#if FEAT_COMPILER
//#define DEBUG_COMPILE
using System;
using System.Threading;
using ProtoBuf.Meta;
using ProtoBuf.Serializers;
#if FEAT_IKVM
using Type = IKVM.Reflection.Type;
using IKVM.Reflection;
using IKVM.Reflection.Emit;
#else
using System.Reflection;
using System.Reflection.Emit;
#endif
namespace ProtoBuf.Compiler
{
internal struct CodeLabel
{
public readonly Label Value;
public readonly int Index;
public CodeLabel(Label value, int index)
{
this.Value = value;
this.Index = index;
}
}
internal sealed class CompilerContext
{
public TypeModel Model { get { return model; } }
#if !(FX11 || FEAT_IKVM)
readonly DynamicMethod method;
static int next;
#endif
internal CodeLabel DefineLabel()
{
CodeLabel result = new CodeLabel(il.DefineLabel(), nextLabel++);
return result;
}
#if DEBUG_COMPILE
static readonly string traceCompilePath;
static CompilerContext()
{
traceCompilePath = System.IO.Path.Combine(System.IO.Directory.GetCurrentDirectory(),
"TraceCompile.txt");
Console.WriteLine("DEBUG_COMPILE enabled; writing to " + traceCompilePath);
}
#endif
[System.Diagnostics.Conditional("DEBUG_COMPILE")]
private void TraceCompile(string value)
{
#if DEBUG_COMPILE
if (!string.IsNullOrWhiteSpace(value))
{
using (System.IO.StreamWriter sw = System.IO.File.AppendText(traceCompilePath))
{
sw.WriteLine(value);
}
}
#endif
}
internal void MarkLabel(CodeLabel label)
{
il.MarkLabel(label.Value);
TraceCompile("#: " + label.Index);
}
#if !(FX11 || FEAT_IKVM)
public static ProtoSerializer BuildSerializer(IProtoSerializer head, TypeModel model)
{
Type type = head.ExpectedType;
try
{
CompilerContext ctx = new CompilerContext(type, true, true, model, typeof(object));
ctx.LoadValue(ctx.InputValue);
ctx.CastFromObject(type);
ctx.WriteNullCheckedTail(type, head, null);
ctx.Emit(OpCodes.Ret);
return (ProtoSerializer)ctx.method.CreateDelegate(
typeof(ProtoSerializer));
}
catch (Exception ex)
{
string name = type.FullName;
if(string.IsNullOrEmpty(name)) name = type.Name;
throw new InvalidOperationException("It was not possible to prepare a serializer for: " + name, ex);
}
}
/*public static ProtoCallback BuildCallback(IProtoTypeSerializer head)
{
Type type = head.ExpectedType;
CompilerContext ctx = new CompilerContext(type, true, true);
using (Local typedVal = new Local(ctx, type))
{
ctx.LoadValue(Local.InputValue);
ctx.CastFromObject(type);
ctx.StoreValue(typedVal);
CodeLabel[] jumpTable = new CodeLabel[4];
for(int i = 0 ; i < jumpTable.Length ; i++) {
jumpTable[i] = ctx.DefineLabel();
}
ctx.LoadReaderWriter();
ctx.Switch(jumpTable);
ctx.Return();
for(int i = 0 ; i < jumpTable.Length ; i++) {
ctx.MarkLabel(jumpTable[i]);
if (head.HasCallbacks((TypeModel.CallbackType)i))
{
head.EmitCallback(ctx, typedVal, (TypeModel.CallbackType)i);
}
ctx.Return();
}
}
ctx.Emit(OpCodes.Ret);
return (ProtoCallback)ctx.method.CreateDelegate(
typeof(ProtoCallback));
}*/
public static ProtoDeserializer BuildDeserializer(IProtoSerializer head, TypeModel model)
{
Type type = head.ExpectedType;
CompilerContext ctx = new CompilerContext(type, false, true, model, typeof(object));
using (Local typedVal = new Local(ctx, type))
{
if (!Helpers.IsValueType(type))
{
ctx.LoadValue(ctx.InputValue);
ctx.CastFromObject(type);
ctx.StoreValue(typedVal);
}
else
{
ctx.LoadValue(ctx.InputValue);
CodeLabel notNull = ctx.DefineLabel(), endNull = ctx.DefineLabel();
ctx.BranchIfTrue(notNull, true);
ctx.LoadAddress(typedVal, type);
ctx.EmitCtor(type);
ctx.Branch(endNull, true);
ctx.MarkLabel(notNull);
ctx.LoadValue(ctx.InputValue);
ctx.CastFromObject(type);
ctx.StoreValue(typedVal);
ctx.MarkLabel(endNull);
}
head.EmitRead(ctx, typedVal);
if (head.ReturnsValue) {
ctx.StoreValue(typedVal);
}
ctx.LoadValue(typedVal);
ctx.CastToObject(type);
}
ctx.Emit(OpCodes.Ret);
return (ProtoDeserializer)ctx.method.CreateDelegate(
typeof(ProtoDeserializer));
}
#endif
internal void Return()
{
Emit(OpCodes.Ret);
}
static bool IsObject(Type type)
{
#if FEAT_IKVM
return type.FullName == "System.Object";
#else
return type == typeof(object);
#endif
}
internal void CastToObject(Type type)
{
if(IsObject(type))
{ }
else if (Helpers.IsValueType(type))
{
il.Emit(OpCodes.Box, type);
TraceCompile(OpCodes.Box + ": " + type);
}
else
{
il.Emit(OpCodes.Castclass, MapType(typeof(object)));
TraceCompile(OpCodes.Castclass + ": " + type);
}
}
internal void CastFromObject(Type type)
{
if (IsObject(type))
{ }
else if (Helpers.IsValueType(type))
{
switch (MetadataVersion)
{
case ILVersion.Net1:
il.Emit(OpCodes.Unbox, type);
il.Emit(OpCodes.Ldobj, type);
TraceCompile(OpCodes.Unbox + ": " + type);
TraceCompile(OpCodes.Ldobj + ": " + type);
break;
default:
#if FX11
throw new NotSupportedException();
#else
il.Emit(OpCodes.Unbox_Any, type);
TraceCompile(OpCodes.Unbox_Any + ": " + type);
break;
#endif
}
}
else
{
il.Emit(OpCodes.Castclass, type);
TraceCompile(OpCodes.Castclass + ": " + type);
}
}
private readonly bool isStatic;
#if !SILVERLIGHT
private readonly RuntimeTypeModel.SerializerPair[] methodPairs;
internal MethodBuilder GetDedicatedMethod(int metaKey, bool read)
{
if (methodPairs == null) return null;
// but if we *do* have pairs, we demand that we find a match...
