using OpenCVForUnity.CoreModule;
using OpenCVForUnity.UtilsModule;
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
namespace OpenCVForUnity.ObjdetectModule
{
// C++: class CascadeClassifier
/**
* Cascade classifier class for object detection.
*/
public class CascadeClassifier : DisposableOpenCVObject
{
protected override void Dispose(bool disposing)
{
try
{
if (disposing)
{
}
if (IsEnabledDispose)
{
if (nativeObj != IntPtr.Zero)
objdetect_CascadeClassifier_delete(nativeObj);
nativeObj = IntPtr.Zero;
}
}
finally
{
base.Dispose(disposing);
}
}
protected internal CascadeClassifier(IntPtr addr) : base(addr) { }
public IntPtr getNativeObjAddr() { return nativeObj; }
// internal usage only
public static CascadeClassifier __fromPtr__(IntPtr addr) { return new CascadeClassifier(addr); }
//
// C++: cv::CascadeClassifier::CascadeClassifier()
//
public CascadeClassifier()
{
nativeObj = DisposableObject.ThrowIfNullIntPtr(objdetect_CascadeClassifier_CascadeClassifier_10());
}
//
// C++: cv::CascadeClassifier::CascadeClassifier(String filename)
//
/**
* Loads a classifier from a file.
*
* param filename Name of the file from which the classifier is loaded.
*/
public CascadeClassifier(string filename)
{
nativeObj = DisposableObject.ThrowIfNullIntPtr(objdetect_CascadeClassifier_CascadeClassifier_11(filename));
}
//
// C++: bool cv::CascadeClassifier::empty()
//
/**
* Checks whether the classifier has been loaded.
* return automatically generated
*/
public bool empty()
{
ThrowIfDisposed();
return objdetect_CascadeClassifier_empty_10(nativeObj);
}
//
// C++: bool cv::CascadeClassifier::load(String filename)
//
/**
* Loads a classifier from a file.
*
* param filename Name of the file from which the classifier is loaded. The file may contain an old
* HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
* traincascade application.
* return automatically generated
*/
public bool load(string filename)
{
ThrowIfDisposed();
return objdetect_CascadeClassifier_load_10(nativeObj, filename);
}
//
// C++: bool cv::CascadeClassifier::read(FileNode node)
//
// Unknown type 'FileNode' (I), skipping the function
//
// C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size())
//
/**
* Detects objects of different sizes in the input image. The detected objects are returned as a list
* of rectangles.
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
* to retain it.
* param flags Parameter with the same meaning for an old cascade as in the function
* cvHaarDetectObjects. It is not used for a new cascade.
* param minSize Minimum possible object size. Objects smaller than that are ignored.
* param maxSize Maximum possible object size. Objects larger than that are ignored. If {code maxSize == minSize} model is evaluated on single scale.
*/
public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
Mat objects_mat = objects;
objdetect_CascadeClassifier_detectMultiScale_10(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height, maxSize.width, maxSize.height);
}
/**
* Detects objects of different sizes in the input image. The detected objects are returned as a list
* of rectangles.
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
* to retain it.
* param flags Parameter with the same meaning for an old cascade as in the function
* cvHaarDetectObjects. It is not used for a new cascade.
* param minSize Minimum possible object size. Objects smaller than that are ignored.
*/
public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors, int flags, Size minSize)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
Mat objects_mat = objects;
objdetect_CascadeClassifier_detectMultiScale_11(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height);
}
/**
* Detects objects of different sizes in the input image. The detected objects are returned as a list
* of rectangles.
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
* to retain it.
* param flags Parameter with the same meaning for an old cascade as in the function
* cvHaarDetectObjects. It is not used for a new cascade.
*/
public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors, int flags)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
Mat objects_mat = objects;
objdetect_CascadeClassifier_detectMultiScale_12(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor, minNeighbors, flags);
}
/**
* Detects objects of different sizes in the input image. The detected objects are returned as a list
* of rectangles.
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
* to retain it.
* cvHaarDetectObjects. It is not used for a new cascade.
*/
public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
Mat objects_mat = objects;
objdetect_CascadeClassifier_detectMultiScale_13(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor, minNeighbors);
}
/**
* Detects objects of different sizes in the input image. The detected objects are returned as a list
* of rectangles.
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* to retain it.
* cvHaarDetectObjects. It is not used for a new cascade.
