1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240 |
- using OpenCVForUnity.CoreModule;
- using OpenCVForUnity.UtilsModule;
- using System;
- using System.Collections.Generic;
- using System.Runtime.InteropServices;
- namespace OpenCVForUnity.VideoModule
- {
- // C++: class Video
- public class Video
- {
- private const int CV_LKFLOW_INITIAL_GUESSES = 4;
- private const int CV_LKFLOW_GET_MIN_EIGENVALS = 8;
- // C++: enum <unnamed>
- public const int OPTFLOW_USE_INITIAL_FLOW = 4;
- public const int OPTFLOW_LK_GET_MIN_EIGENVALS = 8;
- public const int OPTFLOW_FARNEBACK_GAUSSIAN = 256;
- public const int MOTION_TRANSLATION = 0;
- public const int MOTION_EUCLIDEAN = 1;
- public const int MOTION_AFFINE = 2;
- public const int MOTION_HOMOGRAPHY = 3;
- // C++: enum cv.detail.TrackerSamplerCSC.MODE
- public const int TrackerSamplerCSC_MODE_INIT_POS = 1;
- public const int TrackerSamplerCSC_MODE_INIT_NEG = 2;
- public const int TrackerSamplerCSC_MODE_TRACK_POS = 3;
- public const int TrackerSamplerCSC_MODE_TRACK_NEG = 4;
- public const int TrackerSamplerCSC_MODE_DETECT = 5;
- //
- // C++: Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true)
- //
- /**
- * Creates MOG2 Background Subtractor
- *
- * param history Length of the history.
- * param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
- * to decide whether a pixel is well described by the background model. This parameter does not
- * affect the background update.
- * param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
- * speed a bit, so if you do not need this feature, set the parameter to false.
- * return automatically generated
- */
- public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold, bool detectShadows)
- {
- return BackgroundSubtractorMOG2.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(video_Video_createBackgroundSubtractorMOG2_10(history, varThreshold, detectShadows)));
- }
- /**
- * Creates MOG2 Background Subtractor
- *
- * param history Length of the history.
- * param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
- * to decide whether a pixel is well described by the background model. This parameter does not
- * affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- * return automatically generated
- */
- public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold)
- {
- return BackgroundSubtractorMOG2.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(video_Video_createBackgroundSubtractorMOG2_11(history, varThreshold)));
- }
- /**
- * Creates MOG2 Background Subtractor
- *
- * param history Length of the history.
- * to decide whether a pixel is well described by the background model. This parameter does not
- * affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- * return automatically generated
- */
- public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history)
- {
- return BackgroundSubtractorMOG2.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(video_Video_createBackgroundSubtractorMOG2_12(history)));
- }
- /**
- * Creates MOG2 Background Subtractor
- *
- * to decide whether a pixel is well described by the background model. This parameter does not
- * affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- * return automatically generated
- */
- public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2()
- {
- return BackgroundSubtractorMOG2.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(video_Video_createBackgroundSubtractorMOG2_13()));
- }
- //
- // C++: Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true)
- //
- /**
- * Creates KNN Background Subtractor
- *
- * param history Length of the history.
- * param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
- * whether a pixel is close to that sample. This parameter does not affect the background update.
- * param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
- * speed a bit, so if you do not need this feature, set the parameter to false.
- * return automatically generated
- */
- public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold, bool detectShadows)
- {
- return BackgroundSubtractorKNN.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(video_Video_createBackgroundSubtractorKNN_10(history, dist2Threshold, detectShadows)));
- }
- /**
- * Creates KNN Background Subtractor
- *
- * param history Length of the history.
- * param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
- * whether a pixel is close to that sample. This parameter does not affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- * return automatically generated
- */
- public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold)
- {
- return BackgroundSubtractorKNN.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(video_Video_createBackgroundSubtractorKNN_11(history, dist2Threshold)));
- }
- /**
- * Creates KNN Background Subtractor
- *
- * param history Length of the history.
- * whether a pixel is close to that sample. This parameter does not affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- * return automatically generated
- */
- public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history)
- {
- return BackgroundSubtractorKNN.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(video_Video_createBackgroundSubtractorKNN_12(history)));
- }
- /**
- * Creates KNN Background Subtractor
- *
- * whether a pixel is close to that sample. This parameter does not affect the background update.