for (int i = 0; i < methodPairs.Length; i++ )
{
if (methodPairs[i].MetaKey == metaKey) { return read ? methodPairs[i].Deserialize : methodPairs[i].Serialize; }
}
throw new ArgumentException("Meta-key not found", "metaKey");
}
internal int MapMetaKeyToCompiledKey(int metaKey)
{
if (metaKey < 0 || methodPairs == null) return metaKey; // all meta, or a dummy/wildcard key
for (int i = 0; i < methodPairs.Length; i++)
{
if (methodPairs[i].MetaKey == metaKey) return i;
}
throw new ArgumentException("Key could not be mapped: " + metaKey.ToString(), "metaKey");
}
#else
internal int MapMetaKeyToCompiledKey(int metaKey)
{
return metaKey;
}
#endif
private readonly bool isWriter;
#if FX11 || FEAT_IKVM
internal bool NonPublic { get { return false; } }
#else
private readonly bool nonPublic;
internal bool NonPublic { get { return nonPublic; } }
#endif
private readonly Local inputValue;
public Local InputValue { get { return inputValue; } }
#if !(SILVERLIGHT || PHONE8)
private readonly string assemblyName;
internal CompilerContext(ILGenerator il, bool isStatic, bool isWriter, RuntimeTypeModel.SerializerPair[] methodPairs, TypeModel model, ILVersion metadataVersion, string assemblyName, Type inputType, string traceName)
{
if (il == null) throw new ArgumentNullException("il");
if (methodPairs == null) throw new ArgumentNullException("methodPairs");
if (model == null) throw new ArgumentNullException("model");
if (Helpers.IsNullOrEmpty(assemblyName)) throw new ArgumentNullException("assemblyName");
this.assemblyName = assemblyName;
this.isStatic = isStatic;
this.methodPairs = methodPairs;
this.il = il;
// nonPublic = false; <== implicit
this.isWriter = isWriter;
this.model = model;
this.metadataVersion = metadataVersion;
if (inputType != null) this.inputValue = new Local(null, inputType);
TraceCompile(">> " + traceName);
}
#endif
#if !(FX11 || FEAT_IKVM)
private CompilerContext(Type associatedType, bool isWriter, bool isStatic, TypeModel model, Type inputType)
{
if (model == null) throw new ArgumentNullException("model");
#if FX11
metadataVersion = ILVersion.Net1;
#else
metadataVersion = ILVersion.Net2;
#endif
this.isStatic = isStatic;
this.isWriter = isWriter;
this.model = model;
nonPublic = true;
Type[] paramTypes;
Type returnType;
if (isWriter)
{
returnType = typeof(void);
paramTypes = new Type[] { typeof(object), typeof(ProtoWriter) };
}
else
{
returnType = typeof(object);
paramTypes = new Type[] { typeof(object), typeof(ProtoReader) };
}
int uniqueIdentifier;
#if PLAT_NO_INTERLOCKED
uniqueIdentifier = ++next;
#else
uniqueIdentifier = Interlocked.Increment(ref next);
#endif
method = new DynamicMethod("proto_" + uniqueIdentifier.ToString(), returnType, paramTypes, associatedType
#if COREFX
.GetTypeInfo()
#endif
.IsInterface ? typeof(object) : associatedType, true);
this.il = method.GetILGenerator();
if (inputType != null) this.inputValue = new Local(null, inputType);
TraceCompile(">> " + method.Name);
}
#endif
private readonly ILGenerator il;
private void Emit(OpCode opcode)
{
il.Emit(opcode);
TraceCompile(opcode.ToString());
}
public void LoadValue(string value)
{
if (value == null)
{
LoadNullRef();
}
else
{
il.Emit(OpCodes.Ldstr, value);
TraceCompile(OpCodes.Ldstr + ": " + value);
}
}
public void LoadValue(float value)
{
il.Emit(OpCodes.Ldc_R4, value);
TraceCompile(OpCodes.Ldc_R4 + ": " + value);
}
public void LoadValue(double value)
{
il.Emit(OpCodes.Ldc_R8, value);
TraceCompile(OpCodes.Ldc_R8 + ": " + value);
}
public void LoadValue(long value)
{
il.Emit(OpCodes.Ldc_I8, value);
TraceCompile(OpCodes.Ldc_I8 + ": " + value);
}
public void LoadValue(int value)
{
switch (value)
{
case 0: Emit(OpCodes.Ldc_I4_0); break;
case 1: Emit(OpCodes.Ldc_I4_1); break;
case 2: Emit(OpCodes.Ldc_I4_2); break;
case 3: Emit(OpCodes.Ldc_I4_3); break;
case 4: Emit(OpCodes.Ldc_I4_4); break;
case 5: Emit(OpCodes.Ldc_I4_5); break;
case 6: Emit(OpCodes.Ldc_I4_6); break;
case 7: Emit(OpCodes.Ldc_I4_7); break;
case 8: Emit(OpCodes.Ldc_I4_8); break;
case -1: Emit(OpCodes.Ldc_I4_M1); break;
default:
if (value >= -128 && value <= 127)
{
il.Emit(OpCodes.Ldc_I4_S, (sbyte)value);
TraceCompile(OpCodes.Ldc_I4_S + ": " + value);
}
else
{
il.Emit(OpCodes.Ldc_I4, value);
TraceCompile(OpCodes.Ldc_I4 + ": " + value);
}
break;
}
}
MutableList locals = new MutableList();
internal LocalBuilder GetFromPool(Type type)
{
int count = locals.Count;
for (int i = 0; i < count; i++)
{
LocalBuilder item = (LocalBuilder)locals[i];
if (item != null && item.LocalType == type)
{
locals[i] = null; // remove from pool
return item;
}
}
LocalBuilder result = il.DeclareLocal(type);
TraceCompile("$ " + result + ": " + type);
return result;
}
//
internal void ReleaseToPool(LocalBuilder value)
{