*/
public void detectMultiScale(Mat image, MatOfRect objects, double scaleFactor)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
Mat objects_mat = objects;
objdetect_CascadeClassifier_detectMultiScale_14(nativeObj, image.nativeObj, objects_mat.nativeObj, scaleFactor);
}
/**
* Detects objects of different sizes in the input image. The detected objects are returned as a list
* of rectangles.
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* to retain it.
* cvHaarDetectObjects. It is not used for a new cascade.
*/
public void detectMultiScale(Mat image, MatOfRect objects)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
Mat objects_mat = objects;
objdetect_CascadeClassifier_detectMultiScale_15(nativeObj, image.nativeObj, objects_mat.nativeObj);
}
//
// C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, vector_int& numDetections, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size())
//
/**
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param numDetections Vector of detection numbers for the corresponding objects. An object's number
* of detections is the number of neighboring positively classified rectangles that were joined
* together to form the object.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
* to retain it.
* param flags Parameter with the same meaning for an old cascade as in the function
* cvHaarDetectObjects. It is not used for a new cascade.
* param minSize Minimum possible object size. Objects smaller than that are ignored.
* param maxSize Maximum possible object size. Objects larger than that are ignored. If {code maxSize == minSize} model is evaluated on single scale.
*/
public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (numDetections != null) numDetections.ThrowIfDisposed();
Mat objects_mat = objects;
Mat numDetections_mat = numDetections;
objdetect_CascadeClassifier_detectMultiScale2_10(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height, maxSize.width, maxSize.height);
}
/**
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param numDetections Vector of detection numbers for the corresponding objects. An object's number
* of detections is the number of neighboring positively classified rectangles that were joined
* together to form the object.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
* to retain it.
* param flags Parameter with the same meaning for an old cascade as in the function
* cvHaarDetectObjects. It is not used for a new cascade.
* param minSize Minimum possible object size. Objects smaller than that are ignored.
*/
public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor, int minNeighbors, int flags, Size minSize)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (numDetections != null) numDetections.ThrowIfDisposed();
Mat objects_mat = objects;
Mat numDetections_mat = numDetections;
objdetect_CascadeClassifier_detectMultiScale2_11(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height);
}
/**
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param numDetections Vector of detection numbers for the corresponding objects. An object's number
* of detections is the number of neighboring positively classified rectangles that were joined
* together to form the object.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
* to retain it.
* param flags Parameter with the same meaning for an old cascade as in the function
* cvHaarDetectObjects. It is not used for a new cascade.
*/
public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor, int minNeighbors, int flags)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (numDetections != null) numDetections.ThrowIfDisposed();
Mat objects_mat = objects;
Mat numDetections_mat = numDetections;
objdetect_CascadeClassifier_detectMultiScale2_12(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor, minNeighbors, flags);
}
/**
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param numDetections Vector of detection numbers for the corresponding objects. An object's number
* of detections is the number of neighboring positively classified rectangles that were joined
* together to form the object.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
* to retain it.
* cvHaarDetectObjects. It is not used for a new cascade.
*/
public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor, int minNeighbors)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (numDetections != null) numDetections.ThrowIfDisposed();
Mat objects_mat = objects;
Mat numDetections_mat = numDetections;
objdetect_CascadeClassifier_detectMultiScale2_13(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor, minNeighbors);
}
/**
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param numDetections Vector of detection numbers for the corresponding objects. An object's number
* of detections is the number of neighboring positively classified rectangles that were joined
* together to form the object.
* param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
* to retain it.
* cvHaarDetectObjects. It is not used for a new cascade.
*/
public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (numDetections != null) numDetections.ThrowIfDisposed();
Mat objects_mat = objects;
Mat numDetections_mat = numDetections;
objdetect_CascadeClassifier_detectMultiScale2_14(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor);
}
/**
*
* param image Matrix of the type CV_8U containing an image where objects are detected.
* param objects Vector of rectangles where each rectangle contains the detected object, the
* rectangles may be partially outside the original image.
* param numDetections Vector of detection numbers for the corresponding objects. An object's number
* of detections is the number of neighboring positively classified rectangles that were joined
* together to form the object.
* to retain it.
* cvHaarDetectObjects. It is not used for a new cascade.
*/
public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (numDetections != null) numDetections.ThrowIfDisposed();
Mat objects_mat = objects;
Mat numDetections_mat = numDetections;
objdetect_CascadeClassifier_detectMultiScale2_15(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj);
}
//
// C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, vector_int& rejectLevels, vector_double& levelWeights, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size(), bool outputRejectLevels = false)
//
/**
*
* This function allows you to retrieve the final stage decision certainty of classification.