- * speed a bit, so if you do not need this feature, set the parameter to false.
- * return automatically generated
- */
- public static BackgroundSubtractorKNN createBackgroundSubtractorKNN()
- {
- return BackgroundSubtractorKNN.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(video_Video_createBackgroundSubtractorKNN_13()));
- }
- //
- // C++: RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria)
- //
- /**
- * Finds an object center, size, and orientation.
- *
- * param probImage Back projection of the object histogram. See calcBackProject.
- * param window Initial search window.
- * param criteria Stop criteria for the underlying meanShift.
- * returns
- * (in old interfaces) Number of iterations CAMSHIFT took to converge
- * The function implements the CAMSHIFT object tracking algorithm CITE: Bradski98 . First, it finds an
- * object center using meanShift and then adjusts the window size and finds the optimal rotation. The
- * function returns the rotated rectangle structure that includes the object position, size, and
- * orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
- *
- * See the OpenCV sample camshiftdemo.c that tracks colored objects.
- *
- * <b>Note:</b>
- * <ul>
- * <li>
- * (Python) A sample explaining the camshift tracking algorithm can be found at
- * opencv_source_code/samples/python/camshift.py
- * </li>
- * </ul>
- * return automatically generated
- */
- public static RotatedRect CamShift(Mat probImage, Rect window, TermCriteria criteria)
- {
- if (probImage != null) probImage.ThrowIfDisposed();
- double[] window_out = new double[4];
- double[] tmpArray = new double[5];
- video_Video_CamShift_10(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon, tmpArray);
- RotatedRect retVal = new RotatedRect(tmpArray);
- if (window != null) { window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; }
- return retVal;
- }
- //
- // C++: int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria)
- //
- /**
- * Finds an object on a back projection image.
- *
- * param probImage Back projection of the object histogram. See calcBackProject for details.
- * param window Initial search window.
- * param criteria Stop criteria for the iterative search algorithm.
- * returns
- * : Number of iterations CAMSHIFT took to converge.
- * The function implements the iterative object search algorithm. It takes the input back projection of
- * an object and the initial position. The mass center in window of the back projection image is
- * computed and the search window center shifts to the mass center. The procedure is repeated until the
- * specified number of iterations criteria.maxCount is done or until the window center shifts by less
- * than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
- * window size or orientation do not change during the search. You can simply pass the output of
- * calcBackProject to this function. But better results can be obtained if you pre-filter the back
- * projection and remove the noise. For example, you can do this by retrieving connected components
- * with findContours , throwing away contours with small area ( contourArea ), and rendering the
- * remaining contours with drawContours.
- * return automatically generated
- */
- public static int meanShift(Mat probImage, Rect window, TermCriteria criteria)
- {
- if (probImage != null) probImage.ThrowIfDisposed();
- double[] window_out = new double[4];
- int retVal = video_Video_meanShift_10(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon);
- if (window != null) { window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; }
- return retVal;
- }
- //
- // C++: int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true)
- //
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * param img 8-bit input image.
- * param pyramid output pyramid.
- * param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * param maxLevel 0-based maximal pyramid level number.
- * param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * param pyrBorder the border mode for pyramid layers.
- * param derivBorder the border mode for gradients.
- * param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
- * to force data copying.
- * return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, bool withDerivatives, int pyrBorder, int derivBorder, bool tryReuseInputImage)
- {
- if (img != null) img.ThrowIfDisposed();
- Mat pyramid_mat = new Mat();
- int retVal = video_Video_buildOpticalFlowPyramid_10(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage);
- Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
- pyramid_mat.release();
- return retVal;
- }
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * param img 8-bit input image.
- * param pyramid output pyramid.
- * param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * param maxLevel 0-based maximal pyramid level number.
- * param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * param pyrBorder the border mode for pyramid layers.
- * param derivBorder the border mode for gradients.
- * to force data copying.
- * return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, bool withDerivatives, int pyrBorder, int derivBorder)
- {
- if (img != null) img.ThrowIfDisposed();
- Mat pyramid_mat = new Mat();
- int retVal = video_Video_buildOpticalFlowPyramid_11(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder);
- Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
- pyramid_mat.release();
- return retVal;
- }
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * param img 8-bit input image.
- * param pyramid output pyramid.
- * param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * param maxLevel 0-based maximal pyramid level number.