int count = locals.Count;
for (int i = 0; i < count; i++)
{
if (locals[i] == null)
{
locals[i] = value; // released into existing slot
return;
}
}
locals.Add(value); // create a new slot
}
public void LoadReaderWriter()
{
Emit(isStatic ? OpCodes.Ldarg_1 : OpCodes.Ldarg_2);
}
public void StoreValue(Local local)
{
if (local == this.InputValue)
{
byte b = isStatic ? (byte) 0 : (byte)1;
il.Emit(OpCodes.Starg_S, b);
TraceCompile(OpCodes.Starg_S + ": $" + b);
}
else
{
#if !FX11
switch (local.Value.LocalIndex)
{
case 0: Emit(OpCodes.Stloc_0); break;
case 1: Emit(OpCodes.Stloc_1); break;
case 2: Emit(OpCodes.Stloc_2); break;
case 3: Emit(OpCodes.Stloc_3); break;
default:
#endif
OpCode code = UseShortForm(local) ? OpCodes.Stloc_S : OpCodes.Stloc;
il.Emit(code, local.Value);
TraceCompile(code + ": $" + local.Value);
#if !FX11
break;
}
#endif
}
}
public void LoadValue(Local local)
{
if (local == null) { /* nothing to do; top of stack */}
else if (local == this.InputValue)
{
Emit(isStatic ? OpCodes.Ldarg_0 : OpCodes.Ldarg_1);
}
else
{
#if !FX11
switch (local.Value.LocalIndex)
{
case 0: Emit(OpCodes.Ldloc_0); break;
case 1: Emit(OpCodes.Ldloc_1); break;
case 2: Emit(OpCodes.Ldloc_2); break;
case 3: Emit(OpCodes.Ldloc_3); break;
default:
#endif
OpCode code = UseShortForm(local) ? OpCodes.Ldloc_S : OpCodes.Ldloc;
il.Emit(code, local.Value);
TraceCompile(code + ": $" + local.Value);
#if !FX11
break;
}
#endif
}
}
public Local GetLocalWithValue(Type type, Compiler.Local fromValue)
{
if (fromValue != null)
{
if (fromValue.Type == type) return fromValue.AsCopy();
// otherwise, load onto the stack and let the default handling (below) deal with it
LoadValue(fromValue);
if (!Helpers.IsValueType(type) && (fromValue.Type == null || !type.IsAssignableFrom(fromValue.Type)))
{ // need to cast
Cast(type);
}
}
// need to store the value from the stack
Local result = new Local(this, type);
StoreValue(result);
return result;
}
internal void EmitBasicRead(string methodName, Type expectedType)
{
MethodInfo method = MapType(typeof(ProtoReader)).GetMethod(
methodName, BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance);
if (method == null || method.ReturnType != expectedType
|| method.GetParameters().Length != 0) throw new ArgumentException("methodName");
LoadReaderWriter();
EmitCall(method);
}
internal void EmitBasicRead(Type helperType, string methodName, Type expectedType)
{
MethodInfo method = helperType.GetMethod(
methodName, BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static);
if (method == null || method.ReturnType != expectedType
|| method.GetParameters().Length != 1) throw new ArgumentException("methodName");
LoadReaderWriter();
EmitCall(method);
}
internal void EmitBasicWrite(string methodName, Compiler.Local fromValue)
{
if (Helpers.IsNullOrEmpty(methodName)) throw new ArgumentNullException("methodName");
LoadValue(fromValue);
LoadReaderWriter();
EmitCall(GetWriterMethod(methodName));
}
private MethodInfo GetWriterMethod(string methodName)
{
Type writerType = MapType(typeof(ProtoWriter));
MethodInfo[] methods = writerType.GetMethods(BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static);
foreach (MethodInfo method in methods)
{
if(method.Name != methodName) continue;
ParameterInfo[] pis = method.GetParameters();
if (pis.Length == 2 && pis[1].ParameterType == writerType) return method;
}
throw new ArgumentException("No suitable method found for: " + methodName, "methodName");
}
internal void EmitWrite(Type helperType, string methodName, Compiler.Local valueFrom)
{
if (Helpers.IsNullOrEmpty(methodName)) throw new ArgumentNullException("methodName");
MethodInfo method = helperType.GetMethod(
methodName, BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static);
if (method == null || method.ReturnType != MapType(typeof(void))) throw new ArgumentException("methodName");
LoadValue(valueFrom);
LoadReaderWriter();
EmitCall(method);
}
public void EmitCall(MethodInfo method) { EmitCall(method, null); }
public void EmitCall(MethodInfo method, Type targetType)
{
Helpers.DebugAssert(method != null);
CheckAccessibility(method);
OpCode opcode;
if (method.IsStatic || Helpers.IsValueType(method.DeclaringType))
{
opcode = OpCodes.Call;
}
else
{
opcode = OpCodes.Callvirt;
if (targetType != null && Helpers.IsValueType(targetType) && !Helpers.IsValueType(method.DeclaringType))
{
Constrain(targetType);
}
}
il.EmitCall(opcode, method, null);
TraceCompile(opcode + ": " + method + " on " + method.DeclaringType + (targetType == null ? "" : (" via " + targetType)));
}
///
/// Pushes a null reference onto the stack. Note that this should only
/// be used to return a null (or set a variable to null); for null-tests
/// use BranchIfTrue / BranchIfFalse.