* For this, one needs to set {code outputRejectLevels} on true and provide the {code rejectLevels} and {code levelWeights} parameter.
* For each resulting detection, {code levelWeights} will then contain the certainty of classification at the final stage.
* This value can then be used to separate strong from weaker classifications.
*
* A code sample on how to use it efficiently can be found below:
*
* Mat img;
* vector<double> weights;
* vector<int> levels;
* vector<Rect> detections;
* CascadeClassifier model("/path/to/your/model.xml");
* model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
* cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
*
* param image automatically generated
* param objects automatically generated
* param rejectLevels automatically generated
* param levelWeights automatically generated
* param scaleFactor automatically generated
* param minNeighbors automatically generated
* param flags automatically generated
* param minSize automatically generated
* param maxSize automatically generated
* param outputRejectLevels automatically generated
*/
public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize, bool outputRejectLevels)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (rejectLevels != null) rejectLevels.ThrowIfDisposed();
if (levelWeights != null) levelWeights.ThrowIfDisposed();
Mat objects_mat = objects;
Mat rejectLevels_mat = rejectLevels;
Mat levelWeights_mat = levelWeights;
objdetect_CascadeClassifier_detectMultiScale3_10(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height, maxSize.width, maxSize.height, outputRejectLevels);
}
/**
*
* This function allows you to retrieve the final stage decision certainty of classification.
* For this, one needs to set {code outputRejectLevels} on true and provide the {code rejectLevels} and {code levelWeights} parameter.
* For each resulting detection, {code levelWeights} will then contain the certainty of classification at the final stage.
* This value can then be used to separate strong from weaker classifications.
*
* A code sample on how to use it efficiently can be found below:
*
* Mat img;
* vector<double> weights;
* vector<int> levels;
* vector<Rect> detections;
* CascadeClassifier model("/path/to/your/model.xml");
* model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
* cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
*
* param image automatically generated
* param objects automatically generated
* param rejectLevels automatically generated
* param levelWeights automatically generated
* param scaleFactor automatically generated
* param minNeighbors automatically generated
* param flags automatically generated
* param minSize automatically generated
* param maxSize automatically generated
*/
public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (rejectLevels != null) rejectLevels.ThrowIfDisposed();
if (levelWeights != null) levelWeights.ThrowIfDisposed();
Mat objects_mat = objects;
Mat rejectLevels_mat = rejectLevels;
Mat levelWeights_mat = levelWeights;
objdetect_CascadeClassifier_detectMultiScale3_11(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height, maxSize.width, maxSize.height);
}
/**
*
* This function allows you to retrieve the final stage decision certainty of classification.
* For this, one needs to set {code outputRejectLevels} on true and provide the {code rejectLevels} and {code levelWeights} parameter.
* For each resulting detection, {code levelWeights} will then contain the certainty of classification at the final stage.
* This value can then be used to separate strong from weaker classifications.
*
* A code sample on how to use it efficiently can be found below:
*
* Mat img;
* vector<double> weights;
* vector<int> levels;
* vector<Rect> detections;
* CascadeClassifier model("/path/to/your/model.xml");
* model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
* cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
*
* param image automatically generated
* param objects automatically generated
* param rejectLevels automatically generated
* param levelWeights automatically generated
* param scaleFactor automatically generated
* param minNeighbors automatically generated
* param flags automatically generated
* param minSize automatically generated
*/
public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (rejectLevels != null) rejectLevels.ThrowIfDisposed();
if (levelWeights != null) levelWeights.ThrowIfDisposed();
Mat objects_mat = objects;
Mat rejectLevels_mat = rejectLevels;
Mat levelWeights_mat = levelWeights;
objdetect_CascadeClassifier_detectMultiScale3_12(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height);
}
/**
*
* This function allows you to retrieve the final stage decision certainty of classification.
* For this, one needs to set {code outputRejectLevels} on true and provide the {code rejectLevels} and {code levelWeights} parameter.
* For each resulting detection, {code levelWeights} will then contain the certainty of classification at the final stage.
* This value can then be used to separate strong from weaker classifications.
*
* A code sample on how to use it efficiently can be found below:
*
* Mat img;
* vector<double> weights;
* vector<int> levels;
* vector<Rect> detections;
* CascadeClassifier model("/path/to/your/model.xml");
* model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
* cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
*
* param image automatically generated
* param objects automatically generated
* param rejectLevels automatically generated
* param levelWeights automatically generated
* param scaleFactor automatically generated
* param minNeighbors automatically generated
* param flags automatically generated
*/
public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (rejectLevels != null) rejectLevels.ThrowIfDisposed();
if (levelWeights != null) levelWeights.ThrowIfDisposed();
Mat objects_mat = objects;
Mat rejectLevels_mat = rejectLevels;
Mat levelWeights_mat = levelWeights;
objdetect_CascadeClassifier_detectMultiScale3_13(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags);
}
/**
*
* This function allows you to retrieve the final stage decision certainty of classification.
