, Mat& dst, int dstMatDepth, int angleRange = ARO_315_135, int op = FHT_ADD, int makeSkew = HDO_DESKEW)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_FastHoughTransform_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int dstMatDepth, int angleRange, int op, int makeSkew);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_FastHoughTransform_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int dstMatDepth, int angleRange, int op);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_FastHoughTransform_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int dstMatDepth, int angleRange);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_FastHoughTransform_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int dstMatDepth);
- // C++: Ptr_FastLineDetector cv::ximgproc::createFastLineDetector(int length_threshold = 10, float distance_threshold = 1.414213562f, double canny_th1 = 50.0, double canny_th2 = 50.0, int canny_aperture_size = 3, bool do_merge = false)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastLineDetector_10(int length_threshold, float distance_threshold, double canny_th1, double canny_th2, int canny_aperture_size, [MarshalAs(UnmanagedType.U1)] bool do_merge);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastLineDetector_11(int length_threshold, float distance_threshold, double canny_th1, double canny_th2, int canny_aperture_size);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastLineDetector_12(int length_threshold, float distance_threshold, double canny_th1, double canny_th2);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastLineDetector_13(int length_threshold, float distance_threshold, double canny_th1);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastLineDetector_14(int length_threshold, float distance_threshold);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastLineDetector_15(int length_threshold);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createFastLineDetector_16();
- // C++: void cv::ximgproc::findEllipses(Mat image, Mat& ellipses, float scoreThreshold = 0.7f, float reliabilityThreshold = 0.5f, float centerDistanceThreshold = 0.05f)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_findEllipses_10(IntPtr image_nativeObj, IntPtr ellipses_nativeObj, float scoreThreshold, float reliabilityThreshold, float centerDistanceThreshold);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_findEllipses_11(IntPtr image_nativeObj, IntPtr ellipses_nativeObj, float scoreThreshold, float reliabilityThreshold);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_findEllipses_12(IntPtr image_nativeObj, IntPtr ellipses_nativeObj, float scoreThreshold);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_findEllipses_13(IntPtr image_nativeObj, IntPtr ellipses_nativeObj);
- // C++: void cv::ximgproc::fourierDescriptor(Mat src, Mat& dst, int nbElt = -1, int nbFD = -1)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fourierDescriptor_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int nbElt, int nbFD);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fourierDescriptor_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int nbElt);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_fourierDescriptor_12(IntPtr src_nativeObj, IntPtr dst_nativeObj);
- // C++: void cv::ximgproc::transformFD(Mat src, Mat t, Mat& dst, bool fdContour = true)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_transformFD_10(IntPtr src_nativeObj, IntPtr t_nativeObj, IntPtr dst_nativeObj, [MarshalAs(UnmanagedType.U1)] bool fdContour);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_transformFD_11(IntPtr src_nativeObj, IntPtr t_nativeObj, IntPtr dst_nativeObj);
- // C++: void cv::ximgproc::contourSampling(Mat src, Mat& _out, int nbElt)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_contourSampling_10(IntPtr src_nativeObj, IntPtr _out_nativeObj, int nbElt);
- // C++: Ptr_ContourFitting cv::ximgproc::createContourFitting(int ctr = 1024, int fd = 16)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createContourFitting_10(int ctr, int fd);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createContourFitting_11(int ctr);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createContourFitting_12();
- // C++: Ptr_SuperpixelLSC cv::ximgproc::createSuperpixelLSC(Mat image, int region_size = 10, float ratio = 0.075f)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelLSC_10(IntPtr image_nativeObj, int region_size, float ratio);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelLSC_11(IntPtr image_nativeObj, int region_size);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelLSC_12(IntPtr image_nativeObj);
- // C++: void cv::ximgproc::PeiLinNormalization(Mat I, Mat& T)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_PeiLinNormalization_10(IntPtr I_nativeObj, IntPtr T_nativeObj);
- // C++: void cv::ximgproc::RadonTransform(Mat src, Mat& dst, double theta = 1, double start_angle = 0, double end_angle = 180, bool crop = false, bool norm = false)
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_RadonTransform_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double theta, double start_angle, double end_angle, [MarshalAs(UnmanagedType.U1)] bool crop, [MarshalAs(UnmanagedType.U1)] bool norm);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_RadonTransform_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, double theta, double start_angle, double end_angle, [MarshalAs(UnmanagedType.U1)] bool crop);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_RadonTransform_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, double theta, double start_angle, double end_angle);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_RadonTransform_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, double theta, double start_angle);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_RadonTransform_14(IntPtr src_nativeObj, IntPtr dst_nativeObj, double theta);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_RadonTransform_15(IntPtr src_nativeObj, IntPtr dst_nativeObj);