///
public void LoadNullRef()
{
Emit(OpCodes.Ldnull);
}
private int nextLabel;
internal void WriteNullCheckedTail(Type type, IProtoSerializer tail, Compiler.Local valueFrom)
{
if (Helpers.IsValueType(type))
{
Type underlyingType = null;
#if !FX11
underlyingType = Helpers.GetUnderlyingType(type);
#endif
if (underlyingType == null)
{ // not a nullable T; can invoke directly
tail.EmitWrite(this, valueFrom);
}
else
{ // nullable T; check HasValue
using (Compiler.Local valOrNull = GetLocalWithValue(type, valueFrom))
{
LoadAddress(valOrNull, type);
LoadValue(type.GetProperty("HasValue"));
CodeLabel @end = DefineLabel();
BranchIfFalse(@end, false);
LoadAddress(valOrNull, type);
EmitCall(type.GetMethod("GetValueOrDefault", Helpers.EmptyTypes));
tail.EmitWrite(this, null);
MarkLabel(@end);
}
}
}
else
{ // ref-type; do a null-check
LoadValue(valueFrom);
CopyValue();
CodeLabel hasVal = DefineLabel(), @end = DefineLabel();
BranchIfTrue(hasVal, true);
DiscardValue();
Branch(@end, false);
MarkLabel(hasVal);
tail.EmitWrite(this, null);
MarkLabel(@end);
}
}
internal void ReadNullCheckedTail(Type type, IProtoSerializer tail, Compiler.Local valueFrom)
{
#if !FX11
Type underlyingType;
if (Helpers.IsValueType(type) && (underlyingType = Helpers.GetUnderlyingType(type)) != null)
{
if(tail.RequiresOldValue)
{
// we expect the input value to be in valueFrom; need to unpack it from T?
using (Local loc = GetLocalWithValue(type, valueFrom))
{
LoadAddress(loc, type);
EmitCall(type.GetMethod("GetValueOrDefault", Helpers.EmptyTypes));
}
}
else
{
Helpers.DebugAssert(valueFrom == null); // not expecting a valueFrom in this case
}
tail.EmitRead(this, null); // either unwrapped on the stack or not provided
if (tail.ReturnsValue)
{
// now re-wrap the value
EmitCtor(type, underlyingType);
}
return;
}
#endif
// either a ref-type of a non-nullable struct; treat "as is", even if null
// (the type-serializer will handle the null case; it needs to allow null
// inputs to perform the correct type of subclass creation)
tail.EmitRead(this, valueFrom);
}
public void EmitCtor(Type type)
{
EmitCtor(type, Helpers.EmptyTypes);
}
public void EmitCtor(ConstructorInfo ctor)
{
if (ctor == null) throw new ArgumentNullException("ctor");
CheckAccessibility(ctor);
il.Emit(OpCodes.Newobj, ctor);
TraceCompile(OpCodes.Newobj + ": " + ctor.DeclaringType);
}
public void EmitCtor(Type type, params Type[] parameterTypes)
{
Helpers.DebugAssert(type != null);
Helpers.DebugAssert(parameterTypes != null);
if (Helpers.IsValueType(type) && parameterTypes.Length == 0)
{
il.Emit(OpCodes.Initobj, type);
TraceCompile(OpCodes.Initobj + ": " + type);
}
else
{
ConstructorInfo ctor = Helpers.GetConstructor(type
#if COREFX
.GetTypeInfo()
#endif
, parameterTypes, true);
if (ctor == null) throw new InvalidOperationException("No suitable constructor found for " + type.FullName);
EmitCtor(ctor);
}
}
#if !(PHONE8 || SILVERLIGHT || FX11)
BasicList knownTrustedAssemblies, knownUntrustedAssemblies;
#endif
bool InternalsVisible(Assembly assembly)
{
#if PHONE8 || SILVERLIGHT || FX11
return false;
#else
if (Helpers.IsNullOrEmpty(assemblyName)) return false;
if (knownTrustedAssemblies != null)
{
if (knownTrustedAssemblies.IndexOfReference(assembly) >= 0)
{
return true;
}
}
if (knownUntrustedAssemblies != null)
{
if (knownUntrustedAssemblies.IndexOfReference(assembly) >= 0)
{
return false;
}
}
bool isTrusted = false;
Type attributeType = MapType(typeof(System.Runtime.CompilerServices.InternalsVisibleToAttribute));
if(attributeType == null) return false;
#if FEAT_IKVM
foreach (CustomAttributeData attrib in assembly.__GetCustomAttributes(attributeType, false))
{
if (attrib.ConstructorArguments.Count == 1)
{
string privelegedAssembly = attrib.ConstructorArguments[0].Value as string;
if (privelegedAssembly == assemblyName || privelegedAssembly.StartsWith(assemblyName + ","))
{
isTrusted = true;
break;
}
}
}
#else
#if COREFX
foreach (System.Runtime.CompilerServices.InternalsVisibleToAttribute attrib in assembly.GetCustomAttributes(attributeType))
#else
foreach (System.Runtime.CompilerServices.InternalsVisibleToAttribute attrib in assembly.GetCustomAttributes(attributeType, false))
#endif
{
if (attrib.AssemblyName == assemblyName || attrib.AssemblyName.StartsWith(assemblyName + ","))
{
isTrusted = true;
break;
}
}
#endif
if (isTrusted)
{
if (knownTrustedAssemblies == null) knownTrustedAssemblies = new BasicList();
knownTrustedAssemblies.Add(assembly);
}
else
{
if (knownUntrustedAssemblies == null) knownUntrustedAssemblies = new BasicList();
knownUntrustedAssemblies.Add(assembly);
}
return isTrusted;
#endif
}
internal void CheckAccessibility(MemberInfo member)
{
if (member == null)
{
throw new ArgumentNullException("member");
}
#if ! COREFX
Type type;
#endif
if (!NonPublic)
{
bool isPublic;
#if COREFX
if (member is TypeInfo)
{
TypeInfo ti = (TypeInfo)member;
do
{