* For this, one needs to set {code outputRejectLevels} on true and provide the {code rejectLevels} and {code levelWeights} parameter.
* For each resulting detection, {code levelWeights} will then contain the certainty of classification at the final stage.
* This value can then be used to separate strong from weaker classifications.
*
* A code sample on how to use it efficiently can be found below:
*
* Mat img;
* vector<double> weights;
* vector<int> levels;
* vector<Rect> detections;
* CascadeClassifier model("/path/to/your/model.xml");
* model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
* cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
*
* param image automatically generated
* param objects automatically generated
* param rejectLevels automatically generated
* param levelWeights automatically generated
* param scaleFactor automatically generated
* param minNeighbors automatically generated
*/
public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (rejectLevels != null) rejectLevels.ThrowIfDisposed();
if (levelWeights != null) levelWeights.ThrowIfDisposed();
Mat objects_mat = objects;
Mat rejectLevels_mat = rejectLevels;
Mat levelWeights_mat = levelWeights;
objdetect_CascadeClassifier_detectMultiScale3_14(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors);
}
/**
*
* This function allows you to retrieve the final stage decision certainty of classification.
* For this, one needs to set {code outputRejectLevels} on true and provide the {code rejectLevels} and {code levelWeights} parameter.
* For each resulting detection, {code levelWeights} will then contain the certainty of classification at the final stage.
* This value can then be used to separate strong from weaker classifications.
*
* A code sample on how to use it efficiently can be found below:
*
* Mat img;
* vector<double> weights;
* vector<int> levels;
* vector<Rect> detections;
* CascadeClassifier model("/path/to/your/model.xml");
* model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
* cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
*
* param image automatically generated
* param objects automatically generated
* param rejectLevels automatically generated
* param levelWeights automatically generated
* param scaleFactor automatically generated
*/
public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (rejectLevels != null) rejectLevels.ThrowIfDisposed();
if (levelWeights != null) levelWeights.ThrowIfDisposed();
Mat objects_mat = objects;
Mat rejectLevels_mat = rejectLevels;
Mat levelWeights_mat = levelWeights;
objdetect_CascadeClassifier_detectMultiScale3_15(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor);
}
/**
*
* This function allows you to retrieve the final stage decision certainty of classification.
* For this, one needs to set {code outputRejectLevels} on true and provide the {code rejectLevels} and {code levelWeights} parameter.
* For each resulting detection, {code levelWeights} will then contain the certainty of classification at the final stage.
* This value can then be used to separate strong from weaker classifications.
*
* A code sample on how to use it efficiently can be found below:
*
* Mat img;
* vector<double> weights;
* vector<int> levels;
* vector<Rect> detections;
* CascadeClassifier model("/path/to/your/model.xml");
* model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
* cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
*
* param image automatically generated
* param objects automatically generated
* param rejectLevels automatically generated
* param levelWeights automatically generated
*/
public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights)
{
ThrowIfDisposed();
if (image != null) image.ThrowIfDisposed();
if (objects != null) objects.ThrowIfDisposed();
if (rejectLevels != null) rejectLevels.ThrowIfDisposed();
if (levelWeights != null) levelWeights.ThrowIfDisposed();
Mat objects_mat = objects;
Mat rejectLevels_mat = rejectLevels;
Mat levelWeights_mat = levelWeights;
objdetect_CascadeClassifier_detectMultiScale3_16(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj);
}
//
// C++: bool cv::CascadeClassifier::isOldFormatCascade()
//
public bool isOldFormatCascade()
{
ThrowIfDisposed();
return objdetect_CascadeClassifier_isOldFormatCascade_10(nativeObj);
}
//
// C++: Size cv::CascadeClassifier::getOriginalWindowSize()
//
public Size getOriginalWindowSize()
{
ThrowIfDisposed();
double[] tmpArray = new double[2];
objdetect_CascadeClassifier_getOriginalWindowSize_10(nativeObj, tmpArray);
Size retVal = new Size(tmpArray);
return retVal;
}
//
// C++: int cv::CascadeClassifier::getFeatureType()
//
public int getFeatureType()
{
ThrowIfDisposed();
return objdetect_CascadeClassifier_getFeatureType_10(nativeObj);
}
//
// C++: static bool cv::CascadeClassifier::convert(String oldcascade, String newcascade)
//
public static bool convert(string oldcascade, string newcascade)
{
return objdetect_CascadeClassifier_convert_10(oldcascade, newcascade);
}
#if (UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR
const string LIBNAME = "__Internal";
#else
const string LIBNAME = "opencvforunity";
#endif
// C++: cv::CascadeClassifier::CascadeClassifier()
[DllImport(LIBNAME)]
private static extern IntPtr objdetect_CascadeClassifier_CascadeClassifier_10();
// C++: cv::CascadeClassifier::CascadeClassifier(String filename)
[DllImport(LIBNAME)]