- * param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * param pyrBorder the border mode for pyramid layers.
- * to force data copying.
- * return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, bool withDerivatives, int pyrBorder)
- {
- if (img != null) img.ThrowIfDisposed();
- Mat pyramid_mat = new Mat();
- int retVal = video_Video_buildOpticalFlowPyramid_12(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder);
- Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
- pyramid_mat.release();
- return retVal;
- }
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * param img 8-bit input image.
- * param pyramid output pyramid.
- * param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * param maxLevel 0-based maximal pyramid level number.
- * param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * to force data copying.
- * return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, bool withDerivatives)
- {
- if (img != null) img.ThrowIfDisposed();
- Mat pyramid_mat = new Mat();
- int retVal = video_Video_buildOpticalFlowPyramid_13(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives);
- Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
- pyramid_mat.release();
- return retVal;
- }
- /**
- * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
- *
- * param img 8-bit input image.
- * param pyramid output pyramid.
- * param winSize window size of optical flow algorithm. Must be not less than winSize argument of
- * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
- * param maxLevel 0-based maximal pyramid level number.
- * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
- * to force data copying.
- * return number of levels in constructed pyramid. Can be less than maxLevel.
- */
- public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel)
- {
- if (img != null) img.ThrowIfDisposed();
- Mat pyramid_mat = new Mat();
- int retVal = video_Video_buildOpticalFlowPyramid_14(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel);
- Converters.Mat_to_vector_Mat(pyramid_mat, pyramid);
- pyramid_mat.release();
- return retVal;
- }
- //
- // C++: void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4)
- //
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * param winSize size of the search window at each pyramid level.
- * param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * param criteria parameter, specifying the termination criteria of the iterative search algorithm
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * param flags operation flags:
- * <ul>
- * <li>
- * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * </li>
- * <li>
- * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * </li>
- * </ul>
- * param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * <b>Note:</b>
- *
- * <ul>
- * <li>
- * An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- * </li>
- * </ul>
- */
- public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags, double minEigThreshold)
- {
- if (prevImg != null) prevImg.ThrowIfDisposed();
- if (nextImg != null) nextImg.ThrowIfDisposed();
- if (prevPts != null) prevPts.ThrowIfDisposed();
- if (nextPts != null) nextPts.ThrowIfDisposed();
- if (status != null) status.ThrowIfDisposed();
- if (err != null) err.ThrowIfDisposed();
- Mat prevPts_mat = prevPts;
- Mat nextPts_mat = nextPts;
- Mat status_mat = status;
- Mat err_mat = err;
- video_Video_calcOpticalFlowPyrLK_10(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags, minEigThreshold);
- }
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * param winSize size of the search window at each pyramid level.
- * param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * param criteria parameter, specifying the termination criteria of the iterative search algorithm
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * param flags operation flags:
- * <ul>
- * <li>
- * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * </li>
- * <li>
- * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * </li>
- * </ul>
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * <b>Note:</b>
- *
- * <ul>
- * <li>
- * An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- * </li>
- * </ul>
- */
- public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags)
- {
- if (prevImg != null) prevImg.ThrowIfDisposed();
- if (nextImg != null) nextImg.ThrowIfDisposed();
- if (prevPts != null) prevPts.ThrowIfDisposed();
- if (nextPts != null) nextPts.ThrowIfDisposed();
- if (status != null) status.ThrowIfDisposed();
- if (err != null) err.ThrowIfDisposed();
- Mat prevPts_mat = prevPts;
- Mat nextPts_mat = nextPts;
- Mat status_mat = status;
- Mat err_mat = err;
- video_Video_calcOpticalFlowPyrLK_11(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags);
- }
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * param winSize size of the search window at each pyramid level.
- * param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * param criteria parameter, specifying the termination criteria of the iterative search algorithm
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * <ul>
- * <li>
- * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * </li>
- * <li>
- * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * </li>
- * </ul>
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * <b>Note:</b>
- *
- * <ul>
- * <li>
- * An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- * </li>
- * </ul>
- */
- public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria)
- {
- if (prevImg != null) prevImg.ThrowIfDisposed();
- if (nextImg != null) nextImg.ThrowIfDisposed();
- if (prevPts != null) prevPts.ThrowIfDisposed();
- if (nextPts != null) nextPts.ThrowIfDisposed();
- if (status != null) status.ThrowIfDisposed();
- if (err != null) err.ThrowIfDisposed();
- Mat prevPts_mat = prevPts;
- Mat nextPts_mat = nextPts;
- Mat status_mat = status;
- Mat err_mat = err;
- video_Video_calcOpticalFlowPyrLK_12(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon);
- }
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * param winSize size of the search window at each pyramid level.