isPublic = ti.IsNestedPublic || ti.IsPublic || ((ti.IsNested || ti.IsNestedAssembly || ti.IsNestedFamORAssem) && InternalsVisible(ti.Assembly));
} while (isPublic && ti.IsNested && (ti = ti.DeclaringType.GetTypeInfo()) != null);
}
else if (member is FieldInfo)
{
FieldInfo field = ((FieldInfo)member);
isPublic = field.IsPublic || ((field.IsAssembly || field.IsFamilyOrAssembly) && InternalsVisible(Helpers.GetAssembly(field.DeclaringType)));
}
else if (member is PropertyInfo)
{
isPublic = true; // defer to get/set
}
else if (member is ConstructorInfo)
{
ConstructorInfo ctor = ((ConstructorInfo)member);
isPublic = ctor.IsPublic || ((ctor.IsAssembly || ctor.IsFamilyOrAssembly) && InternalsVisible(Helpers.GetAssembly(ctor.DeclaringType)));
}
else if (member is MethodInfo)
{
MethodInfo method = ((MethodInfo)member);
isPublic = method.IsPublic || ((method.IsAssembly || method.IsFamilyOrAssembly) && InternalsVisible(Helpers.GetAssembly(method.DeclaringType)));
if (!isPublic)
{
// allow calls to TypeModel protected methods, and methods we are in the process of creating
if (
member is MethodBuilder ||
member.DeclaringType == MapType(typeof(TypeModel)))
isPublic = true;
}
}
else
{
throw new NotSupportedException(member.GetType().Name);
}
#else
MemberTypes memberType = member.MemberType;
switch (memberType)
{
case MemberTypes.TypeInfo:
// top-level type
type = (Type)member;
isPublic = type.IsPublic || InternalsVisible(type.Assembly);
break;
case MemberTypes.NestedType:
type = (Type)member;
do
{
isPublic = type.IsNestedPublic || type.IsPublic || ((type.DeclaringType == null || type.IsNestedAssembly || type.IsNestedFamORAssem) && InternalsVisible(type.Assembly));
} while (isPublic && (type = type.DeclaringType) != null); // ^^^ !type.IsNested, but not all runtimes have that
break;
case MemberTypes.Field:
FieldInfo field = ((FieldInfo)member);
isPublic = field.IsPublic || ((field.IsAssembly || field.IsFamilyOrAssembly) && InternalsVisible(field.DeclaringType.Assembly));
break;
case MemberTypes.Constructor:
ConstructorInfo ctor = ((ConstructorInfo)member);
isPublic = ctor.IsPublic || ((ctor.IsAssembly || ctor.IsFamilyOrAssembly) && InternalsVisible(ctor.DeclaringType.Assembly));
break;
case MemberTypes.Method:
MethodInfo method = ((MethodInfo)member);
isPublic = method.IsPublic || ((method.IsAssembly || method.IsFamilyOrAssembly) && InternalsVisible(method.DeclaringType.Assembly));
if (!isPublic)
{
// allow calls to TypeModel protected methods, and methods we are in the process of creating
if(
#if !SILVERLIGHT
member is MethodBuilder ||
#endif
member.DeclaringType == MapType(typeof(TypeModel))) isPublic = true;
}
break;
case MemberTypes.Property:
isPublic = true; // defer to get/set
break;
default:
throw new NotSupportedException(memberType.ToString());
}
#endif
if (!isPublic)
{
#if COREFX
if (member is TypeInfo)
{
throw new InvalidOperationException("Non-public type cannot be used with full dll compilation: " +
((TypeInfo)member).FullName);
}
else
{
throw new InvalidOperationException("Non-public member cannot be used with full dll compilation: " +
member.DeclaringType.FullName + "." + member.Name);
}
#else
switch (memberType)
{
case MemberTypes.TypeInfo:
case MemberTypes.NestedType:
throw new InvalidOperationException("Non-public type cannot be used with full dll compilation: " +
((Type)member).FullName);
default:
throw new InvalidOperationException("Non-public member cannot be used with full dll compilation: " +
member.DeclaringType.FullName + "." + member.Name);
}
#endif
}
}
}
public void LoadValue(FieldInfo field)
{
CheckAccessibility(field);
OpCode code = field.IsStatic ? OpCodes.Ldsfld : OpCodes.Ldfld;
il.Emit(code, field);
TraceCompile(code + ": " + field + " on " + field.DeclaringType);
}
#if FEAT_IKVM
public void StoreValue(System.Reflection.FieldInfo field)
{
StoreValue(MapType(field.DeclaringType).GetField(field.Name, BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance));
}
public void StoreValue(System.Reflection.PropertyInfo property)
{
StoreValue(MapType(property.DeclaringType).GetProperty(property.Name, BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance));
}
public void LoadValue(System.Reflection.FieldInfo field)
{
LoadValue(MapType(field.DeclaringType).GetField(field.Name, BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance));
}
public void LoadValue(System.Reflection.PropertyInfo property)
{
LoadValue(MapType(property.DeclaringType).GetProperty(property.Name, BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance));
}
#endif
public void StoreValue(FieldInfo field)
{
CheckAccessibility(field);
OpCode code = field.IsStatic ? OpCodes.Stsfld : OpCodes.Stfld;
il.Emit(code, field);
TraceCompile(code + ": " + field + " on " + field.DeclaringType);
}
public void LoadValue(PropertyInfo property)
{
CheckAccessibility(property);
EmitCall(Helpers.GetGetMethod(property, true, true));
}