private static extern IntPtr objdetect_CascadeClassifier_CascadeClassifier_11(string filename);
// C++: bool cv::CascadeClassifier::empty()
[DllImport(LIBNAME)]
[return: MarshalAs(UnmanagedType.U1)]
private static extern bool objdetect_CascadeClassifier_empty_10(IntPtr nativeObj);
// C++: bool cv::CascadeClassifier::load(String filename)
[DllImport(LIBNAME)]
[return: MarshalAs(UnmanagedType.U1)]
private static extern bool objdetect_CascadeClassifier_load_10(IntPtr nativeObj, string filename);
// C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size())
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale_10(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height, double maxSize_width, double maxSize_height);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale_11(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale_12(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, double scaleFactor, int minNeighbors, int flags);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale_13(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, double scaleFactor, int minNeighbors);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale_14(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, double scaleFactor);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale_15(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj);
// C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, vector_int& numDetections, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size())
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale2_10(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr numDetections_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height, double maxSize_width, double maxSize_height);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale2_11(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr numDetections_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale2_12(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr numDetections_mat_nativeObj, double scaleFactor, int minNeighbors, int flags);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale2_13(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr numDetections_mat_nativeObj, double scaleFactor, int minNeighbors);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale2_14(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr numDetections_mat_nativeObj, double scaleFactor);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale2_15(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr numDetections_mat_nativeObj);
// C++: void cv::CascadeClassifier::detectMultiScale(Mat image, vector_Rect& objects, vector_int& rejectLevels, vector_double& levelWeights, double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize = Size(), bool outputRejectLevels = false)
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale3_10(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr rejectLevels_mat_nativeObj, IntPtr levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height, double maxSize_width, double maxSize_height, [MarshalAs(UnmanagedType.U1)] bool outputRejectLevels);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale3_11(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr rejectLevels_mat_nativeObj, IntPtr levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height, double maxSize_width, double maxSize_height);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale3_12(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr rejectLevels_mat_nativeObj, IntPtr levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors, int flags, double minSize_width, double minSize_height);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale3_13(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr rejectLevels_mat_nativeObj, IntPtr levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors, int flags);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale3_14(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr rejectLevels_mat_nativeObj, IntPtr levelWeights_mat_nativeObj, double scaleFactor, int minNeighbors);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale3_15(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr rejectLevels_mat_nativeObj, IntPtr levelWeights_mat_nativeObj, double scaleFactor);
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_detectMultiScale3_16(IntPtr nativeObj, IntPtr image_nativeObj, IntPtr objects_mat_nativeObj, IntPtr rejectLevels_mat_nativeObj, IntPtr levelWeights_mat_nativeObj);
// C++: bool cv::CascadeClassifier::isOldFormatCascade()
[DllImport(LIBNAME)]
[return: MarshalAs(UnmanagedType.U1)]
private static extern bool objdetect_CascadeClassifier_isOldFormatCascade_10(IntPtr nativeObj);
// C++: Size cv::CascadeClassifier::getOriginalWindowSize()
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_getOriginalWindowSize_10(IntPtr nativeObj, double[] retVal);
// C++: int cv::CascadeClassifier::getFeatureType()
[DllImport(LIBNAME)]
private static extern int objdetect_CascadeClassifier_getFeatureType_10(IntPtr nativeObj);
// C++: static bool cv::CascadeClassifier::convert(String oldcascade, String newcascade)
[DllImport(LIBNAME)]
[return: MarshalAs(UnmanagedType.U1)]
private static extern bool objdetect_CascadeClassifier_convert_10(string oldcascade, string newcascade);
// native support for java finalize()
[DllImport(LIBNAME)]
private static extern void objdetect_CascadeClassifier_delete(IntPtr nativeObj);
}
}