- * param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * <ul>
- * <li>
- * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * </li>
- * <li>
- * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * </li>
- * </ul>
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * <b>Note:</b>
- *
- * <ul>
- * <li>
- * An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- * </li>
- * </ul>
- */
- public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel)
- {
- if (prevImg != null) prevImg.ThrowIfDisposed();
- if (nextImg != null) nextImg.ThrowIfDisposed();
- if (prevPts != null) prevPts.ThrowIfDisposed();
- if (nextPts != null) nextPts.ThrowIfDisposed();
- if (status != null) status.ThrowIfDisposed();
- if (err != null) err.ThrowIfDisposed();
- Mat prevPts_mat = prevPts;
- Mat nextPts_mat = nextPts;
- Mat status_mat = status;
- Mat err_mat = err;
- video_Video_calcOpticalFlowPyrLK_13(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel);
- }
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * param winSize size of the search window at each pyramid level.
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * <ul>
- * <li>
- * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * </li>
- * <li>
- * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * </li>
- * </ul>
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * <b>Note:</b>
- *
- * <ul>
- * <li>
- * An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- * </li>
- * </ul>
- */
- public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize)
- {
- if (prevImg != null) prevImg.ThrowIfDisposed();
- if (nextImg != null) nextImg.ThrowIfDisposed();
- if (prevPts != null) prevPts.ThrowIfDisposed();
- if (nextPts != null) nextPts.ThrowIfDisposed();
- if (status != null) status.ThrowIfDisposed();
- if (err != null) err.ThrowIfDisposed();
- Mat prevPts_mat = prevPts;
- Mat nextPts_mat = nextPts;
- Mat status_mat = status;
- Mat err_mat = err;
- video_Video_calcOpticalFlowPyrLK_14(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height);
- }
- /**
- * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
- * pyramids.
- *
- * param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
- * param nextImg second input image or pyramid of the same size and the same type as prevImg.
- * param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
- * single-precision floating-point numbers.
- * param nextPts output vector of 2D points (with single-precision floating-point coordinates)
- * containing the calculated new positions of input features in the second image; when
- * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
- * param status output status vector (of unsigned chars); each element of the vector is set to 1 if
- * the flow for the corresponding features has been found, otherwise, it is set to 0.
- * param err output vector of errors; each element of the vector is set to an error for the
- * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
- * found then the error is not defined (use the status parameter to find such cases).
- * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
- * algorithm will use as many levels as pyramids have but no more than maxLevel.
- * (after the specified maximum number of iterations criteria.maxCount or when the search window
- * moves by less than criteria.epsilon.
- * <ul>
- * <li>
- * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is
- * not set, then prevPts is copied to nextPts and is considered the initial estimate.
- * </li>
- * <li>
- * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see
- * minEigThreshold description); if the flag is not set, then L1 distance between patches
- * around the original and a moved point, divided by number of pixels in a window, is used as a
- * error measure.
- * </li>
- * </ul>
- * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided
- * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
- * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
- * performance boost.
- *
- * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
- * CITE: Bouguet00 . The function is parallelized with the TBB library.
- *
- * <b>Note:</b>
- *
- * <ul>
- * <li>
- * An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/cpp/lkdemo.cpp
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
- * opencv_source_code/samples/python/lk_track.py
- * </li>
- * <li>
- * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
- * opencv_source_code/samples/python/lk_homography.py
- * </li>
- * </ul>
- */
- public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err)
- {
- if (prevImg != null) prevImg.ThrowIfDisposed();
- if (nextImg != null) nextImg.ThrowIfDisposed();
- if (prevPts != null) prevPts.ThrowIfDisposed();
- if (nextPts != null) nextPts.ThrowIfDisposed();
- if (status != null) status.ThrowIfDisposed();
- if (err != null) err.ThrowIfDisposed();
- Mat prevPts_mat = prevPts;
- Mat nextPts_mat = nextPts;
- Mat status_mat = status;
- Mat err_mat = err;
- video_Video_calcOpticalFlowPyrLK_15(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj);
- }
- //
- // C++: void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags)
- //
- /**
- * Computes a dense optical flow using the Gunnar Farneback's algorithm.