public void StoreValue(PropertyInfo property)
{
CheckAccessibility(property);
EmitCall(Helpers.GetSetMethod(property, true, true));
}
//internal void EmitInstance()
//{
// if (isStatic) throw new InvalidOperationException();
// Emit(OpCodes.Ldarg_0);
//}
internal static void LoadValue(ILGenerator il, int value)
{
switch (value)
{
case 0: il.Emit(OpCodes.Ldc_I4_0); break;
case 1: il.Emit(OpCodes.Ldc_I4_1); break;
case 2: il.Emit(OpCodes.Ldc_I4_2); break;
case 3: il.Emit(OpCodes.Ldc_I4_3); break;
case 4: il.Emit(OpCodes.Ldc_I4_4); break;
case 5: il.Emit(OpCodes.Ldc_I4_5); break;
case 6: il.Emit(OpCodes.Ldc_I4_6); break;
case 7: il.Emit(OpCodes.Ldc_I4_7); break;
case 8: il.Emit(OpCodes.Ldc_I4_8); break;
case -1: il.Emit(OpCodes.Ldc_I4_M1); break;
default: il.Emit(OpCodes.Ldc_I4, value); break;
}
}
private bool UseShortForm(Local local)
{
#if FX11
return locals.Count < 256;
#else
return local.Value.LocalIndex < 256;
#endif
}
#if FEAT_IKVM
internal void LoadAddress(Local local, System.Type type)
{
LoadAddress(local, MapType(type));
}
#endif
internal void LoadAddress(Local local, Type type)
{
if (Helpers.IsValueType(type))
{
if (local == null)
{
throw new InvalidOperationException("Cannot load the address of a struct at the head of the stack");
}
if (local == this.InputValue)
{
il.Emit(OpCodes.Ldarga_S, (isStatic ? (byte)0 : (byte)1));
TraceCompile(OpCodes.Ldarga_S + ": $" + (isStatic ? 0 : 1));
}
else
{
OpCode code = UseShortForm(local) ? OpCodes.Ldloca_S : OpCodes.Ldloca;
il.Emit(code, local.Value);
TraceCompile(code + ": $" + local.Value);
}
}
else
{ // reference-type; already *is* the address; just load it
LoadValue(local);
}
}
internal void Branch(CodeLabel label, bool @short)
{
OpCode code = @short ? OpCodes.Br_S : OpCodes.Br;
il.Emit(code, label.Value);
TraceCompile(code + ": " + label.Index);
}
internal void BranchIfFalse(CodeLabel label, bool @short)
{
OpCode code = @short ? OpCodes.Brfalse_S : OpCodes.Brfalse;
il.Emit(code, label.Value);
TraceCompile(code + ": " + label.Index);
}
internal void BranchIfTrue(CodeLabel label, bool @short)
{
OpCode code = @short ? OpCodes.Brtrue_S : OpCodes.Brtrue;
il.Emit(code, label.Value);
TraceCompile(code + ": " + label.Index);
}
internal void BranchIfEqual(CodeLabel label, bool @short)
{
OpCode code = @short ? OpCodes.Beq_S : OpCodes.Beq;
il.Emit(code, label.Value);
TraceCompile(code + ": " + label.Index);
}
//internal void TestEqual()
//{
// Emit(OpCodes.Ceq);
//}
internal void CopyValue()
{
Emit(OpCodes.Dup);
}
internal void BranchIfGreater(CodeLabel label, bool @short)
{
OpCode code = @short ? OpCodes.Bgt_S : OpCodes.Bgt;
il.Emit(code, label.Value);
TraceCompile(code + ": " + label.Index);
}
internal void BranchIfLess(CodeLabel label, bool @short)
{
OpCode code = @short ? OpCodes.Blt_S : OpCodes.Blt;
il.Emit(code, label.Value);
TraceCompile(code + ": " + label.Index);
}
internal void DiscardValue()
{
Emit(OpCodes.Pop);
}
public void Subtract()
{
Emit(OpCodes.Sub);
}
public void Switch(CodeLabel[] jumpTable)
{
const int MAX_JUMPS = 128;
if (jumpTable.Length <= MAX_JUMPS)
{
// simple case
Label[] labels = new Label[jumpTable.Length];
for (int i = 0; i < labels.Length; i++)
{
labels[i] = jumpTable[i].Value;
}
TraceCompile(OpCodes.Switch.ToString());
il.Emit(OpCodes.Switch, labels);
}
else
{
// too many to jump easily (especially on Android) - need to split up (note: uses a local pulled from the stack)
using (Local val = GetLocalWithValue(MapType(typeof(int)), null))
{
int count = jumpTable.Length, offset = 0;
int blockCount = count / MAX_JUMPS;
if ((count % MAX_JUMPS) != 0) blockCount++;
Label[] blockLabels = new Label[blockCount];
for (int i = 0; i < blockCount; i++)
{
blockLabels[i] = il.DefineLabel();
}
CodeLabel endOfSwitch = DefineLabel();
LoadValue(val);
LoadValue(MAX_JUMPS);
Emit(OpCodes.Div);
TraceCompile(OpCodes.Switch.ToString());
il.Emit(OpCodes.Switch, blockLabels);
Branch(endOfSwitch, false);
Label[] innerLabels = new Label[MAX_JUMPS];
for (int blockIndex = 0; blockIndex < blockCount; blockIndex++)
{
il.MarkLabel(blockLabels[blockIndex]);
int itemsThisBlock = Math.Min(MAX_JUMPS, count);
count -= itemsThisBlock;
if (innerLabels.Length != itemsThisBlock) innerLabels = new Label[itemsThisBlock];
int subtract = offset;
for (int j = 0; j < itemsThisBlock; j++)
{
innerLabels[j] = jumpTable[offset++].Value;
}
LoadValue(val);
if (subtract != 0) // switches are always zero-based
{
LoadValue(subtract);
Emit(OpCodes.Sub);
}
TraceCompile(OpCodes.Switch.ToString());
il.Emit(OpCodes.Switch, innerLabels);
if (count != 0)
{ // force default to the very bottom
Branch(endOfSwitch, false);
}
}
Helpers.DebugAssert(count == 0, "Should use exactly all switch items");
MarkLabel(endOfSwitch);
}
}
}
internal void EndFinally()
{
il.EndExceptionBlock();
TraceCompile("EndExceptionBlock");
}
internal void BeginFinally()
{
il.BeginFinallyBlock();
TraceCompile("BeginFinallyBlock");