- // C++: Ptr_ScanSegment cv::ximgproc::createScanSegment(int image_width, int image_height, int num_superpixels, int slices = 8, bool merge_small = true)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createScanSegment_10(int image_width, int image_height, int num_superpixels, int slices, [MarshalAs(UnmanagedType.U1)] bool merge_small);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createScanSegment_11(int image_width, int image_height, int num_superpixels, int slices);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createScanSegment_12(int image_width, int image_height, int num_superpixels);
- // C++: Ptr_SuperpixelSEEDS cv::ximgproc::createSuperpixelSEEDS(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior = 2, int histogram_bins = 5, bool double_step = false)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelSEEDS_10(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior, int histogram_bins, [MarshalAs(UnmanagedType.U1)] bool double_step);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelSEEDS_11(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior, int histogram_bins);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelSEEDS_12(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels, int prior);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelSEEDS_13(int image_width, int image_height, int image_channels, int num_superpixels, int num_levels);
- // C++: Ptr_GraphSegmentation cv::ximgproc::segmentation::createGraphSegmentation(double sigma = 0.5, float k = 300, int min_size = 100)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createGraphSegmentation_10(double sigma, float k, int min_size);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createGraphSegmentation_11(double sigma, float k);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createGraphSegmentation_12(double sigma);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createGraphSegmentation_13();
- // C++: Ptr_SelectiveSearchSegmentationStrategyColor cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyColor()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyColor_10();
- // C++: Ptr_SelectiveSearchSegmentationStrategySize cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategySize()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategySize_10();
- // C++: Ptr_SelectiveSearchSegmentationStrategyTexture cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyTexture()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyTexture_10();
- // C++: Ptr_SelectiveSearchSegmentationStrategyFill cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyFill()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyFill_10();
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_10();
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_11(IntPtr s1_nativeObj);
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1, Ptr_SelectiveSearchSegmentationStrategy s2)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_12(IntPtr s1_nativeObj, IntPtr s2_nativeObj);
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1, Ptr_SelectiveSearchSegmentationStrategy s2, Ptr_SelectiveSearchSegmentationStrategy s3)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_13(IntPtr s1_nativeObj, IntPtr s2_nativeObj, IntPtr s3_nativeObj);
- // C++: Ptr_SelectiveSearchSegmentationStrategyMultiple cv::ximgproc::segmentation::createSelectiveSearchSegmentationStrategyMultiple(Ptr_SelectiveSearchSegmentationStrategy s1, Ptr_SelectiveSearchSegmentationStrategy s2, Ptr_SelectiveSearchSegmentationStrategy s3, Ptr_SelectiveSearchSegmentationStrategy s4)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentationStrategyMultiple_14(IntPtr s1_nativeObj, IntPtr s2_nativeObj, IntPtr s3_nativeObj, IntPtr s4_nativeObj);
- // C++: Ptr_SelectiveSearchSegmentation cv::ximgproc::segmentation::createSelectiveSearchSegmentation()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSelectiveSearchSegmentation_10();
- // C++: Ptr_SuperpixelSLIC cv::ximgproc::createSuperpixelSLIC(Mat image, int algorithm = SLICO, int region_size = 10, float ruler = 10.0f)
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelSLIC_10(IntPtr image_nativeObj, int algorithm, int region_size, float ruler);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelSLIC_11(IntPtr image_nativeObj, int algorithm, int region_size);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelSLIC_12(IntPtr image_nativeObj, int algorithm);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createSuperpixelSLIC_13(IntPtr image_nativeObj);
- // C++: Ptr_EdgeAwareInterpolator cv::ximgproc::createEdgeAwareInterpolator()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createEdgeAwareInterpolator_10();
- // C++: Ptr_RICInterpolator cv::ximgproc::createRICInterpolator()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createRICInterpolator_10();
- // C++: Ptr_RFFeatureGetter cv::ximgproc::createRFFeatureGetter()
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createRFFeatureGetter_10();
- // C++: Ptr_StructuredEdgeDetection cv::ximgproc::createStructuredEdgeDetection(String model, Ptr_RFFeatureGetter howToGetFeatures = Ptr<RFFeatureGetter>())
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createStructuredEdgeDetection_10(string model, IntPtr howToGetFeatures_nativeObj);
- [DllImport(LIBNAME)]
- private static extern IntPtr ximgproc_Ximgproc_createStructuredEdgeDetection_11(string model);
- // C++: void cv::ximgproc::weightedMedianFilter(Mat joint, Mat src, Mat& dst, int r, double sigma = 25.5, int weightType = WMF_EXP, Mat mask = Mat())
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_weightedMedianFilter_10(IntPtr joint_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, int r, double sigma, int weightType, IntPtr mask_nativeObj);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_weightedMedianFilter_11(IntPtr joint_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, int r, double sigma, int weightType);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_weightedMedianFilter_12(IntPtr joint_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, int r, double sigma);
- [DllImport(LIBNAME)]
- private static extern void ximgproc_Ximgproc_weightedMedianFilter_13(IntPtr joint_nativeObj, IntPtr src_nativeObj, IntPtr dst_nativeObj, int r);
- }
- }
|