- *
- * param prev first 8-bit single-channel input image.
- * param next second input image of the same size and the same type as prev.
- * param flow computed flow image that has the same size as prev and type CV_32FC2.
- * param pyr_scale parameter, specifying the image scale (<1) to build pyramids for each image;
- * pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
- * one.
- * param levels number of pyramid layers including the initial image; levels=1 means that no extra
- * layers are created and only the original images are used.
- * param winsize averaging window size; larger values increase the algorithm robustness to image
- * noise and give more chances for fast motion detection, but yield more blurred motion field.
- * param iterations number of iterations the algorithm does at each pyramid level.
- * param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
- * larger values mean that the image will be approximated with smoother surfaces, yielding more
- * robust algorithm and more blurred motion field, typically poly_n =5 or 7.
- * param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
- * basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
- * good value would be poly_sigma=1.5.
- * param flags operation flags that can be a combination of the following:
- * <ul>
- * <li>
- * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses the input flow as an initial flow approximation.
- * </li>
- * <li>
- * <b>OPTFLOW_FARNEBACK_GAUSSIAN</b> uses the Gaussian \(\texttt{winsize}\times\texttt{winsize}\)
- * filter instead of a box filter of the same size for optical flow estimation; usually, this
- * option gives z more accurate flow than with a box filter, at the cost of lower speed;
- * normally, winsize for a Gaussian window should be set to a larger value to achieve the same
- * level of robustness.
- * </li>
- * </ul>
- *
- * The function finds an optical flow for each prev pixel using the CITE: Farneback2003 algorithm so that
- *
- * \(\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\)
- *
- * <b>Note:</b>
- *
- * <ul>
- * <li>
- * An example using the optical flow algorithm described by Gunnar Farneback can be found at
- * opencv_source_code/samples/cpp/fback.cpp
- * </li>
- * <li>
- * (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
- * found at opencv_source_code/samples/python/opt_flow.py
- * </li>
- * </ul>
- */
- public static void calcOpticalFlowFarneback(Mat prev, Mat next, Mat flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags)
- {
- if (prev != null) prev.ThrowIfDisposed();
- if (next != null) next.ThrowIfDisposed();
- if (flow != null) flow.ThrowIfDisposed();
- video_Video_calcOpticalFlowFarneback_10(prev.nativeObj, next.nativeObj, flow.nativeObj, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags);
- }
- //
- // C++: double cv::computeECC(Mat templateImage, Mat inputImage, Mat inputMask = Mat())
- //
- /**
- * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 .
- *
- * param templateImage single-channel template image; CV_8U or CV_32F array.
- * param inputImage single-channel input image to be warped to provide an image similar to
- * templateImage, same type as templateImage.
- * param inputMask An optional mask to indicate valid values of inputImage.
- *
- * SEE:
- * findTransformECC
- * return automatically generated
- */
- public static double computeECC(Mat templateImage, Mat inputImage, Mat inputMask)
- {
- if (templateImage != null) templateImage.ThrowIfDisposed();
- if (inputImage != null) inputImage.ThrowIfDisposed();
- if (inputMask != null) inputMask.ThrowIfDisposed();
- return video_Video_computeECC_10(templateImage.nativeObj, inputImage.nativeObj, inputMask.nativeObj);
- }
- /**
- * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 .
- *
- * param templateImage single-channel template image; CV_8U or CV_32F array.
- * param inputImage single-channel input image to be warped to provide an image similar to
- * templateImage, same type as templateImage.
- *
- * SEE:
- * findTransformECC
- * return automatically generated
- */
- public static double computeECC(Mat templateImage, Mat inputImage)
- {
- if (templateImage != null) templateImage.ThrowIfDisposed();
- if (inputImage != null) inputImage.ThrowIfDisposed();
- return video_Video_computeECC_11(templateImage.nativeObj, inputImage.nativeObj);
- }
- //
- // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize)
- //
- /**
- * Finds the geometric transform (warp) between two images in terms of the ECC criterion CITE: EP08 .