}
internal void EndTry(CodeLabel label, bool @short)
{
OpCode code = @short ? OpCodes.Leave_S : OpCodes.Leave;
il.Emit(code, label.Value);
TraceCompile(code + ": " + label.Index);
}
internal CodeLabel BeginTry()
{
CodeLabel label = new CodeLabel(il.BeginExceptionBlock(), nextLabel++);
TraceCompile("BeginExceptionBlock: " + label.Index);
return label;
}
internal void Constrain(Type type)
{
#if FX11
throw new NotSupportedException("This operation requires a constrained call, which is not available on this platform");
#else
il.Emit(OpCodes.Constrained, type);
TraceCompile(OpCodes.Constrained + ": " + type);
#endif
}
internal void TryCast(Type type)
{
il.Emit(OpCodes.Isinst, type);
TraceCompile(OpCodes.Isinst + ": " + type);
}
internal void Cast(Type type)
{
il.Emit(OpCodes.Castclass, type);
TraceCompile(OpCodes.Castclass + ": " + type);
}
public IDisposable Using(Local local)
{
return new UsingBlock(this, local);
}
private sealed class UsingBlock : IDisposable{
private Local local;
CompilerContext ctx;
CodeLabel label;
///
/// Creates a new "using" block (equivalent) around a variable;
/// the variable must exist, and note that (unlike in C#) it is
/// the variables *final* value that gets disposed. If you need
/// *original* disposal, copy your variable first.
///
/// It is the callers responsibility to ensure that the variable's
/// scope fully-encapsulates the "using"; if not, the variable
/// may be re-used (and thus re-assigned) unexpectedly.
///
public UsingBlock(CompilerContext ctx, Local local)
{
if (ctx == null) throw new ArgumentNullException("ctx");
if (local == null) throw new ArgumentNullException("local");
Type type = local.Type;
// check if **never** disposable
if ((Helpers.IsValueType(type) || Helpers.IsSealed(type)) &&
!ctx.MapType(typeof(IDisposable)).IsAssignableFrom(type))
{
return; // nothing to do! easiest "using" block ever
// (note that C# wouldn't allow this as a "using" block,
// but we'll be generous and simply not do anything)
}
this.local = local;
this.ctx = ctx;
label = ctx.BeginTry();
}
public void Dispose()
{
if (local == null || ctx == null) return;
ctx.EndTry(label, false);
ctx.BeginFinally();
Type disposableType = ctx.MapType(typeof (IDisposable));
MethodInfo dispose = disposableType.GetMethod("Dispose");
Type type = local.Type;
// remember that we've already (in the .ctor) excluded the case
// where it *cannot* be disposable
if (Helpers.IsValueType(type))
{
ctx.LoadAddress(local, type);
switch (ctx.MetadataVersion)
{
case ILVersion.Net1:
ctx.LoadValue(local);
ctx.CastToObject(type);
break;
default:
#if FX11
throw new NotSupportedException();
#else
ctx.Constrain(type);
break;
#endif
}
ctx.EmitCall(dispose);
}
else
{
Compiler.CodeLabel @null = ctx.DefineLabel();
if (disposableType.IsAssignableFrom(type))
{ // *known* to be IDisposable; just needs a null-check
ctx.LoadValue(local);
ctx.BranchIfFalse(@null, true);
ctx.LoadAddress(local, type);
}
else
{ // *could* be IDisposable; test via "as"
using (Compiler.Local disp = new Compiler.Local(ctx, disposableType))
{
ctx.LoadValue(local);
ctx.TryCast(disposableType);
ctx.CopyValue();
ctx.StoreValue(disp);
ctx.BranchIfFalse(@null, true);
ctx.LoadAddress(disp, disposableType);
}
}
ctx.EmitCall(dispose);
ctx.MarkLabel(@null);
}
ctx.EndFinally();
this.local = null;
this.ctx = null;
label = new CodeLabel(); // default
}
}
internal void Add()
{
Emit(OpCodes.Add);
}
internal void LoadLength(Local arr, bool zeroIfNull)
{
Helpers.DebugAssert(arr.Type.IsArray && arr.Type.GetArrayRank() == 1);
if (zeroIfNull)
{
Compiler.CodeLabel notNull = DefineLabel(), done = DefineLabel();
LoadValue(arr);
CopyValue(); // optimised for non-null case
BranchIfTrue(notNull, true);
DiscardValue();
LoadValue(0);
Branch(done, true);
MarkLabel(notNull);
Emit(OpCodes.Ldlen);
Emit(OpCodes.Conv_I4);
MarkLabel(done);
}
else
{
LoadValue(arr);
Emit(OpCodes.Ldlen);
Emit(OpCodes.Conv_I4);
}
}
internal void CreateArray(Type elementType, Local length)
{
LoadValue(length);
il.Emit(OpCodes.Newarr, elementType);
TraceCompile(OpCodes.Newarr + ": " + elementType);
}
internal void LoadArrayValue(Local arr, Local i)
{
Type type = arr.Type;
Helpers.DebugAssert(type.IsArray && arr.Type.GetArrayRank() == 1);
type = type.GetElementType();
Helpers.DebugAssert(type != null, "Not an array: " + arr.Type.FullName);
LoadValue(arr);
LoadValue(i);
switch(Helpers.GetTypeCode(type)) {
case ProtoTypeCode.SByte: Emit(OpCodes.Ldelem_I1); break;
case ProtoTypeCode.Int16: Emit(OpCodes.Ldelem_I2); break;
case ProtoTypeCode.Int32: Emit(OpCodes.Ldelem_I4); break;
case ProtoTypeCode.Int64: Emit(OpCodes.Ldelem_I8); break;
case ProtoTypeCode.Byte: Emit(OpCodes.Ldelem_U1); break;
case ProtoTypeCode.UInt16: Emit(OpCodes.Ldelem_U2); break;
case ProtoTypeCode.UInt32: Emit(OpCodes.Ldelem_U4); break;
case ProtoTypeCode.UInt64: Emit(OpCodes.Ldelem_I8); break; // odd, but this is what C# does...