- *
- * param templateImage single-channel template image; CV_8U or CV_32F array.
- * param inputImage single-channel input image which should be warped with the final warpMatrix in
- * order to provide an image similar to templateImage, same type as templateImage.
- * param warpMatrix floating-point \(2\times 3\) or \(3\times 3\) mapping matrix (warp).
- * param motionType parameter, specifying the type of motion:
- * <ul>
- * <li>
- * <b>MOTION_TRANSLATION</b> sets a translational motion model; warpMatrix is \(2\times 3\) with
- * the first \(2\times 2\) part being the unity matrix and the rest two parameters being
- * estimated.
- * </li>
- * <li>
- * <b>MOTION_EUCLIDEAN</b> sets a Euclidean (rigid) transformation as motion model; three
- * parameters are estimated; warpMatrix is \(2\times 3\).
- * </li>
- * <li>
- * <b>MOTION_AFFINE</b> sets an affine motion model (DEFAULT); six parameters are estimated;
- * warpMatrix is \(2\times 3\).
- * </li>
- * <li>
- * <b>MOTION_HOMOGRAPHY</b> sets a homography as a motion model; eight parameters are
- * estimated;\{code warpMatrix\} is \(3\times 3\).
- * </li>
- * </ul>
- * param criteria parameter, specifying the termination criteria of the ECC algorithm;
- * criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
- * iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
- * Default values are shown in the declaration above.
- * param inputMask An optional mask to indicate valid values of inputImage.
- * param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
- *
- * The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
- * (CITE: EP08), that is
- *
- * \(\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\)
- *
- * where
- *
- * \(\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\)
- *
- * (the equation holds with homogeneous coordinates for homography). It returns the final enhanced
- * correlation coefficient, that is the correlation coefficient between the template image and the
- * final warped input image. When a \(3\times 3\) matrix is given with motionType =0, 1 or 2, the third
- * row is ignored.
- *
- * Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
- * area-based alignment that builds on intensity similarities. In essence, the function updates the
- * initial transformation that roughly aligns the images. If this information is missing, the identity
- * warp (unity matrix) is used as an initialization. Note that if images undergo strong
- * displacements/rotations, an initial transformation that roughly aligns the images is necessary
- * (e.g., a simple euclidean/similarity transform that allows for the images showing the same image
- * content approximately). Use inverse warping in the second image to take an image close to the first
- * one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
- * sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
- * an exception if algorithm does not converges.
- *
- * SEE:
- * computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
- * return automatically generated
- */
- public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize)
- {
- if (templateImage != null) templateImage.ThrowIfDisposed();
- if (inputImage != null) inputImage.ThrowIfDisposed();
- if (warpMatrix != null) warpMatrix.ThrowIfDisposed();
- if (inputMask != null) inputMask.ThrowIfDisposed();
- return video_Video_findTransformECC_10(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj, gaussFiltSize);
- }
- //
- // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat())
- //
- public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask)
- {
- if (templateImage != null) templateImage.ThrowIfDisposed();
- if (inputImage != null) inputImage.ThrowIfDisposed();
- if (warpMatrix != null) warpMatrix.ThrowIfDisposed();
- if (inputMask != null) inputMask.ThrowIfDisposed();
- return video_Video_findTransformECC_11(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj);
- }
- public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria)
- {
- if (templateImage != null) templateImage.ThrowIfDisposed();
- if (inputImage != null) inputImage.ThrowIfDisposed();
- if (warpMatrix != null) warpMatrix.ThrowIfDisposed();
- return video_Video_findTransformECC_12(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon);
- }
- public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType)
- {
- if (templateImage != null) templateImage.ThrowIfDisposed();
- if (inputImage != null) inputImage.ThrowIfDisposed();
- if (warpMatrix != null) warpMatrix.ThrowIfDisposed();
- return video_Video_findTransformECC_13(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType);
- }
- public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix)
- {
- if (templateImage != null) templateImage.ThrowIfDisposed();
- if (inputImage != null) inputImage.ThrowIfDisposed();
- if (warpMatrix != null) warpMatrix.ThrowIfDisposed();
- return video_Video_findTransformECC_14(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj);
- }
- //
- // C++: Mat cv::readOpticalFlow(String path)
- //
- /**
- * Read a .flo file
- *
- * param path Path to the file to be loaded
- *
- * The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
- * Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
- * flow in the horizontal direction (u), second - vertical (v).
- * return automatically generated
- */
- public static Mat readOpticalFlow(string path)
- {
- return new Mat(DisposableObject.ThrowIfNullIntPtr(video_Video_readOpticalFlow_10(path)));
- }
- //
- // C++: bool cv::writeOpticalFlow(String path, Mat flow)
- //
- /**
- * Write a .flo to disk
- *
- * param path Path to the file to be written
- * param flow Flow field to be stored
- *
- * The function stores a flow field in a file, returns true on success, false otherwise.
- * The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
- * to the flow in the horizontal direction (u), second - vertical (v).
- * return automatically generated
- */
- public static bool writeOpticalFlow(string path, Mat flow)
- {
- if (flow != null) flow.ThrowIfDisposed();
- return video_Video_writeOpticalFlow_10(path, flow.nativeObj);
- }
- #if (UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR
- const string LIBNAME = "__Internal";
- #else
- const string LIBNAME = "opencvforunity";
- #endif
- // C++: Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true)
- [DllImport(LIBNAME)]
- private static extern IntPtr video_Video_createBackgroundSubtractorMOG2_10(int history, double varThreshold, [MarshalAs(UnmanagedType.U1)] bool detectShadows);
- [DllImport(LIBNAME)]
- private static extern IntPtr video_Video_createBackgroundSubtractorMOG2_11(int history, double varThreshold);
- [DllImport(LIBNAME)]
- private static extern IntPtr video_Video_createBackgroundSubtractorMOG2_12(int history);
- [DllImport(LIBNAME)]
- private static extern IntPtr video_Video_createBackgroundSubtractorMOG2_13();
- // C++: Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true)
- [DllImport(LIBNAME)]
- private static extern IntPtr video_Video_createBackgroundSubtractorKNN_10(int history, double dist2Threshold, [MarshalAs(UnmanagedType.U1)] bool detectShadows);
- [DllImport(LIBNAME)]
- private static extern IntPtr video_Video_createBackgroundSubtractorKNN_11(int history, double dist2Threshold);
- [DllImport(LIBNAME)]
- private static extern IntPtr video_Video_createBackgroundSubtractorKNN_12(int history);
- [DllImport(LIBNAME)]
- private static extern IntPtr video_Video_createBackgroundSubtractorKNN_13();
- // C++: RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria)
- [DllImport(LIBNAME)]
- private static extern void video_Video_CamShift_10(IntPtr probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon, double[] retVal);
- // C++: int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria)
- [DllImport(LIBNAME)]
- private static extern int video_Video_meanShift_10(IntPtr probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon);
- // C++: int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true)
- [DllImport(LIBNAME)]
- private static extern int video_Video_buildOpticalFlowPyramid_10(IntPtr img_nativeObj, IntPtr pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, [MarshalAs(UnmanagedType.U1)] bool withDerivatives, int pyrBorder, int derivBorder, [MarshalAs(UnmanagedType.U1)] bool tryReuseInputImage);
- [DllImport(LIBNAME)]
- private static extern int video_Video_buildOpticalFlowPyramid_11(IntPtr img_nativeObj, IntPtr pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, [MarshalAs(UnmanagedType.U1)] bool withDerivatives, int pyrBorder, int derivBorder);
- [DllImport(LIBNAME)]
- private static extern int video_Video_buildOpticalFlowPyramid_12(IntPtr img_nativeObj, IntPtr pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, [MarshalAs(UnmanagedType.U1)] bool withDerivatives, int pyrBorder);
- [DllImport(LIBNAME)]
- private static extern int video_Video_buildOpticalFlowPyramid_13(IntPtr img_nativeObj, IntPtr pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, [MarshalAs(UnmanagedType.U1)] bool withDerivatives);
- [DllImport(LIBNAME)]
- private static extern int video_Video_buildOpticalFlowPyramid_14(IntPtr img_nativeObj, IntPtr pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel);
- // C++: void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4)
- [DllImport(LIBNAME)]