case ProtoTypeCode.Single: Emit(OpCodes.Ldelem_R4); break;
case ProtoTypeCode.Double: Emit(OpCodes.Ldelem_R8); break;
default:
if (Helpers.IsValueType(type))
{
il.Emit(OpCodes.Ldelema, type);
il.Emit(OpCodes.Ldobj, type);
TraceCompile(OpCodes.Ldelema + ": " + type);
TraceCompile(OpCodes.Ldobj + ": " + type);
}
else
{
Emit(OpCodes.Ldelem_Ref);
}
break;
}
}
internal void LoadValue(Type type)
{
il.Emit(OpCodes.Ldtoken, type);
TraceCompile(OpCodes.Ldtoken + ": " + type);
EmitCall(MapType(typeof(System.Type)).GetMethod("GetTypeFromHandle"));
}
internal void ConvertToInt32(ProtoTypeCode typeCode, bool uint32Overflow)
{
switch (typeCode)
{
case ProtoTypeCode.Byte:
case ProtoTypeCode.SByte:
case ProtoTypeCode.Int16:
case ProtoTypeCode.UInt16:
Emit(OpCodes.Conv_I4);
break;
case ProtoTypeCode.Int32:
break;
case ProtoTypeCode.Int64:
Emit(OpCodes.Conv_Ovf_I4);
break;
case ProtoTypeCode.UInt32:
Emit(uint32Overflow ? OpCodes.Conv_Ovf_I4_Un : OpCodes.Conv_Ovf_I4);
break;
case ProtoTypeCode.UInt64:
Emit(OpCodes.Conv_Ovf_I4_Un);
break;
default:
throw new InvalidOperationException("ConvertToInt32 not implemented for: " + typeCode.ToString());
}
}
internal void ConvertFromInt32(ProtoTypeCode typeCode, bool uint32Overflow)
{
switch (typeCode)
{
case ProtoTypeCode.SByte: Emit(OpCodes.Conv_Ovf_I1); break;
case ProtoTypeCode.Byte: Emit(OpCodes.Conv_Ovf_U1); break;
case ProtoTypeCode.Int16: Emit(OpCodes.Conv_Ovf_I2); break;
case ProtoTypeCode.UInt16: Emit(OpCodes.Conv_Ovf_U2); break;
case ProtoTypeCode.Int32: break;
case ProtoTypeCode.UInt32: Emit(uint32Overflow ? OpCodes.Conv_Ovf_U4 : OpCodes.Conv_U4); break;
case ProtoTypeCode.Int64: Emit(OpCodes.Conv_I8); break;
case ProtoTypeCode.UInt64: Emit(OpCodes.Conv_U8); break;
default: throw new InvalidOperationException();
}
}
internal void LoadValue(decimal value)
{
if (value == 0M)
{
LoadValue(typeof(decimal).GetField("Zero"));
}
else
{
int[] bits = decimal.GetBits(value);
LoadValue(bits[0]); // lo
LoadValue(bits[1]); // mid
LoadValue(bits[2]); // hi
LoadValue((int)(((uint)bits[3]) >> 31)); // isNegative (bool, but int for CLI purposes)
LoadValue((bits[3] >> 16) & 0xFF); // scale (byte, but int for CLI purposes)
EmitCtor(MapType(typeof(decimal)), new Type[] { MapType(typeof(int)), MapType(typeof(int)), MapType(typeof(int)), MapType(typeof(bool)), MapType(typeof(byte)) });
}
}
internal void LoadValue(Guid value)
{
if (value == Guid.Empty)
{
LoadValue(typeof(Guid).GetField("Empty"));
}
else
{ // note we're adding lots of shorts/bytes here - but at the IL level they are I4, not I1/I2 (which barely exist)
byte[] bytes = value.ToByteArray();
int i = (bytes[0]) | (bytes[1] << 8) | (bytes[2] << 16) | (bytes[3] << 24);
LoadValue(i);
short s = (short)((bytes[4]) | (bytes[5] << 8));
LoadValue(s);
s = (short)((bytes[6]) | (bytes[7] << 8));
LoadValue(s);
for (i = 8; i <= 15; i++)
{
LoadValue(bytes[i]);
}
EmitCtor(MapType(typeof(Guid)), new Type[] { MapType(typeof(int)), MapType(typeof(short)), MapType(typeof(short)),
MapType(typeof(byte)), MapType(typeof(byte)), MapType(typeof(byte)), MapType(typeof(byte)), MapType(typeof(byte)), MapType(typeof(byte)), MapType(typeof(byte)), MapType(typeof(byte)) });
}
}
//internal void LoadValue(bool value)
//{
// Emit(value ? OpCodes.Ldc_I4_1 : OpCodes.Ldc_I4_0);
//}
internal void LoadSerializationContext()
{
LoadReaderWriter();
LoadValue((isWriter ? typeof(ProtoWriter) : typeof(ProtoReader)).GetProperty("Context"));
}
private readonly TypeModel model;
internal Type MapType(System.Type type)
{
return model.MapType(type);
}
private readonly ILVersion metadataVersion;
public ILVersion MetadataVersion { get { return metadataVersion; } }
public enum ILVersion
{
Net1, Net2
}
internal bool AllowInternal(PropertyInfo property)
{
return NonPublic ? true : InternalsVisible(Helpers.GetAssembly(property.DeclaringType));
}
}
}
#endif