- private static extern void video_Video_calcOpticalFlowPyrLK_10(IntPtr prevImg_nativeObj, IntPtr nextImg_nativeObj, IntPtr prevPts_mat_nativeObj, IntPtr nextPts_mat_nativeObj, IntPtr status_mat_nativeObj, IntPtr err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags, double minEigThreshold);
- [DllImport(LIBNAME)]
- private static extern void video_Video_calcOpticalFlowPyrLK_11(IntPtr prevImg_nativeObj, IntPtr nextImg_nativeObj, IntPtr prevPts_mat_nativeObj, IntPtr nextPts_mat_nativeObj, IntPtr status_mat_nativeObj, IntPtr err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags);
- [DllImport(LIBNAME)]
- private static extern void video_Video_calcOpticalFlowPyrLK_12(IntPtr prevImg_nativeObj, IntPtr nextImg_nativeObj, IntPtr prevPts_mat_nativeObj, IntPtr nextPts_mat_nativeObj, IntPtr status_mat_nativeObj, IntPtr err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon);
- [DllImport(LIBNAME)]
- private static extern void video_Video_calcOpticalFlowPyrLK_13(IntPtr prevImg_nativeObj, IntPtr nextImg_nativeObj, IntPtr prevPts_mat_nativeObj, IntPtr nextPts_mat_nativeObj, IntPtr status_mat_nativeObj, IntPtr err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel);
- [DllImport(LIBNAME)]
- private static extern void video_Video_calcOpticalFlowPyrLK_14(IntPtr prevImg_nativeObj, IntPtr nextImg_nativeObj, IntPtr prevPts_mat_nativeObj, IntPtr nextPts_mat_nativeObj, IntPtr status_mat_nativeObj, IntPtr err_mat_nativeObj, double winSize_width, double winSize_height);
- [DllImport(LIBNAME)]
- private static extern void video_Video_calcOpticalFlowPyrLK_15(IntPtr prevImg_nativeObj, IntPtr nextImg_nativeObj, IntPtr prevPts_mat_nativeObj, IntPtr nextPts_mat_nativeObj, IntPtr status_mat_nativeObj, IntPtr err_mat_nativeObj);
- // C++: void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags)
- [DllImport(LIBNAME)]
- private static extern void video_Video_calcOpticalFlowFarneback_10(IntPtr prev_nativeObj, IntPtr next_nativeObj, IntPtr flow_nativeObj, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags);
- // C++: double cv::computeECC(Mat templateImage, Mat inputImage, Mat inputMask = Mat())
- [DllImport(LIBNAME)]
- private static extern double video_Video_computeECC_10(IntPtr templateImage_nativeObj, IntPtr inputImage_nativeObj, IntPtr inputMask_nativeObj);
- [DllImport(LIBNAME)]
- private static extern double video_Video_computeECC_11(IntPtr templateImage_nativeObj, IntPtr inputImage_nativeObj);
- // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize)
- [DllImport(LIBNAME)]
- private static extern double video_Video_findTransformECC_10(IntPtr templateImage_nativeObj, IntPtr inputImage_nativeObj, IntPtr warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon, IntPtr inputMask_nativeObj, int gaussFiltSize);
- // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat())
- [DllImport(LIBNAME)]
- private static extern double video_Video_findTransformECC_11(IntPtr templateImage_nativeObj, IntPtr inputImage_nativeObj, IntPtr warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon, IntPtr inputMask_nativeObj);
- [DllImport(LIBNAME)]
- private static extern double video_Video_findTransformECC_12(IntPtr templateImage_nativeObj, IntPtr inputImage_nativeObj, IntPtr warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon);
- [DllImport(LIBNAME)]
- private static extern double video_Video_findTransformECC_13(IntPtr templateImage_nativeObj, IntPtr inputImage_nativeObj, IntPtr warpMatrix_nativeObj, int motionType);
- [DllImport(LIBNAME)]
- private static extern double video_Video_findTransformECC_14(IntPtr templateImage_nativeObj, IntPtr inputImage_nativeObj, IntPtr warpMatrix_nativeObj);
- // C++: Mat cv::readOpticalFlow(String path)
- [DllImport(LIBNAME)]
- private static extern IntPtr video_Video_readOpticalFlow_10(string path);
- // C++: bool cv::writeOpticalFlow(String path, Mat flow)
- [DllImport(LIBNAME)]
- [return: MarshalAs(UnmanagedType.U1)]
- private static extern bool video_Video_writeOpticalFlow_10(string path, IntPtr flow_nativeObj);
- }
- }
|